This file is indexed.

/usr/include/pbseq/alignment/algorithms/alignment/OneGapAlignment.hpp is in libblasr-dev 0~20161219-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#ifndef _BLASR_ONEGAP_ALIGNMENT_HPP_
#define _BLASR_ONEGAP_ALIGNMENT_HPP_

#include <limits.h>
// pbdata
#include "../../../pbdata/Types.h"
#include "../../../pbdata/FASTQSequence.hpp"
#include "../../../pbdata/matrix/FlatMatrix.hpp"

#include "../../datastructures/alignment/Path.h"
#include "../../datastructures/alignment/Alignment.hpp"

/*
   Perform gapped alignment that aligns the entire query sequence to
   leftTarget, rightTarget, or between the two with a gap in between.
   The gap between leftTarget and rightTarget is an affine gap. 
   */

template<typename T_QuerySequence, typename T_RefSequence, typename T_ScoreFunction> 
int OneGapAlign(T_QuerySequence &query, 
        T_RefSequence &leftTarget, 
        T_RefSequence &rightTarget, 
        DNALength   distanceBetweenLeftAndRightTarget,
        T_ScoreFunction &scoreFn,
        Alignment   &alignment, 
        FlatMatrix2D<int> & scoreMat, FlatMatrix2D<Arrow> & pathMat, 
        FlatMatrix2D<int> &affineScoreMat, FlatMatrix2D<Arrow> &affinePathMat) {

    /*
       Perform alignment that spans what is effectively two pairs of
       matrices.  This is implemented as a single matrix, however paths
       may only transition through the boundary between the two through
       the affine portion of the matrices.  

       leftTarget    rightTarget
       affine   |==============|
       |   x------>x  |
       |   ^       |  |
       |===|=======|==|
       |       |
       regular  |===|=+||===|=+|
       |   x  ||   |  |
       |      ||   v  |
       |======||======|


*/


    UInt nQueryRows, nLeftTargetCols, nRightTargetCols;
    UInt nTargetCols;
    nQueryRows = query.length + 1;
    nLeftTargetCols  = leftTarget.length + 1;
    nRightTargetCols = rightTarget.length;
    nTargetCols = nLeftTargetCols + nRightTargetCols;

    //
    // Create the matrices
    // 
    affineScoreMat.Grow(nQueryRows,  nTargetCols);
    affinePathMat.Grow(nQueryRows,  nTargetCols);

    scoreMat.Grow(nQueryRows, nTargetCols);
    pathMat.Grow(nQueryRows, nTargetCols);

    //
    // Initialize to undefined for debugging purposes.
    //
    affineScoreMat.Initialize(0);
    affinePathMat.Initialize(NoArrow);

    scoreMat.Initialize(0);
    pathMat.Initialize(NoArrow);

    // Initialize insertion and deletion strips
    UInt i, j;
    scoreMat[0][0] = 0;
    pathMat[0][0]  = NoArrow;
    affineScoreMat[0][0] = 0;
    // always drop down to 0,0 at end of affine gap.
    affinePathMat[0][0]  = AffineDelOpen;
    for (i = 1; i < nQueryRows; i++) {
        scoreMat[i][0] = scoreMat[i-1][0] + scoreFn.ins;
        pathMat[i][0]  = Up;
        //
        // Affine gaps can only start here.
        //
        affineScoreMat[i][0] = scoreMat[i][0];
        affinePathMat[i][0]  = AffineDelOpen; 
    }

    for (j = 1; j < nTargetCols; j++) {
        scoreMat[0][j] = scoreMat[0][j-1] + scoreFn.del;
        pathMat[0][j]  = Left;
        //
        // Allow free affine transition across first row.
        //
        affineScoreMat[0][j] = 0;
        affinePathMat[0][j]  = Left;
    }


    //  Now run the alignment.
    //  i and j index over positions in the query/target sequences, or
    //  [0,len(seq)).  Since the score mat are of length len(seq) + 1,
    //  the indices of the score matrices are [1, len(seq) + 1)
    for (i = 0; i < query.length; i++) {

        //
        // First align a row of the left target, allowing for transition
        // up to the big affine gap. No transitions down from affine gap
        // are allowed.
        //
        for (j = 0; j < leftTarget.length; j++) {
            //
            // First, assign the non-affine score.
            //
            int matchScore, insScore, delScore;
            // Remember mapping:
            // scoreMat[i+1][j+1] = position to fill
            // scoreMat[i+1][j] ==> back one column
            // scoreMat[i][j+1] ==> up one row.
            matchScore = scoreMat[i][j]   + scoreFn.Match(leftTarget, j, query, i);
            insScore   = scoreMat[i][j+1] + scoreFn.Insertion(leftTarget, j, query, i);
            delScore   = scoreMat[i+1][j] + scoreFn.Deletion(leftTarget, j, query, i);

            int minScore = min(matchScore, min(insScore, delScore));
            scoreMat[i+1][j+1] = minScore;


            // set path.
            if (matchScore  == minScore) {
                pathMat[i+1][j+1]  = Diagonal;
            }
            else if (insScore == minScore) {
                pathMat[i+1][j+1]  = Up;
            }
            else {
                assert(delScore == minScore);
                pathMat[i+1][j+1]  = Left;
            }

            //
            // Next, assign the affine score
            //
            if (affineScoreMat[i+1][j] < scoreMat[i+1][j+1]) {
                affineScoreMat[i+1][j+1] = affineScoreMat[i+1][j];
                affinePathMat[i+1][j+1]  = Left;
            }
            else {
                // Allow free gap open... maybe this will change.
                affineScoreMat[i+1][j+1] = scoreMat[i+1][j+1]; 
                affinePathMat[i+1][j+1]  = AffineDelOpen;
            }
        }

        //
        // Now align the right target, allowing a jump over the divide.  
        //
        int affineCloseScore;
        j = 0; 
        //
        // A match here may only be preceded by an affine gap close.
        //
        int matchScore, delScore, insScore, minScore;
        matchScore = affineScoreMat[i][leftTarget.length] + scoreFn.Match(rightTarget, j, query, i);
        //
        // Cannot have a non-affine deletion here.
        delScore   = INT_MAX;
        //
        // The insertion is a horizontal move, so that is all allowed.
        //
        insScore   = scoreFn.Insertion(rightTarget, j, query, i - 1);


        minScore = min(matchScore, insScore);
        UInt targetCol = leftTarget.length;

        assert(scoreMat[i+1][targetCol+1] == 0);
        assert(pathMat[i+1][targetCol+1] == NoArrow);
        scoreMat[i+1][targetCol+1] = minScore;      

        if (minScore == matchScore) {
            pathMat[i+1][targetCol+1]  = AffineLongDelClose;
        }
        else {
            assert(minScore == insScore);
            pathMat[i+1][targetCol+1]  = Up;
        }

        //
        // The affine matrix on the right side can only progress forward.
        //
        affineScoreMat[i+1][targetCol+1] = affineScoreMat[i+1][targetCol];
        affinePathMat[i+1][targetCol+1]  = AffineLongDelLeft;


        for (j = 1; j < rightTarget.length; j++) {
            targetCol = leftTarget.length + j;
            matchScore = scoreMat[i][targetCol] + scoreFn.Match(rightTarget, j, query, i);
            insScore   = scoreMat[i][targetCol+1] + scoreFn.Insertion(rightTarget, j, query, i);
            delScore   = scoreMat[i+1][targetCol] + scoreFn.Deletion(rightTarget, j, query, i);
            affineCloseScore = affineScoreMat[i][targetCol] + scoreFn.Match(rightTarget, j, query, i);

            minScore = min(matchScore, min(insScore, min(delScore, affineCloseScore)));

            scoreMat[i+1][targetCol+1] = minScore;
            if (minScore == matchScore) {
                pathMat[i+1][targetCol+1]  = Diagonal;
            }
            else if (minScore == insScore) {
                pathMat[i+1][targetCol+1] = Up;
            }
            else if (minScore == delScore) {
                pathMat[i+1][targetCol+1] = Left;
            }
            else {
                assert(minScore == affineCloseScore);
                pathMat[i+1][targetCol+1] = AffineLongDelClose;
            }

            //
            // As with before, the affine matrix on the right side can
            // only progress forward.
            // 
            affineScoreMat[i+1][targetCol+1] = affineScoreMat[i+1][targetCol];
            affinePathMat[i+1][targetCol+1]  = Left;
        } // done aligning right target
    } // done aligning full query

    //
    // Now build the alignment string
    //
    i = nQueryRows - 1;
    j = nTargetCols - 1;
    vector<Arrow> optAlignment;

    int REGULAR = 0;
    int AFFINE  = 1;

    int curMatrix = REGULAR;
    Arrow arrow;

    /*
       cout << "score " << endl;
       PrintFlatMatrix(scoreMat.matrix, scoreMat.nRows, scoreMat.nCols, cout, 3);
       cout << "path " << endl;
       PrintFlatMatrix(pathMat.matrix, scoreMat.nRows, scoreMat.nCols, cout, 3);
       cout << "affine score " << endl;
       PrintFlatMatrix(affineScoreMat.matrix, scoreMat.nRows, scoreMat.nCols, cout, 3);
       cout << "affine path " << endl;
       PrintFlatMatrix(affinePathMat.matrix, scoreMat.nRows, scoreMat.nCols, cout, 3);
       */
    int optScore = scoreMat[i][j];
    while (i > 0 or j > 0 or curMatrix == AFFINE) {
        if (curMatrix == REGULAR) {
            arrow = pathMat[i][j];
            if (arrow == Diagonal) {
                optAlignment.push_back(arrow);
                i--;
                j--;
            }
            else if (arrow == Left) {
                optAlignment.push_back(arrow);

                j--;
            }
            else if (arrow == Up) {
                optAlignment.push_back(arrow);
                i--;
            }
            else if (arrow == AffineLongDelClose) {
                optAlignment.push_back(Left);
                j--;
                i--;
                curMatrix = AFFINE;
            }
        }
        else {
            // in affine matrix
            arrow = affinePathMat[i][j];
            if (arrow == Left or arrow == AffineLongDelLeft) {
                optAlignment.push_back(arrow);
                j--;
            }
            else if (arrow == AffineDelOpen) {
                //
                // no change in i nor j, and this does not result in an
                // arrow.
                // Drop down to the regular alignment matrix.
                //
                curMatrix = REGULAR;
            }
        }
        assert(arrow != NoArrow);
        //
        // Check for wrap around.
        //
        assert(i != UINT_MAX);
        assert(j != UINT_MAX);
    } // done tracing alignment path.
    std::reverse(optAlignment.begin(), optAlignment.end());    
    alignment.LongGapArrowPathToAlignment(optAlignment, distanceBetweenLeftAndRightTarget);
    return optScore;
}

//
// Create a version that does not need reusable mapping buffers.
//

template<typename T_QuerySequence, typename T_RefSequence, typename T_ScoreFunction>
int OneGapAlign(T_QuerySequence &query, 
        T_RefSequence &leftTarget, 
        T_RefSequence &rightTarget, 
        DNALength   distanceBetweenLeftAndRightTarget,
        T_ScoreFunction &scoreFn,
        Alignment   &alignment) {

    FlatMatrix2D<int>   scoreMat;
    FlatMatrix2D<int>   affineScoreMat;
    FlatMatrix2D<Arrow> pathMat;
    FlatMatrix2D<Arrow> affinePathMat;


    return OneGapAlign(query, leftTarget, rightTarget, 
            distanceBetweenLeftAndRightTarget,
            scoreFn,
            alignment,
            scoreMat, pathMat,
            affineScoreMat, affinePathMat);
}


template<typename T_QuerySequence, typename T_RefSequence, typename T_ScoreFunction, typename T_BufferList> 
int OneGapAlign(T_QuerySequence &query, 
        T_RefSequence   &leftTarget, 
        T_RefSequence   &rightTarget, 
        DNALength   distanceBetweenLeftAndRightTarget,
        T_ScoreFunction &scoreFn,
        T_BufferList &buffers,
        Alignment   &alignment) {
    PB_UNUSED(scoreFn);
    return OneGapAlign(query, leftTarget, rightTarget, distanceBetweenLeftAndRightTarget, alignment,
            buffers.scoreMat, buffers.pathMat,
            buffers.affineScoreMat, buffers.affinePathMat);

}

template<typename T_QuerySequence, typename T_RefSequence, typename T_ScoreFunction, typename T_BufferList> 
int OneGapAlign(T_QuerySequence &query,
        T_RefSequence   &reference,
        T_ScoreFunction &scoreFunction,
        T_BufferList &buffers,
        Alignment &alignment) {
    (void)(buffers);

    T_RefSequence leftReference, rightReference;
    UInt leftReferenceLength = min(reference.length, query.length);
    leftReference.ReferenceSubstring(reference, 0, leftReferenceLength);

    UInt rightReferenceLength = min(reference.length - leftReferenceLength, query.length);
    rightReference.ReferenceSubstring(reference, reference.length - rightReferenceLength, rightReferenceLength);

    DNALength distanceBetweenLeftAndRight = reference.length - rightReferenceLength - leftReferenceLength;

    assert(distanceBetweenLeftAndRight >= 0);

    return OneGapAlign(query, 
            leftReference, 
            rightReference, 
            distanceBetweenLeftAndRight,
            scoreFunction, alignment);
}



#endif // _BLASR_ONEGAP_ALIGNMENT_HPP_