This file is indexed.

/usr/include/boost/operators.hpp is in libboost1.62-dev 1.62.0+dfsg-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
//  Boost operators.hpp header file  ----------------------------------------//

//  (C) Copyright David Abrahams, Jeremy Siek, Daryle Walker 1999-2001.
//  (C) Copyright Daniel Frey 2002-2016.
//  Distributed under the Boost Software License, Version 1.0. (See
//  accompanying file LICENSE_1_0.txt or copy at
//  http://www.boost.org/LICENSE_1_0.txt)

//  See http://www.boost.org/libs/utility/operators.htm for documentation.

//  Revision History
//  22 Feb 16 Added ADL protection, preserve old work-arounds in
//            operators_v1.hpp and clean up this file. (Daniel Frey)
//  16 Dec 10 Limit warning suppression for 4284 to older versions of VC++
//            (Matthew Bradbury, fixes #4432)
//  07 Aug 08 Added "euclidean" spelling. (Daniel Frey)
//  03 Apr 08 Make sure "convertible to bool" is sufficient
//            for T::operator<, etc. (Daniel Frey)
//  24 May 07 Changed empty_base to depend on T, see
//            http://svn.boost.org/trac/boost/ticket/979
//  21 Oct 02 Modified implementation of operators to allow compilers with a
//            correct named return value optimization (NRVO) to produce optimal
//            code.  (Daniel Frey)
//  02 Dec 01 Bug fixed in random_access_iteratable.  (Helmut Zeisel)
//  28 Sep 01 Factored out iterator operator groups.  (Daryle Walker)
//  27 Aug 01 'left' form for non commutative operators added;
//            additional classes for groups of related operators added;
//            workaround for empty base class optimization
//            bug of GCC 3.0 (Helmut Zeisel)
//  25 Jun 01 output_iterator_helper changes: removed default template
//            parameters, added support for self-proxying, additional
//            documentation and tests (Aleksey Gurtovoy)
//  29 May 01 Added operator classes for << and >>.  Added input and output
//            iterator helper classes.  Added classes to connect equality and
//            relational operators.  Added classes for groups of related
//            operators.  Reimplemented example operator and iterator helper
//            classes in terms of the new groups.  (Daryle Walker, with help
//            from Alexy Gurtovoy)
//  11 Feb 01 Fixed bugs in the iterator helpers which prevented explicitly
//            supplied arguments from actually being used (Dave Abrahams)
//  04 Jul 00 Fixed NO_OPERATORS_IN_NAMESPACE bugs, major cleanup and
//            refactoring of compiler workarounds, additional documentation
//            (Alexy Gurtovoy and Mark Rodgers with some help and prompting from
//            Dave Abrahams)
//  28 Jun 00 General cleanup and integration of bugfixes from Mark Rodgers and
//            Jeremy Siek (Dave Abrahams)
//  20 Jun 00 Changes to accommodate Borland C++Builder 4 and Borland C++ 5.5
//            (Mark Rodgers)
//  20 Jun 00 Minor fixes to the prior revision (Aleksey Gurtovoy)
//  10 Jun 00 Support for the base class chaining technique was added
//            (Aleksey Gurtovoy). See documentation and the comments below
//            for the details.
//  12 Dec 99 Initial version with iterator operators (Jeremy Siek)
//  18 Nov 99 Change name "divideable" to "dividable", remove unnecessary
//            specializations of dividable, subtractable, modable (Ed Brey)
//  17 Nov 99 Add comments (Beman Dawes)
//            Remove unnecessary specialization of operators<> (Ed Brey)
//  15 Nov 99 Fix less_than_comparable<T,U> second operand type for first two
//            operators.(Beman Dawes)
//  12 Nov 99 Add operators templates (Ed Brey)
//  11 Nov 99 Add single template parameter version for compilers without
//            partial specialization (Beman Dawes)
//  10 Nov 99 Initial version

// 10 Jun 00:
// An additional optional template parameter was added to most of
// operator templates to support the base class chaining technique (see
// documentation for the details). Unfortunately, a straightforward
// implementation of this change would have broken compatibility with the
// previous version of the library by making it impossible to use the same
// template name (e.g. 'addable') for both the 1- and 2-argument versions of
// an operator template. This implementation solves the backward-compatibility
// issue at the cost of some simplicity.
//
// One of the complications is an existence of special auxiliary class template
// 'is_chained_base<>' (see 'operators_detail' namespace below), which is used
// to determine whether its template parameter is a library's operator template
// or not. You have to specialize 'is_chained_base<>' for each new
// operator template you add to the library.
//
// However, most of the non-trivial implementation details are hidden behind
// several local macros defined below, and as soon as you understand them,
// you understand the whole library implementation.

#ifndef BOOST_OPERATORS_HPP
#define BOOST_OPERATORS_HPP

// If old work-arounds are needed, refer to the preserved version without
// ADL protection.
#if defined(BOOST_NO_OPERATORS_IN_NAMESPACE) || defined(BOOST_USE_OPERATORS_V1)
#include "operators_v1.hpp"
#else

#include <cstddef>
#include <iterator>

#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>

#if defined(__sgi) && !defined(__GNUC__)
#   pragma set woff 1234
#endif

#if BOOST_WORKAROUND(BOOST_MSVC, < 1600)
#   pragma warning( disable : 4284 ) // complaint about return type of
#endif                               // operator-> not begin a UDT

// In this section we supply the xxxx1 and xxxx2 forms of the operator
// templates, which are explicitly targeted at the 1-type-argument and
// 2-type-argument operator forms, respectively.

namespace boost
{
namespace operators_impl
{
namespace operators_detail
{

template <typename T> class empty_base {};

} // namespace operators_detail

//  Basic operator classes (contributed by Dave Abrahams) ------------------//

//  Note that friend functions defined in a class are implicitly inline.
//  See the C++ std, 11.4 [class.friend] paragraph 5

template <class T, class U, class B = operators_detail::empty_base<T> >
struct less_than_comparable2 : B
{
     friend bool operator<=(const T& x, const U& y) { return !static_cast<bool>(x > y); }
     friend bool operator>=(const T& x, const U& y) { return !static_cast<bool>(x < y); }
     friend bool operator>(const U& x, const T& y)  { return y < x; }
     friend bool operator<(const U& x, const T& y)  { return y > x; }
     friend bool operator<=(const U& x, const T& y) { return !static_cast<bool>(y < x); }
     friend bool operator>=(const U& x, const T& y) { return !static_cast<bool>(y > x); }
};

template <class T, class B = operators_detail::empty_base<T> >
struct less_than_comparable1 : B
{
     friend bool operator>(const T& x, const T& y)  { return y < x; }
     friend bool operator<=(const T& x, const T& y) { return !static_cast<bool>(y < x); }
     friend bool operator>=(const T& x, const T& y) { return !static_cast<bool>(x < y); }
};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct equality_comparable2 : B
{
     friend bool operator==(const U& y, const T& x) { return x == y; }
     friend bool operator!=(const U& y, const T& x) { return !static_cast<bool>(x == y); }
     friend bool operator!=(const T& y, const U& x) { return !static_cast<bool>(y == x); }
};

template <class T, class B = operators_detail::empty_base<T> >
struct equality_comparable1 : B
{
     friend bool operator!=(const T& x, const T& y) { return !static_cast<bool>(x == y); }
};

// A macro which produces "name_2left" from "name".
#define BOOST_OPERATOR2_LEFT(name) name##2##_##left

//  NRVO-friendly implementation (contributed by Daniel Frey) ---------------//

#if defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS)

// This is the optimal implementation for ISO/ANSI C++,
// but it requires the compiler to implement the NRVO.
// If the compiler has no NRVO, this is the best symmetric
// implementation available.

#define BOOST_BINARY_OPERATOR_COMMUTATIVE( NAME, OP )                   \
template <class T, class U, class B = operators_detail::empty_base<T> > \
struct NAME##2 : B                                                      \
{                                                                       \
  friend T operator OP( const T& lhs, const U& rhs )                    \
    { T nrv( lhs ); nrv OP##= rhs; return nrv; }                        \
  friend T operator OP( const U& lhs, const T& rhs )                    \
    { T nrv( rhs ); nrv OP##= lhs; return nrv; }                        \
};                                                                      \
                                                                        \
template <class T, class B = operators_detail::empty_base<T> >          \
struct NAME##1 : B                                                      \
{                                                                       \
  friend T operator OP( const T& lhs, const T& rhs )                    \
    { T nrv( lhs ); nrv OP##= rhs; return nrv; }                        \
};

#define BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( NAME, OP )               \
template <class T, class U, class B = operators_detail::empty_base<T> > \
struct NAME##2 : B                                                      \
{                                                                       \
  friend T operator OP( const T& lhs, const U& rhs )                    \
    { T nrv( lhs ); nrv OP##= rhs; return nrv; }                        \
};                                                                      \
                                                                        \
template <class T, class U, class B = operators_detail::empty_base<T> > \
struct BOOST_OPERATOR2_LEFT(NAME) : B                                   \
{                                                                       \
  friend T operator OP( const U& lhs, const T& rhs )                    \
    { T nrv( lhs ); nrv OP##= rhs; return nrv; }                        \
};                                                                      \
                                                                        \
template <class T, class B = operators_detail::empty_base<T> >          \
struct NAME##1 : B                                                      \
{                                                                       \
  friend T operator OP( const T& lhs, const T& rhs )                    \
    { T nrv( lhs ); nrv OP##= rhs; return nrv; }                        \
};

#else // defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS)

// For compilers without NRVO the following code is optimal, but not
// symmetric!  Note that the implementation of
// BOOST_OPERATOR2_LEFT(NAME) only looks cool, but doesn't provide
// optimization opportunities to the compiler :)

#define BOOST_BINARY_OPERATOR_COMMUTATIVE( NAME, OP )                   \
template <class T, class U, class B = operators_detail::empty_base<T> > \
struct NAME##2 : B                                                      \
{                                                                       \
  friend T operator OP( T lhs, const U& rhs ) { return lhs OP##= rhs; } \
  friend T operator OP( const U& lhs, T rhs ) { return rhs OP##= lhs; } \
};                                                                      \
                                                                        \
template <class T, class B = operators_detail::empty_base<T> >          \
struct NAME##1 : B                                                      \
{                                                                       \
  friend T operator OP( T lhs, const T& rhs ) { return lhs OP##= rhs; } \
};

#define BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( NAME, OP )               \
template <class T, class U, class B = operators_detail::empty_base<T> > \
struct NAME##2 : B                                                      \
{                                                                       \
  friend T operator OP( T lhs, const U& rhs ) { return lhs OP##= rhs; } \
};                                                                      \
                                                                        \
template <class T, class U, class B = operators_detail::empty_base<T> > \
struct BOOST_OPERATOR2_LEFT(NAME) : B                                   \
{                                                                       \
  friend T operator OP( const U& lhs, const T& rhs )                    \
    { return T( lhs ) OP##= rhs; }                                      \
};                                                                      \
                                                                        \
template <class T, class B = operators_detail::empty_base<T> >          \
struct NAME##1 : B                                                      \
{                                                                       \
  friend T operator OP( T lhs, const T& rhs ) { return lhs OP##= rhs; } \
};

#endif // defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS)

BOOST_BINARY_OPERATOR_COMMUTATIVE( multipliable, * )
BOOST_BINARY_OPERATOR_COMMUTATIVE( addable, + )
BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( subtractable, - )
BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( dividable, / )
BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( modable, % )
BOOST_BINARY_OPERATOR_COMMUTATIVE( xorable, ^ )
BOOST_BINARY_OPERATOR_COMMUTATIVE( andable, & )
BOOST_BINARY_OPERATOR_COMMUTATIVE( orable, | )

#undef BOOST_BINARY_OPERATOR_COMMUTATIVE
#undef BOOST_BINARY_OPERATOR_NON_COMMUTATIVE
#undef BOOST_OPERATOR2_LEFT

//  incrementable and decrementable contributed by Jeremy Siek

template <class T, class B = operators_detail::empty_base<T> >
struct incrementable : B
{
  friend T operator++(T& x, int)
  {
    incrementable_type nrv(x);
    ++x;
    return nrv;
  }
private: // The use of this typedef works around a Borland bug
  typedef T incrementable_type;
};

template <class T, class B = operators_detail::empty_base<T> >
struct decrementable : B
{
  friend T operator--(T& x, int)
  {
    decrementable_type nrv(x);
    --x;
    return nrv;
  }
private: // The use of this typedef works around a Borland bug
  typedef T decrementable_type;
};

//  Iterator operator classes (contributed by Jeremy Siek) ------------------//

template <class T, class P, class B = operators_detail::empty_base<T> >
struct dereferenceable : B
{
  P operator->() const
  {
    return &*static_cast<const T&>(*this);
  }
};

template <class T, class I, class R, class B = operators_detail::empty_base<T> >
struct indexable : B
{
  R operator[](I n) const
  {
    return *(static_cast<const T&>(*this) + n);
  }
};

//  More operator classes (contributed by Daryle Walker) --------------------//
//  (NRVO-friendly implementation contributed by Daniel Frey) ---------------//

#if defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS)

#define BOOST_BINARY_OPERATOR( NAME, OP )                               \
template <class T, class U, class B = operators_detail::empty_base<T> > \
struct NAME##2 : B                                                      \
{                                                                       \
  friend T operator OP( const T& lhs, const U& rhs )                    \
    { T nrv( lhs ); nrv OP##= rhs; return nrv; }                        \
};                                                                      \
                                                                        \
template <class T, class B = operators_detail::empty_base<T> >          \
struct NAME##1 : B                                                      \
{                                                                       \
  friend T operator OP( const T& lhs, const T& rhs )                    \
    { T nrv( lhs ); nrv OP##= rhs; return nrv; }                        \
};

#else // defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS)

#define BOOST_BINARY_OPERATOR( NAME, OP )                               \
template <class T, class U, class B = operators_detail::empty_base<T> > \
struct NAME##2 : B                                                      \
{                                                                       \
  friend T operator OP( T lhs, const U& rhs ) { return lhs OP##= rhs; } \
};                                                                      \
                                                                        \
template <class T, class B = operators_detail::empty_base<T> >          \
struct NAME##1 : B                                                      \
{                                                                       \
  friend T operator OP( T lhs, const T& rhs ) { return lhs OP##= rhs; } \
};

#endif // defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS)

BOOST_BINARY_OPERATOR( left_shiftable, << )
BOOST_BINARY_OPERATOR( right_shiftable, >> )

#undef BOOST_BINARY_OPERATOR

template <class T, class U, class B = operators_detail::empty_base<T> >
struct equivalent2 : B
{
  friend bool operator==(const T& x, const U& y)
  {
    return !static_cast<bool>(x < y) && !static_cast<bool>(x > y);
  }
};

template <class T, class B = operators_detail::empty_base<T> >
struct equivalent1 : B
{
  friend bool operator==(const T&x, const T&y)
  {
    return !static_cast<bool>(x < y) && !static_cast<bool>(y < x);
  }
};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct partially_ordered2 : B
{
  friend bool operator<=(const T& x, const U& y)
    { return static_cast<bool>(x < y) || static_cast<bool>(x == y); }
  friend bool operator>=(const T& x, const U& y)
    { return static_cast<bool>(x > y) || static_cast<bool>(x == y); }
  friend bool operator>(const U& x, const T& y)
    { return y < x; }
  friend bool operator<(const U& x, const T& y)
    { return y > x; }
  friend bool operator<=(const U& x, const T& y)
    { return static_cast<bool>(y > x) || static_cast<bool>(y == x); }
  friend bool operator>=(const U& x, const T& y)
    { return static_cast<bool>(y < x) || static_cast<bool>(y == x); }
};

template <class T, class B = operators_detail::empty_base<T> >
struct partially_ordered1 : B
{
  friend bool operator>(const T& x, const T& y)
    { return y < x; }
  friend bool operator<=(const T& x, const T& y)
    { return static_cast<bool>(x < y) || static_cast<bool>(x == y); }
  friend bool operator>=(const T& x, const T& y)
    { return static_cast<bool>(y < x) || static_cast<bool>(x == y); }
};

//  Combined operator classes (contributed by Daryle Walker) ----------------//

template <class T, class U, class B = operators_detail::empty_base<T> >
struct totally_ordered2
    : less_than_comparable2<T, U
    , equality_comparable2<T, U, B
      > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct totally_ordered1
    : less_than_comparable1<T
    , equality_comparable1<T, B
      > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct additive2
    : addable2<T, U
    , subtractable2<T, U, B
      > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct additive1
    : addable1<T
    , subtractable1<T, B
      > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct multiplicative2
    : multipliable2<T, U
    , dividable2<T, U, B
      > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct multiplicative1
    : multipliable1<T
    , dividable1<T, B
      > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct integer_multiplicative2
    : multiplicative2<T, U
    , modable2<T, U, B
      > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct integer_multiplicative1
    : multiplicative1<T
    , modable1<T, B
      > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct arithmetic2
    : additive2<T, U
    , multiplicative2<T, U, B
      > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct arithmetic1
    : additive1<T
    , multiplicative1<T, B
      > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct integer_arithmetic2
    : additive2<T, U
    , integer_multiplicative2<T, U, B
      > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct integer_arithmetic1
    : additive1<T
    , integer_multiplicative1<T, B
      > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct bitwise2
    : xorable2<T, U
    , andable2<T, U
    , orable2<T, U, B
      > > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct bitwise1
    : xorable1<T
    , andable1<T
    , orable1<T, B
      > > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct unit_steppable
    : incrementable<T
    , decrementable<T, B
      > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct shiftable2
    : left_shiftable2<T, U
    , right_shiftable2<T, U, B
      > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct shiftable1
    : left_shiftable1<T
    , right_shiftable1<T, B
      > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct ring_operators2
    : additive2<T, U
    , subtractable2_left<T, U
    , multipliable2<T, U, B
      > > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct ring_operators1
    : additive1<T
    , multipliable1<T, B
      > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct ordered_ring_operators2
    : ring_operators2<T, U
    , totally_ordered2<T, U, B
      > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct ordered_ring_operators1
    : ring_operators1<T
    , totally_ordered1<T, B
      > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct field_operators2
    : ring_operators2<T, U
    , dividable2<T, U
    , dividable2_left<T, U, B
      > > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct field_operators1
    : ring_operators1<T
    , dividable1<T, B
      > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct ordered_field_operators2
    : field_operators2<T, U
    , totally_ordered2<T, U, B
      > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct ordered_field_operators1
    : field_operators1<T
    , totally_ordered1<T, B
      > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct euclidian_ring_operators2
    : ring_operators2<T, U
    , dividable2<T, U
    , dividable2_left<T, U
    , modable2<T, U
    , modable2_left<T, U, B
      > > > > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct euclidian_ring_operators1
    : ring_operators1<T
    , dividable1<T
    , modable1<T, B
      > > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct ordered_euclidian_ring_operators2
    : totally_ordered2<T, U
    , euclidian_ring_operators2<T, U, B
      > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct ordered_euclidian_ring_operators1
    : totally_ordered1<T
    , euclidian_ring_operators1<T, B
      > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct euclidean_ring_operators2
    : ring_operators2<T, U
    , dividable2<T, U
    , dividable2_left<T, U
    , modable2<T, U
    , modable2_left<T, U, B
      > > > > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct euclidean_ring_operators1
    : ring_operators1<T
    , dividable1<T
    , modable1<T, B
      > > > {};

template <class T, class U, class B = operators_detail::empty_base<T> >
struct ordered_euclidean_ring_operators2
    : totally_ordered2<T, U
    , euclidean_ring_operators2<T, U, B
      > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct ordered_euclidean_ring_operators1
    : totally_ordered1<T
    , euclidean_ring_operators1<T, B
      > > {};

template <class T, class P, class B = operators_detail::empty_base<T> >
struct input_iteratable
    : equality_comparable1<T
    , incrementable<T
    , dereferenceable<T, P, B
      > > > {};

template <class T, class B = operators_detail::empty_base<T> >
struct output_iteratable
    : incrementable<T, B
      > {};

template <class T, class P, class B = operators_detail::empty_base<T> >
struct forward_iteratable
    : input_iteratable<T, P, B
      > {};

template <class T, class P, class B = operators_detail::empty_base<T> >
struct bidirectional_iteratable
    : forward_iteratable<T, P
    , decrementable<T, B
      > > {};

//  To avoid repeated derivation from equality_comparable,
//  which is an indirect base class of bidirectional_iterable,
//  random_access_iteratable must not be derived from totally_ordered1
//  but from less_than_comparable1 only. (Helmut Zeisel, 02-Dec-2001)
template <class T, class P, class D, class R, class B = operators_detail::empty_base<T> >
struct random_access_iteratable
    : bidirectional_iteratable<T, P
    , less_than_comparable1<T
    , additive2<T, D
    , indexable<T, D, R, B
      > > > > {};


//
// Here's where we put it all together, defining the xxxx forms of the templates.
// We also define specializations of is_chained_base<> for
// the xxxx, xxxx1, and xxxx2 templates.
//

namespace operators_detail
{

// A type parameter is used instead of a plain bool because Borland's compiler
// didn't cope well with the more obvious non-type template parameter.
struct true_t {};
struct false_t {};

} // namespace operators_detail

// is_chained_base<> - a traits class used to distinguish whether an operator
// template argument is being used for base class chaining, or is specifying a
// 2nd argument type.

// Unspecialized version assumes that most types are not being used for base
// class chaining. We specialize for the operator templates defined in this
// library.
template<class T> struct is_chained_base {
  typedef operators_detail::false_t value;
};

// Provide a specialization of 'is_chained_base<>'
// for a 4-type-argument operator template.
# define BOOST_OPERATOR_TEMPLATE4(template_name4)           \
  template<class T, class U, class V, class W, class B>     \
  struct is_chained_base< template_name4<T, U, V, W, B> > { \
    typedef operators_detail::true_t value;                 \
  };

// Provide a specialization of 'is_chained_base<>'
// for a 3-type-argument operator template.
# define BOOST_OPERATOR_TEMPLATE3(template_name3)        \
  template<class T, class U, class V, class B>           \
  struct is_chained_base< template_name3<T, U, V, B> > { \
    typedef operators_detail::true_t value;              \
  };

// Provide a specialization of 'is_chained_base<>'
// for a 2-type-argument operator template.
# define BOOST_OPERATOR_TEMPLATE2(template_name2)     \
  template<class T, class U, class B>                 \
  struct is_chained_base< template_name2<T, U, B> > { \
    typedef operators_detail::true_t value;           \
  };

// Provide a specialization of 'is_chained_base<>'
// for a 1-type-argument operator template.
# define BOOST_OPERATOR_TEMPLATE1(template_name1)  \
  template<class T, class B>                       \
  struct is_chained_base< template_name1<T, B> > { \
    typedef operators_detail::true_t value;        \
  };

// BOOST_OPERATOR_TEMPLATE(template_name) defines template_name<> such that it
// can be used for specifying both 1-argument and 2-argument forms. Requires the
// existence of two previously defined class templates named '<template_name>1'
// and '<template_name>2' which must implement the corresponding 1- and 2-
// argument forms.
//
// The template type parameter O == is_chained_base<U>::value is used to
// distinguish whether the 2nd argument to <template_name> is being used for
// base class chaining from another boost operator template or is describing a
// 2nd operand type. O == true_t only when U is actually an another operator
// template from the library. Partial specialization is used to select an
// implementation in terms of either '<template_name>1' or '<template_name>2'.
//

# define BOOST_OPERATOR_TEMPLATE(template_name)                                       \
template <class T                                                                     \
         ,class U = T                                                                 \
         ,class B = operators_detail::empty_base<T>                                   \
         ,class O = typename is_chained_base<U>::value                                \
         >                                                                            \
struct template_name;                                                                 \
                                                                                      \
template<class T, class U, class B>                                                   \
struct template_name<T, U, B, operators_detail::false_t>                              \
  : template_name##2<T, U, B> {};                                                     \
                                                                                      \
template<class T, class U>                                                            \
struct template_name<T, U, operators_detail::empty_base<T>, operators_detail::true_t> \
  : template_name##1<T, U> {};                                                        \
                                                                                      \
template <class T, class B>                                                           \
struct template_name<T, T, B, operators_detail::false_t>                              \
  : template_name##1<T, B> {};                                                        \
                                                                                      \
template<class T, class U, class B, class O>                                          \
struct is_chained_base< template_name<T, U, B, O> > {                                 \
  typedef operators_detail::true_t value;                                             \
};                                                                                    \
                                                                                      \
BOOST_OPERATOR_TEMPLATE2(template_name##2)                                            \
BOOST_OPERATOR_TEMPLATE1(template_name##1)

BOOST_OPERATOR_TEMPLATE(less_than_comparable)
BOOST_OPERATOR_TEMPLATE(equality_comparable)
BOOST_OPERATOR_TEMPLATE(multipliable)
BOOST_OPERATOR_TEMPLATE(addable)
BOOST_OPERATOR_TEMPLATE(subtractable)
BOOST_OPERATOR_TEMPLATE2(subtractable2_left)
BOOST_OPERATOR_TEMPLATE(dividable)
BOOST_OPERATOR_TEMPLATE2(dividable2_left)
BOOST_OPERATOR_TEMPLATE(modable)
BOOST_OPERATOR_TEMPLATE2(modable2_left)
BOOST_OPERATOR_TEMPLATE(xorable)
BOOST_OPERATOR_TEMPLATE(andable)
BOOST_OPERATOR_TEMPLATE(orable)

BOOST_OPERATOR_TEMPLATE1(incrementable)
BOOST_OPERATOR_TEMPLATE1(decrementable)

BOOST_OPERATOR_TEMPLATE2(dereferenceable)
BOOST_OPERATOR_TEMPLATE3(indexable)

BOOST_OPERATOR_TEMPLATE(left_shiftable)
BOOST_OPERATOR_TEMPLATE(right_shiftable)
BOOST_OPERATOR_TEMPLATE(equivalent)
BOOST_OPERATOR_TEMPLATE(partially_ordered)

BOOST_OPERATOR_TEMPLATE(totally_ordered)
BOOST_OPERATOR_TEMPLATE(additive)
BOOST_OPERATOR_TEMPLATE(multiplicative)
BOOST_OPERATOR_TEMPLATE(integer_multiplicative)
BOOST_OPERATOR_TEMPLATE(arithmetic)
BOOST_OPERATOR_TEMPLATE(integer_arithmetic)
BOOST_OPERATOR_TEMPLATE(bitwise)
BOOST_OPERATOR_TEMPLATE1(unit_steppable)
BOOST_OPERATOR_TEMPLATE(shiftable)
BOOST_OPERATOR_TEMPLATE(ring_operators)
BOOST_OPERATOR_TEMPLATE(ordered_ring_operators)
BOOST_OPERATOR_TEMPLATE(field_operators)
BOOST_OPERATOR_TEMPLATE(ordered_field_operators)
BOOST_OPERATOR_TEMPLATE(euclidian_ring_operators)
BOOST_OPERATOR_TEMPLATE(ordered_euclidian_ring_operators)
BOOST_OPERATOR_TEMPLATE(euclidean_ring_operators)
BOOST_OPERATOR_TEMPLATE(ordered_euclidean_ring_operators)
BOOST_OPERATOR_TEMPLATE2(input_iteratable)
BOOST_OPERATOR_TEMPLATE1(output_iteratable)
BOOST_OPERATOR_TEMPLATE2(forward_iteratable)
BOOST_OPERATOR_TEMPLATE2(bidirectional_iteratable)
BOOST_OPERATOR_TEMPLATE4(random_access_iteratable)

#undef BOOST_OPERATOR_TEMPLATE
#undef BOOST_OPERATOR_TEMPLATE4
#undef BOOST_OPERATOR_TEMPLATE3
#undef BOOST_OPERATOR_TEMPLATE2
#undef BOOST_OPERATOR_TEMPLATE1

template <class T, class U>
struct operators2
    : totally_ordered2<T,U
    , integer_arithmetic2<T,U
    , bitwise2<T,U
      > > > {};

template <class T, class U = T>
struct operators : operators2<T, U> {};

template <class T> struct operators<T, T>
    : totally_ordered<T
    , integer_arithmetic<T
    , bitwise<T
    , unit_steppable<T
      > > > > {};

//  Iterator helper classes (contributed by Jeremy Siek) -------------------//
//  (Input and output iterator helpers contributed by Daryle Walker) -------//
//  (Changed to use combined operator classes by Daryle Walker) ------------//
template <class T,
          class V,
          class D = std::ptrdiff_t,
          class P = V const *,
          class R = V const &>
struct input_iterator_helper
  : input_iteratable<T, P
  , std::iterator<std::input_iterator_tag, V, D, P, R
    > > {};

template<class T>
struct output_iterator_helper
  : output_iteratable<T
  , std::iterator<std::output_iterator_tag, void, void, void, void
  > >
{
  T& operator*()  { return static_cast<T&>(*this); }
  T& operator++() { return static_cast<T&>(*this); }
};

template <class T,
          class V,
          class D = std::ptrdiff_t,
          class P = V*,
          class R = V&>
struct forward_iterator_helper
  : forward_iteratable<T, P
  , std::iterator<std::forward_iterator_tag, V, D, P, R
    > > {};

template <class T,
          class V,
          class D = std::ptrdiff_t,
          class P = V*,
          class R = V&>
struct bidirectional_iterator_helper
  : bidirectional_iteratable<T, P
  , std::iterator<std::bidirectional_iterator_tag, V, D, P, R
    > > {};

template <class T,
          class V,
          class D = std::ptrdiff_t,
          class P = V*,
          class R = V&>
struct random_access_iterator_helper
  : random_access_iteratable<T, P, D, R
  , std::iterator<std::random_access_iterator_tag, V, D, P, R
    > >
{
  friend D requires_difference_operator(const T& x, const T& y) {
    return x - y;
  }
}; // random_access_iterator_helper

} // namespace operators_impl
using namespace operators_impl;

} // namespace boost

#if defined(__sgi) && !defined(__GNUC__)
#pragma reset woff 1234
#endif

#endif // BOOST_NO_OPERATORS_IN_NAMESPACE
#endif // BOOST_OPERATORS_HPP