This file is indexed.

/usr/include/boost/rational.hpp is in libboost1.62-dev 1.62.0+dfsg-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
//  Boost rational.hpp header file  ------------------------------------------//

//  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
//  distribute this software is granted provided this copyright notice appears
//  in all copies. This software is provided "as is" without express or
//  implied warranty, and with no claim as to its suitability for any purpose.

// boostinspect:nolicense (don't complain about the lack of a Boost license)
// (Paul Moore hasn't been in contact for years, so there's no way to change the
// license.)

//  See http://www.boost.org/libs/rational for documentation.

//  Credits:
//  Thanks to the boost mailing list in general for useful comments.
//  Particular contributions included:
//    Andrew D Jewell, for reminding me to take care to avoid overflow
//    Ed Brey, for many comments, including picking up on some dreadful typos
//    Stephen Silver contributed the test suite and comments on user-defined
//    IntType
//    Nickolay Mladenov, for the implementation of operator+=

//  Revision History
//  02 Sep 13  Remove unneeded forward declarations; tweak private helper
//             function (Daryle Walker)
//  30 Aug 13  Improve exception safety of "assign"; start modernizing I/O code
//             (Daryle Walker)
//  27 Aug 13  Add cross-version constructor template, plus some private helper
//             functions; add constructor to exception class to take custom
//             messages (Daryle Walker)
//  25 Aug 13  Add constexpr qualification wherever possible (Daryle Walker)
//  05 May 12  Reduced use of implicit gcd (Mario Lang)
//  05 Nov 06  Change rational_cast to not depend on division between different
//             types (Daryle Walker)
//  04 Nov 06  Off-load GCD and LCM to Boost.Math; add some invariant checks;
//             add std::numeric_limits<> requirement to help GCD (Daryle Walker)
//  31 Oct 06  Recoded both operator< to use round-to-negative-infinity
//             divisions; the rational-value version now uses continued fraction
//             expansion to avoid overflows, for bug #798357 (Daryle Walker)
//  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
//  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
//             (Joaquín M López Muñoz)
//  27 Dec 05  Add Boolean conversion operator (Daryle Walker)
//  28 Sep 02  Use _left versions of operators from operators.hpp
//  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel)
//  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams)
//  05 Feb 01  Update operator>> to tighten up input syntax
//  05 Feb 01  Final tidy up of gcd code prior to the new release
//  27 Jan 01  Recode abs() without relying on abs(IntType)
//  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm,
//             tidy up a number of areas, use newer features of operators.hpp
//             (reduces space overhead to zero), add operator!,
//             introduce explicit mixed-mode arithmetic operations
//  12 Jan 01  Include fixes to handle a user-defined IntType better
//  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David)
//  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++
//  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not
//             affected (Beman Dawes)
//   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer)
//  14 Dec 99  Modifications based on comments from the boost list
//  09 Dec 99  Initial Version (Paul Moore)

#ifndef BOOST_RATIONAL_HPP
#define BOOST_RATIONAL_HPP

#include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC, etc
#ifndef BOOST_NO_IOSTREAM
#include <iomanip>               // for std::setw
#include <ios>                   // for std::noskipws, streamsize
#include <istream>               // for std::istream
#include <ostream>               // for std::ostream
#include <sstream>               // for std::ostringstream
#endif
#include <cstddef>               // for NULL
#include <stdexcept>             // for std::domain_error
#include <string>                // for std::string implicit constructor
#include <boost/operators.hpp>   // for boost::addable etc
#include <cstdlib>               // for std::abs
#include <boost/call_traits.hpp> // for boost::call_traits
#include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
#include <boost/assert.hpp>      // for BOOST_ASSERT
#include <boost/integer/common_factor_rt.hpp> // for boost::integer::gcd, lcm
#include <limits>                // for std::numeric_limits
#include <boost/static_assert.hpp>  // for BOOST_STATIC_ASSERT
#include <boost/throw_exception.hpp>

// Control whether depreciated GCD and LCM functions are included (default: yes)
#ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
#define BOOST_CONTROL_RATIONAL_HAS_GCD  1
#endif

namespace boost {

#if BOOST_CONTROL_RATIONAL_HAS_GCD
template <typename IntType>
IntType gcd(IntType n, IntType m)
{
    // Defer to the version in Boost.Math
    return integer::gcd( n, m );
}

template <typename IntType>
IntType lcm(IntType n, IntType m)
{
    // Defer to the version in Boost.Math
    return integer::lcm( n, m );
}
#endif  // BOOST_CONTROL_RATIONAL_HAS_GCD

class bad_rational : public std::domain_error
{
public:
    explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
    explicit bad_rational( char const *what ) : std::domain_error( what ) {}
};

template <typename IntType>
class rational :
    less_than_comparable < rational<IntType>,
    equality_comparable < rational<IntType>,
    less_than_comparable2 < rational<IntType>, IntType,
    equality_comparable2 < rational<IntType>, IntType,
    addable < rational<IntType>,
    subtractable < rational<IntType>,
    multipliable < rational<IntType>,
    dividable < rational<IntType>,
    addable2 < rational<IntType>, IntType,
    subtractable2 < rational<IntType>, IntType,
    subtractable2_left < rational<IntType>, IntType,
    multipliable2 < rational<IntType>, IntType,
    dividable2 < rational<IntType>, IntType,
    dividable2_left < rational<IntType>, IntType,
    incrementable < rational<IntType>,
    decrementable < rational<IntType>
    > > > > > > > > > > > > > > > >
{
    // Class-wide pre-conditions
    BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );

    // Helper types
    typedef typename boost::call_traits<IntType>::param_type param_type;

    struct helper { IntType parts[2]; };
    typedef IntType (helper::* bool_type)[2];

public:
    // Component type
    typedef IntType int_type;

    BOOST_CONSTEXPR
    rational() : num(0), den(1) {}
    BOOST_CONSTEXPR
    rational(param_type n) : num(n), den(1) {}
    rational(param_type n, param_type d) : num(n), den(d) { normalize(); }

#ifndef BOOST_NO_MEMBER_TEMPLATES
    template < typename NewType >
    BOOST_CONSTEXPR explicit
       rational(rational<NewType> const &r)
       : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
       int_type(r.denominator())) ? r.denominator() :
       (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
#endif

    // Default copy constructor and assignment are fine

    // Add assignment from IntType
    rational& operator=(param_type i) { num = i; den = 1; return *this; }

    // Assign in place
    rational& assign(param_type n, param_type d);

    // Access to representation
    BOOST_CONSTEXPR
    const IntType& numerator() const { return num; }
    BOOST_CONSTEXPR
    const IntType& denominator() const { return den; }

    // Arithmetic assignment operators
    rational& operator+= (const rational& r);
    rational& operator-= (const rational& r);
    rational& operator*= (const rational& r);
    rational& operator/= (const rational& r);

    rational& operator+= (param_type i) { num += i * den; return *this; }
    rational& operator-= (param_type i) { num -= i * den; return *this; }
    rational& operator*= (param_type i);
    rational& operator/= (param_type i);

    // Increment and decrement
    const rational& operator++() { num += den; return *this; }
    const rational& operator--() { num -= den; return *this; }

    // Operator not
    BOOST_CONSTEXPR
    bool operator!() const { return !num; }

    // Boolean conversion
    
#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
    // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
    // following, hence we selectively disable that option for the
    // offending memfun.
#pragma parse_mfunc_templ off
#endif

    BOOST_CONSTEXPR
    operator bool_type() const { return operator !() ? 0 : &helper::parts; }

#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
#pragma parse_mfunc_templ reset
#endif

    // Comparison operators
    bool operator< (const rational& r) const;
    BOOST_CONSTEXPR
    bool operator== (const rational& r) const;

    bool operator< (param_type i) const;
    bool operator> (param_type i) const;
    BOOST_CONSTEXPR
    bool operator== (param_type i) const;

private:
    // Implementation - numerator and denominator (normalized).
    // Other possibilities - separate whole-part, or sign, fields?
    IntType num;
    IntType den;

    // Helper functions
    static BOOST_CONSTEXPR
    int_type inner_gcd( param_type a, param_type b, int_type const &zero =
     int_type(0) )
    { return b == zero ? a : inner_gcd(b, a % b, zero); }

    static BOOST_CONSTEXPR
    int_type inner_abs( param_type x, int_type const &zero = int_type(0) )
    { return x < zero ? -x : +x; }

    // Representation note: Fractions are kept in normalized form at all
    // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
    // In particular, note that the implementation of abs() below relies
    // on den always being positive.
    bool test_invariant() const;
    void normalize();

    static BOOST_CONSTEXPR
    bool is_normalized( param_type n, param_type d, int_type const &zero =
     int_type(0), int_type const &one = int_type(1) )
    {
        return d > zero && ( n != zero || d == one ) && inner_abs( inner_gcd(n,
         d, zero), zero ) == one;
    }
};

// Assign in place
template <typename IntType>
inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d)
{
    return *this = rational( n, d );
}

// Unary plus and minus
template <typename IntType>
BOOST_CONSTEXPR
inline rational<IntType> operator+ (const rational<IntType>& r)
{
    return r;
}

template <typename IntType>
inline rational<IntType> operator- (const rational<IntType>& r)
{
    return rational<IntType>(-r.numerator(), r.denominator());
}

// Arithmetic assignment operators
template <typename IntType>
rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
{
    // This calculation avoids overflow, and minimises the number of expensive
    // calculations. Thanks to Nickolay Mladenov for this algorithm.
    //
    // Proof:
    // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
    // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
    //
    // The result is (a*d1 + c*b1) / (b1*d1*g).
    // Now we have to normalize this ratio.
    // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
    // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
    // But since gcd(a,b1)=1 we have h=1.
    // Similarly h|d1 leads to h=1.
    // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
    // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
    // Which proves that instead of normalizing the result, it is better to
    // divide num and den by gcd((a*d1 + c*b1), g)

    // Protect against self-modification
    IntType r_num = r.num;
    IntType r_den = r.den;

    IntType g = integer::gcd(den, r_den);
    den /= g;  // = b1 from the calculations above
    num = num * (r_den / g) + r_num * den;
    g = integer::gcd(num, g);
    num /= g;
    den *= r_den/g;

    return *this;
}

template <typename IntType>
rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
{
    // Protect against self-modification
    IntType r_num = r.num;
    IntType r_den = r.den;

    // This calculation avoids overflow, and minimises the number of expensive
    // calculations. It corresponds exactly to the += case above
    IntType g = integer::gcd(den, r_den);
    den /= g;
    num = num * (r_den / g) - r_num * den;
    g = integer::gcd(num, g);
    num /= g;
    den *= r_den/g;

    return *this;
}

template <typename IntType>
rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
{
    // Protect against self-modification
    IntType r_num = r.num;
    IntType r_den = r.den;

    // Avoid overflow and preserve normalization
    IntType gcd1 = integer::gcd(num, r_den);
    IntType gcd2 = integer::gcd(r_num, den);
    num = (num/gcd1) * (r_num/gcd2);
    den = (den/gcd2) * (r_den/gcd1);
    return *this;
}

template <typename IntType>
rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
{
    // Protect against self-modification
    IntType r_num = r.num;
    IntType r_den = r.den;

    // Avoid repeated construction
    IntType zero(0);

    // Trap division by zero
    if (r_num == zero)
        BOOST_THROW_EXCEPTION(bad_rational());
    if (num == zero)
        return *this;

    // Avoid overflow and preserve normalization
    IntType gcd1 = integer::gcd(num, r_num);
    IntType gcd2 = integer::gcd(r_den, den);
    num = (num/gcd1) * (r_den/gcd2);
    den = (den/gcd2) * (r_num/gcd1);

    if (den < zero) {
        num = -num;
        den = -den;
    }
    return *this;
}

// Mixed-mode operators
template <typename IntType>
inline rational<IntType>&
rational<IntType>::operator*= (param_type i)
{
    // Avoid overflow and preserve normalization
    IntType gcd = integer::gcd(i, den);
    num *= i / gcd;
    den /= gcd;

    return *this;
}

template <typename IntType>
rational<IntType>&
rational<IntType>::operator/= (param_type i)
{
    // Avoid repeated construction
    IntType const zero(0);

    if(i == zero) BOOST_THROW_EXCEPTION(bad_rational());
    if (num == zero) return *this;

    // Avoid overflow and preserve normalization
    IntType const gcd = integer::gcd(num, i);
    num /= gcd;
    den *= i / gcd;

    if (den < zero) {
        num = -num;
        den = -den;
    }

    return *this;
}

// Comparison operators
template <typename IntType>
bool rational<IntType>::operator< (const rational<IntType>& r) const
{
    // Avoid repeated construction
    int_type const  zero( 0 );

    // This should really be a class-wide invariant.  The reason for these
    // checks is that for 2's complement systems, INT_MIN has no corresponding
    // positive, so negating it during normalization keeps it INT_MIN, which
    // is bad for later calculations that assume a positive denominator.
    BOOST_ASSERT( this->den > zero );
    BOOST_ASSERT( r.den > zero );

    // Determine relative order by expanding each value to its simple continued
    // fraction representation using the Euclidian GCD algorithm.
    struct { int_type  n, d, q, r; }
     ts = { this->num, this->den, static_cast<int_type>(this->num / this->den),
     static_cast<int_type>(this->num % this->den) },
     rs = { r.num, r.den, static_cast<int_type>(r.num / r.den),
     static_cast<int_type>(r.num % r.den) };
    unsigned  reverse = 0u;

    // Normalize negative moduli by repeatedly adding the (positive) denominator
    // and decrementing the quotient.  Later cycles should have all positive
    // values, so this only has to be done for the first cycle.  (The rules of
    // C++ require a nonnegative quotient & remainder for a nonnegative dividend
    // & positive divisor.)
    while ( ts.r < zero )  { ts.r += ts.d; --ts.q; }
    while ( rs.r < zero )  { rs.r += rs.d; --rs.q; }

    // Loop through and compare each variable's continued-fraction components
    for ( ;; )
    {
        // The quotients of the current cycle are the continued-fraction
        // components.  Comparing two c.f. is comparing their sequences,
        // stopping at the first difference.
        if ( ts.q != rs.q )
        {
            // Since reciprocation changes the relative order of two variables,
            // and c.f. use reciprocals, the less/greater-than test reverses
            // after each index.  (Start w/ non-reversed @ whole-number place.)
            return reverse ? ts.q > rs.q : ts.q < rs.q;
        }

        // Prepare the next cycle
        reverse ^= 1u;

        if ( (ts.r == zero) || (rs.r == zero) )
        {
            // At least one variable's c.f. expansion has ended
            break;
        }

        ts.n = ts.d;         ts.d = ts.r;
        ts.q = ts.n / ts.d;  ts.r = ts.n % ts.d;
        rs.n = rs.d;         rs.d = rs.r;
        rs.q = rs.n / rs.d;  rs.r = rs.n % rs.d;
    }

    // Compare infinity-valued components for otherwise equal sequences
    if ( ts.r == rs.r )
    {
        // Both remainders are zero, so the next (and subsequent) c.f.
        // components for both sequences are infinity.  Therefore, the sequences
        // and their corresponding values are equal.
        return false;
    }
    else
    {
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4800)
#endif
        // Exactly one of the remainders is zero, so all following c.f.
        // components of that variable are infinity, while the other variable
        // has a finite next c.f. component.  So that other variable has the
        // lesser value (modulo the reversal flag!).
        return ( ts.r != zero ) != static_cast<bool>( reverse );
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
    }
}

template <typename IntType>
bool rational<IntType>::operator< (param_type i) const
{
    // Avoid repeated construction
    int_type const  zero( 0 );

    // Break value into mixed-fraction form, w/ always-nonnegative remainder
    BOOST_ASSERT( this->den > zero );
    int_type  q = this->num / this->den, r = this->num % this->den;
    while ( r < zero )  { r += this->den; --q; }

    // Compare with just the quotient, since the remainder always bumps the
    // value up.  [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
    // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
    // q >= i + 1 > i; therefore n/d < i iff q < i.]
    return q < i;
}

template <typename IntType>
bool rational<IntType>::operator> (param_type i) const
{
    return operator==(i)? false: !operator<(i);
}

template <typename IntType>
BOOST_CONSTEXPR
inline bool rational<IntType>::operator== (const rational<IntType>& r) const
{
    return ((num == r.num) && (den == r.den));
}

template <typename IntType>
BOOST_CONSTEXPR
inline bool rational<IntType>::operator== (param_type i) const
{
    return ((den == IntType(1)) && (num == i));
}

// Invariant check
template <typename IntType>
inline bool rational<IntType>::test_invariant() const
{
    return ( this->den > int_type(0) ) && ( integer::gcd(this->num, this->den) ==
     int_type(1) );
}

// Normalisation
template <typename IntType>
void rational<IntType>::normalize()
{
    // Avoid repeated construction
    IntType zero(0);

    if (den == zero)
       BOOST_THROW_EXCEPTION(bad_rational());

    // Handle the case of zero separately, to avoid division by zero
    if (num == zero) {
        den = IntType(1);
        return;
    }

    IntType g = integer::gcd(num, den);

    num /= g;
    den /= g;

    // Ensure that the denominator is positive
    if (den < zero) {
        num = -num;
        den = -den;
    }

    // ...But acknowledge that the previous step doesn't always work.
    // (Nominally, this should be done before the mutating steps, but this
    // member function is only called during the constructor, so we never have
    // to worry about zombie objects.)
    if (den < zero)
       BOOST_THROW_EXCEPTION(bad_rational("bad rational: non-zero singular denominator"));

    BOOST_ASSERT( this->test_invariant() );
}

#ifndef BOOST_NO_IOSTREAM
namespace detail {

    // A utility class to reset the format flags for an istream at end
    // of scope, even in case of exceptions
    struct resetter {
        resetter(std::istream& is) : is_(is), f_(is.flags()) {}
        ~resetter() { is_.flags(f_); }
        std::istream& is_;
        std::istream::fmtflags f_;      // old GNU c++ lib has no ios_base
    };

}

// Input and output
template <typename IntType>
std::istream& operator>> (std::istream& is, rational<IntType>& r)
{
    using std::ios;

    IntType n = IntType(0), d = IntType(1);
    char c = 0;
    detail::resetter sentry(is);

    if ( is >> n )
    {
        if ( is.get(c) )
        {
            if ( c == '/' )
            {
                if ( is >> std::noskipws >> d )
                    try {
                        r.assign( n, d );
                    } catch ( bad_rational & ) {        // normalization fail
                        try { is.setstate(ios::failbit); }
                        catch ( ... ) {}  // don't throw ios_base::failure...
                        if ( is.exceptions() & ios::failbit )
                            throw;   // ...but the original exception instead
                        // ELSE: suppress the exception, use just error flags
                    }
            }
            else
                is.setstate( ios::failbit );
        }
    }

    return is;
}

// Add manipulators for output format?
template <typename IntType>
std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
{
    // The slash directly precedes the denominator, which has no prefixes.
    std::ostringstream  ss;

    ss.copyfmt( os );
    ss.tie( NULL );
    ss.exceptions( std::ios::goodbit );
    ss.width( 0 );
    ss << std::noshowpos << std::noshowbase << '/' << r.denominator();

    // The numerator holds the showpos, internal, and showbase flags.
    std::string const   tail = ss.str();
    std::streamsize const  w =
        os.width() - static_cast<std::streamsize>( tail.size() );

    ss.clear();
    ss.str( "" );
    ss.flags( os.flags() );
    ss << std::setw( w < 0 || (os.flags() & std::ios::adjustfield) !=
                     std::ios::internal ? 0 : w ) << r.numerator();
    return os << ss.str() + tail;
}
#endif  // BOOST_NO_IOSTREAM

// Type conversion
template <typename T, typename IntType>
BOOST_CONSTEXPR
inline T rational_cast(const rational<IntType>& src)
{
    return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
}

// Do not use any abs() defined on IntType - it isn't worth it, given the
// difficulties involved (Koenig lookup required, there may not *be* an abs()
// defined, etc etc).
template <typename IntType>
inline rational<IntType> abs(const rational<IntType>& r)
{
    return r.numerator() >= IntType(0)? r: -r;
}

namespace integer {

template <typename IntType>
struct gcd_evaluator< rational<IntType> >
{
    typedef rational<IntType> result_type,
                              first_argument_type, second_argument_type;
    result_type operator() (  first_argument_type const &a
                           , second_argument_type const &b
                           ) const
    {
        return result_type(integer::gcd(a.numerator(), b.numerator()),
                           integer::lcm(a.denominator(), b.denominator()));
    }
};

template <typename IntType>
struct lcm_evaluator< rational<IntType> >
{
    typedef rational<IntType> result_type,
                              first_argument_type, second_argument_type;
    result_type operator() (  first_argument_type const &a
                           , second_argument_type const &b
                           ) const
    {
        return result_type(integer::lcm(a.numerator(), b.numerator()),
                           integer::gcd(a.denominator(), b.denominator()));
    }
};

} // namespace integer

} // namespace boost

#endif  // BOOST_RATIONAL_HPP