/usr/include/botan-2/botan/numthry.h is in libbotan-2-dev 2.4.0-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | /*
* Number Theory Functions
* (C) 1999-2007 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_NUMBER_THEORY_H_
#define BOTAN_NUMBER_THEORY_H_
#include <botan/bigint.h>
namespace Botan {
class RandomNumberGenerator;
/**
* Fused multiply-add
* @param a an integer
* @param b an integer
* @param c an integer
* @return (a*b)+c
*/
BigInt BOTAN_PUBLIC_API(2,0) mul_add(const BigInt& a,
const BigInt& b,
const BigInt& c);
/**
* Fused subtract-multiply
* @param a an integer
* @param b an integer
* @param c an integer
* @return (a-b)*c
*/
BigInt BOTAN_PUBLIC_API(2,0) sub_mul(const BigInt& a,
const BigInt& b,
const BigInt& c);
/**
* Fused multiply-subtract
* @param a an integer
* @param b an integer
* @param c an integer
* @return (a*b)-c
*/
BigInt BOTAN_PUBLIC_API(2,0) mul_sub(const BigInt& a,
const BigInt& b,
const BigInt& c);
/**
* Return the absolute value
* @param n an integer
* @return absolute value of n
*/
inline BigInt abs(const BigInt& n) { return n.abs(); }
/**
* Compute the greatest common divisor
* @param x a positive integer
* @param y a positive integer
* @return gcd(x,y)
*/
BigInt BOTAN_PUBLIC_API(2,0) gcd(const BigInt& x, const BigInt& y);
/**
* Least common multiple
* @param x a positive integer
* @param y a positive integer
* @return z, smallest integer such that z % x == 0 and z % y == 0
*/
BigInt BOTAN_PUBLIC_API(2,0) lcm(const BigInt& x, const BigInt& y);
/**
* @param x an integer
* @return (x*x)
*/
BigInt BOTAN_PUBLIC_API(2,0) square(const BigInt& x);
/**
* Modular inversion
* @param x a positive integer
* @param modulus a positive integer
* @return y st (x*y) % modulus == 1 or 0 if no such value
* Not const time
*/
BigInt BOTAN_PUBLIC_API(2,0) inverse_mod(const BigInt& x,
const BigInt& modulus);
/**
* Const time modular inversion
* Requires the modulus be odd
*/
BigInt BOTAN_PUBLIC_API(2,0) ct_inverse_mod_odd_modulus(const BigInt& n, const BigInt& mod);
/**
* Return a^-1 * 2^k mod b
* Returns k, between n and 2n
* Not const time
*/
size_t BOTAN_PUBLIC_API(2,0) almost_montgomery_inverse(BigInt& result,
const BigInt& a,
const BigInt& b);
/**
* Call almost_montgomery_inverse and correct the result to a^-1 mod b
*/
BigInt BOTAN_PUBLIC_API(2,0) normalized_montgomery_inverse(const BigInt& a, const BigInt& b);
/**
* Compute the Jacobi symbol. If n is prime, this is equivalent
* to the Legendre symbol.
* @see http://mathworld.wolfram.com/JacobiSymbol.html
*
* @param a is a non-negative integer
* @param n is an odd integer > 1
* @return (n / m)
*/
int32_t BOTAN_PUBLIC_API(2,0) jacobi(const BigInt& a,
const BigInt& n);
/**
* Modular exponentation
* @param b an integer base
* @param x a positive exponent
* @param m a positive modulus
* @return (b^x) % m
*/
BigInt BOTAN_PUBLIC_API(2,0) power_mod(const BigInt& b,
const BigInt& x,
const BigInt& m);
/**
* Compute the square root of x modulo a prime using the
* Shanks-Tonnelli algorithm
*
* @param x the input
* @param p the prime
* @return y such that (y*y)%p == x, or -1 if no such integer
*/
BigInt BOTAN_PUBLIC_API(2,0) ressol(const BigInt& x, const BigInt& p);
/*
* Compute -input^-1 mod 2^MP_WORD_BITS. Returns zero if input
* is even. If input is odd, input and 2^n are relatively prime
* and an inverse exists.
*/
word BOTAN_PUBLIC_API(2,0) monty_inverse(word input);
/**
* @param x a positive integer
* @return count of the zero bits in x, or, equivalently, the largest
* value of n such that 2^n divides x evenly. Returns zero if
* n is less than or equal to zero.
*/
size_t BOTAN_PUBLIC_API(2,0) low_zero_bits(const BigInt& x);
/**
* Check for primality
* @param n a positive integer to test for primality
* @param rng a random number generator
* @param prob chance of false positive is bounded by 1/2**prob
* @param is_random true if n was randomly chosen by us
* @return true if all primality tests passed, otherwise false
*/
bool BOTAN_PUBLIC_API(2,0) is_prime(const BigInt& n,
RandomNumberGenerator& rng,
size_t prob = 56,
bool is_random = false);
inline bool quick_check_prime(const BigInt& n, RandomNumberGenerator& rng)
{ return is_prime(n, rng, 32); }
inline bool check_prime(const BigInt& n, RandomNumberGenerator& rng)
{ return is_prime(n, rng, 56); }
inline bool verify_prime(const BigInt& n, RandomNumberGenerator& rng)
{ return is_prime(n, rng, 80); }
/**
* Randomly generate a prime
* @param rng a random number generator
* @param bits how large the resulting prime should be in bits
* @param coprime a positive integer that (prime - 1) should be coprime to
* @param equiv a non-negative number that the result should be
equivalent to modulo equiv_mod
* @param equiv_mod the modulus equiv should be checked against
* @return random prime with the specified criteria
*/
BigInt BOTAN_PUBLIC_API(2,0) random_prime(RandomNumberGenerator& rng,
size_t bits, const BigInt& coprime = 1,
size_t equiv = 1, size_t equiv_mod = 2);
/**
* Return a 'safe' prime, of the form p=2*q+1 with q prime
* @param rng a random number generator
* @param bits is how long the resulting prime should be
* @return prime randomly chosen from safe primes of length bits
*/
BigInt BOTAN_PUBLIC_API(2,0) random_safe_prime(RandomNumberGenerator& rng,
size_t bits);
/**
* Generate DSA parameters using the FIPS 186 kosherizer
* @param rng a random number generator
* @param p_out where the prime p will be stored
* @param q_out where the prime q will be stored
* @param pbits how long p will be in bits
* @param qbits how long q will be in bits
* @return random seed used to generate this parameter set
*/
std::vector<uint8_t> BOTAN_PUBLIC_API(2,0)
generate_dsa_primes(RandomNumberGenerator& rng,
BigInt& p_out, BigInt& q_out,
size_t pbits, size_t qbits);
/**
* Generate DSA parameters using the FIPS 186 kosherizer
* @param rng a random number generator
* @param p_out where the prime p will be stored
* @param q_out where the prime q will be stored
* @param pbits how long p will be in bits
* @param qbits how long q will be in bits
* @param seed the seed used to generate the parameters
* @param offset optional offset from seed to start searching at
* @return true if seed generated a valid DSA parameter set, otherwise
false. p_out and q_out are only valid if true was returned.
*/
bool BOTAN_PUBLIC_API(2,0)
generate_dsa_primes(RandomNumberGenerator& rng,
BigInt& p_out, BigInt& q_out,
size_t pbits, size_t qbits,
const std::vector<uint8_t>& seed,
size_t offset = 0);
/**
* The size of the PRIMES[] array
*/
const size_t PRIME_TABLE_SIZE = 6541;
/**
* A const array of all primes less than 65535
*/
extern const uint16_t BOTAN_PUBLIC_API(2,0) PRIMES[];
}
#endif
|