/usr/include/botan-2/botan/point_gfp.h is in libbotan-2-dev 2.4.0-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 | /*
* Point arithmetic on elliptic curves over GF(p)
*
* (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke
* 2008-2011,2014,2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_POINT_GFP_H_
#define BOTAN_POINT_GFP_H_
#include <botan/curve_gfp.h>
#include <vector>
namespace Botan {
/**
* Exception thrown if you try to convert a zero point to an affine
* coordinate
*/
class BOTAN_PUBLIC_API(2,0) Illegal_Transformation final : public Exception
{
public:
explicit Illegal_Transformation(const std::string& err =
"Requested transformation is not possible") :
Exception(err) {}
};
/**
* Exception thrown if some form of illegal point is decoded
*/
class BOTAN_PUBLIC_API(2,0) Illegal_Point final : public Exception
{
public:
explicit Illegal_Point(const std::string& err = "Malformed ECP point detected") :
Exception(err) {}
};
/**
* This class represents one point on a curve of GF(p)
*/
class BOTAN_PUBLIC_API(2,0) PointGFp final
{
public:
enum Compression_Type {
UNCOMPRESSED = 0,
COMPRESSED = 1,
HYBRID = 2
};
/**
* Construct an uninitialized PointGFp
*/
PointGFp() = default;
/**
* Construct the zero point
* @param curve The base curve
*/
explicit PointGFp(const CurveGFp& curve);
static PointGFp zero_of(const CurveGFp& curve)
{
return PointGFp(curve);
}
/**
* Copy constructor
*/
PointGFp(const PointGFp&) = default;
/**
* Move Constructor
*/
PointGFp(PointGFp&& other)
{
this->swap(other);
}
/**
* Standard Assignment
*/
PointGFp& operator=(const PointGFp&) = default;
/**
* Move Assignment
*/
PointGFp& operator=(PointGFp&& other)
{
if(this != &other)
this->swap(other);
return (*this);
}
/**
* Construct a point from its affine coordinates
* @param curve the base curve
* @param x affine x coordinate
* @param y affine y coordinate
*/
PointGFp(const CurveGFp& curve, const BigInt& x, const BigInt& y);
/**
* += Operator
* @param rhs the PointGFp to add to the local value
* @result resulting PointGFp
*/
PointGFp& operator+=(const PointGFp& rhs);
/**
* -= Operator
* @param rhs the PointGFp to subtract from the local value
* @result resulting PointGFp
*/
PointGFp& operator-=(const PointGFp& rhs);
/**
* *= Operator
* @param scalar the PointGFp to multiply with *this
* @result resulting PointGFp
*/
PointGFp& operator*=(const BigInt& scalar);
/**
* Multiplication Operator
* @param scalar the scalar value
* @param point the point value
* @return scalar*point on the curve
*/
friend BOTAN_PUBLIC_API(2,0) PointGFp operator*(const BigInt& scalar, const PointGFp& point);
/**
* Multiexponentiation
* @param p1 a point
* @param z1 a scalar
* @param p2 a point
* @param z2 a scalar
* @result (p1 * z1 + p2 * z2)
*/
friend BOTAN_PUBLIC_API(2,0) PointGFp multi_exponentiate(
const PointGFp& p1, const BigInt& z1,
const PointGFp& p2, const BigInt& z2);
/**
* Negate this point
* @return *this
*/
PointGFp& negate()
{
if(!is_zero())
m_coord_y = m_curve.get_p() - m_coord_y;
return *this;
}
/**
* Return base curve of this point
* @result the curve over GF(p) of this point
*/
const CurveGFp& get_curve() const { return m_curve; }
/**
* get affine x coordinate
* @result affine x coordinate
*/
BigInt get_affine_x() const;
/**
* get affine y coordinate
* @result affine y coordinate
*/
BigInt get_affine_y() const;
/**
* Is this the point at infinity?
* @result true, if this point is at infinity, false otherwise.
*/
bool is_zero() const
{ return (m_coord_x.is_zero() && m_coord_z.is_zero()); }
/**
* Checks whether the point is to be found on the underlying
* curve; used to prevent fault attacks.
* @return if the point is on the curve
*/
bool on_the_curve() const;
/**
* swaps the states of *this and other, does not throw!
* @param other the object to swap values with
*/
void swap(PointGFp& other);
/**
* Randomize the point representation
* The actual value (get_affine_x, get_affine_y) does not change
*/
void randomize_repr(RandomNumberGenerator& rng);
/**
* Equality operator
*/
bool operator==(const PointGFp& other) const;
private:
friend class Blinded_Point_Multiply;
BigInt curve_mult(const BigInt& x, const BigInt& y) const
{
BigInt z;
m_curve.mul(z, x, y, m_monty_ws);
return z;
}
void curve_mult(BigInt& z, const BigInt& x, const BigInt& y) const
{
m_curve.mul(z, x, y, m_monty_ws);
}
BigInt curve_sqr(const BigInt& x) const
{
BigInt z;
m_curve.sqr(z, x, m_monty_ws);
return z;
}
void curve_sqr(BigInt& z, const BigInt& x) const
{
m_curve.sqr(z, x, m_monty_ws);
}
/**
* Point addition
* @param workspace temp space, at least 11 elements
*/
void add(const PointGFp& other, std::vector<BigInt>& workspace);
/**
* Point doubling
* @param workspace temp space, at least 9 elements
*/
void mult2(std::vector<BigInt>& workspace);
CurveGFp m_curve;
BigInt m_coord_x, m_coord_y, m_coord_z;
mutable secure_vector<word> m_monty_ws; // workspace for Montgomery
};
// relational operators
inline bool operator!=(const PointGFp& lhs, const PointGFp& rhs)
{
return !(rhs == lhs);
}
// arithmetic operators
inline PointGFp operator-(const PointGFp& lhs)
{
return PointGFp(lhs).negate();
}
inline PointGFp operator+(const PointGFp& lhs, const PointGFp& rhs)
{
PointGFp tmp(lhs);
return tmp += rhs;
}
inline PointGFp operator-(const PointGFp& lhs, const PointGFp& rhs)
{
PointGFp tmp(lhs);
return tmp -= rhs;
}
inline PointGFp operator*(const PointGFp& point, const BigInt& scalar)
{
return scalar * point;
}
// encoding and decoding
secure_vector<uint8_t> BOTAN_PUBLIC_API(2,0) EC2OSP(const PointGFp& point, uint8_t format);
PointGFp BOTAN_PUBLIC_API(2,0) OS2ECP(const uint8_t data[], size_t data_len,
const CurveGFp& curve);
template<typename Alloc>
PointGFp OS2ECP(const std::vector<uint8_t, Alloc>& data, const CurveGFp& curve)
{ return OS2ECP(data.data(), data.size(), curve); }
/**
*/
class BOTAN_PUBLIC_API(2,0) Blinded_Point_Multiply final
{
public:
Blinded_Point_Multiply(const PointGFp& base, const BigInt& order, size_t h = 0);
PointGFp blinded_multiply(const BigInt& scalar, RandomNumberGenerator& rng);
private:
const size_t m_h;
const BigInt& m_order;
std::vector<BigInt> m_ws;
std::vector<PointGFp> m_U;
};
}
namespace std {
template<>
inline void swap<Botan::PointGFp>(Botan::PointGFp& x, Botan::PointGFp& y)
{ x.swap(y); }
}
#endif
|