/usr/include/botan-2/botan/pubkey.h is in libbotan-2-dev 2.4.0-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 | /*
* Public Key Interface
* (C) 1999-2010 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_PUBKEY_H_
#define BOTAN_PUBKEY_H_
#include <botan/pk_keys.h>
#include <botan/pk_ops_fwd.h>
#include <botan/symkey.h>
#if defined(BOTAN_HAS_SYSTEM_RNG)
#include <botan/system_rng.h>
#define BOTAN_PUBKEY_INCLUDE_DEPRECATED_CONSTRUCTORS
#endif
namespace Botan {
class RandomNumberGenerator;
/**
* The two types of signature format supported by Botan.
*/
enum Signature_Format { IEEE_1363, DER_SEQUENCE };
/**
* Public Key Encryptor
* This is the primary interface for public key encryption
*/
class BOTAN_PUBLIC_API(2,0) PK_Encryptor
{
public:
/**
* Encrypt a message.
* @param in the message as a byte array
* @param length the length of the above byte array
* @param rng the random number source to use
* @return encrypted message
*/
std::vector<uint8_t> encrypt(const uint8_t in[], size_t length,
RandomNumberGenerator& rng) const
{
return enc(in, length, rng);
}
/**
* Encrypt a message.
* @param in the message
* @param rng the random number source to use
* @return encrypted message
*/
template<typename Alloc>
std::vector<uint8_t> encrypt(const std::vector<uint8_t, Alloc>& in,
RandomNumberGenerator& rng) const
{
return enc(in.data(), in.size(), rng);
}
/**
* Return the maximum allowed message size in bytes.
* @return maximum message size in bytes
*/
virtual size_t maximum_input_size() const = 0;
PK_Encryptor() = default;
virtual ~PK_Encryptor() = default;
PK_Encryptor(const PK_Encryptor&) = delete;
PK_Encryptor& operator=(const PK_Encryptor&) = delete;
private:
virtual std::vector<uint8_t> enc(const uint8_t[], size_t,
RandomNumberGenerator&) const = 0;
};
/**
* Public Key Decryptor
*/
class BOTAN_PUBLIC_API(2,0) PK_Decryptor
{
public:
/**
* Decrypt a ciphertext, throwing an exception if the input
* seems to be invalid (eg due to an accidental or malicious
* error in the ciphertext).
*
* @param in the ciphertext as a byte array
* @param length the length of the above byte array
* @return decrypted message
*/
secure_vector<uint8_t> decrypt(const uint8_t in[], size_t length) const;
/**
* Same as above, but taking a vector
* @param in the ciphertext
* @return decrypted message
*/
template<typename Alloc>
secure_vector<uint8_t> decrypt(const std::vector<uint8_t, Alloc>& in) const
{
return decrypt(in.data(), in.size());
}
/**
* Decrypt a ciphertext. If the ciphertext is invalid (eg due to
* invalid padding) or is not the expected length, instead
* returns a random string of the expected length. Use to avoid
* oracle attacks, especially against PKCS #1 v1.5 decryption.
*/
secure_vector<uint8_t>
decrypt_or_random(const uint8_t in[],
size_t length,
size_t expected_pt_len,
RandomNumberGenerator& rng) const;
/**
* Decrypt a ciphertext. If the ciphertext is invalid (eg due to
* invalid padding) or is not the expected length, instead
* returns a random string of the expected length. Use to avoid
* oracle attacks, especially against PKCS #1 v1.5 decryption.
*
* Additionally checks (also in const time) that:
* contents[required_content_offsets[i]] == required_content_bytes[i]
* for 0 <= i < required_contents
*
* Used for example in TLS, which encodes the client version in
* the content bytes: if there is any timing variation the version
* check can be used as an oracle to recover the key.
*/
secure_vector<uint8_t>
decrypt_or_random(const uint8_t in[],
size_t length,
size_t expected_pt_len,
RandomNumberGenerator& rng,
const uint8_t required_content_bytes[],
const uint8_t required_content_offsets[],
size_t required_contents) const;
PK_Decryptor() = default;
virtual ~PK_Decryptor() = default;
PK_Decryptor(const PK_Decryptor&) = delete;
PK_Decryptor& operator=(const PK_Decryptor&) = delete;
private:
virtual secure_vector<uint8_t> do_decrypt(uint8_t& valid_mask,
const uint8_t in[], size_t in_len) const = 0;
};
/**
* Public Key Signer. Use the sign_message() functions for small
* messages. Use multiple calls update() to process large messages and
* generate the signature by finally calling signature().
*/
class BOTAN_PUBLIC_API(2,0) PK_Signer final
{
public:
/**
* Construct a PK Signer.
* @param key the key to use inside this signer
* @param rng the random generator to use
* @param emsa the EMSA to use
* An example would be "EMSA1(SHA-224)".
* @param format the signature format to use
* @param provider the provider to use
*/
PK_Signer(const Private_Key& key,
RandomNumberGenerator& rng,
const std::string& emsa,
Signature_Format format = IEEE_1363,
const std::string& provider = "");
#if defined(BOTAN_PUBKEY_INCLUDE_DEPRECATED_CONSTRUCTORS)
/**
* Construct a PK Signer.
* @param key the key to use inside this signer
* @param emsa the EMSA to use
* An example would be "EMSA1(SHA-224)".
* @param format the signature format to use
*/
BOTAN_DEPRECATED("Use constructor taking a RNG object")
PK_Signer(const Private_Key& key,
const std::string& emsa,
Signature_Format format = IEEE_1363,
const std::string& provider = "") :
PK_Signer(key, system_rng(), emsa, format, provider)
{}
#endif
~PK_Signer();
PK_Signer(const PK_Signer&) = delete;
PK_Signer& operator=(const PK_Signer&) = delete;
/**
* Sign a message all in one go
* @param in the message to sign as a byte array
* @param length the length of the above byte array
* @param rng the rng to use
* @return signature
*/
std::vector<uint8_t> sign_message(const uint8_t in[], size_t length,
RandomNumberGenerator& rng)
{
this->update(in, length);
return this->signature(rng);
}
/**
* Sign a message.
* @param in the message to sign
* @param rng the rng to use
* @return signature
*/
std::vector<uint8_t> sign_message(const std::vector<uint8_t>& in,
RandomNumberGenerator& rng)
{ return sign_message(in.data(), in.size(), rng); }
/**
* Sign a message.
* @param in the message to sign
* @param rng the rng to use
* @return signature
*/
std::vector<uint8_t> sign_message(const secure_vector<uint8_t>& in,
RandomNumberGenerator& rng)
{ return sign_message(in.data(), in.size(), rng); }
/**
* Add a message part (single byte).
* @param in the byte to add
*/
void update(uint8_t in) { update(&in, 1); }
/**
* Add a message part.
* @param in the message part to add as a byte array
* @param length the length of the above byte array
*/
void update(const uint8_t in[], size_t length);
/**
* Add a message part.
* @param in the message part to add
*/
void update(const std::vector<uint8_t>& in) { update(in.data(), in.size()); }
/**
* Add a message part.
* @param in the message part to add
*/
void update(const std::string& in)
{
update(cast_char_ptr_to_uint8(in.data()), in.size());
}
/**
* Get the signature of the so far processed message (provided by the
* calls to update()).
* @param rng the rng to use
* @return signature of the total message
*/
std::vector<uint8_t> signature(RandomNumberGenerator& rng);
/**
* Set the output format of the signature.
* @param format the signature format to use
*/
void set_output_format(Signature_Format format) { m_sig_format = format; }
private:
std::unique_ptr<PK_Ops::Signature> m_op;
Signature_Format m_sig_format;
size_t m_parts, m_part_size;
};
/**
* Public Key Verifier. Use the verify_message() functions for small
* messages. Use multiple calls update() to process large messages and
* verify the signature by finally calling check_signature().
*/
class BOTAN_PUBLIC_API(2,0) PK_Verifier final
{
public:
/**
* Construct a PK Verifier.
* @param pub_key the public key to verify against
* @param emsa the EMSA to use (eg "EMSA3(SHA-1)")
* @param format the signature format to use
* @param provider the provider to use
*/
PK_Verifier(const Public_Key& pub_key,
const std::string& emsa,
Signature_Format format = IEEE_1363,
const std::string& provider = "");
~PK_Verifier();
PK_Verifier& operator=(const PK_Verifier&) = delete;
PK_Verifier(const PK_Verifier&) = delete;
/**
* Verify a signature.
* @param msg the message that the signature belongs to, as a byte array
* @param msg_length the length of the above byte array msg
* @param sig the signature as a byte array
* @param sig_length the length of the above byte array sig
* @return true if the signature is valid
*/
bool verify_message(const uint8_t msg[], size_t msg_length,
const uint8_t sig[], size_t sig_length);
/**
* Verify a signature.
* @param msg the message that the signature belongs to
* @param sig the signature
* @return true if the signature is valid
*/
template<typename Alloc, typename Alloc2>
bool verify_message(const std::vector<uint8_t, Alloc>& msg,
const std::vector<uint8_t, Alloc2>& sig)
{
return verify_message(msg.data(), msg.size(),
sig.data(), sig.size());
}
/**
* Add a message part (single byte) of the message corresponding to the
* signature to be verified.
* @param in the byte to add
*/
void update(uint8_t in) { update(&in, 1); }
/**
* Add a message part of the message corresponding to the
* signature to be verified.
* @param msg_part the new message part as a byte array
* @param length the length of the above byte array
*/
void update(const uint8_t msg_part[], size_t length);
/**
* Add a message part of the message corresponding to the
* signature to be verified.
* @param in the new message part
*/
void update(const std::vector<uint8_t>& in)
{ update(in.data(), in.size()); }
/**
* Add a message part of the message corresponding to the
* signature to be verified.
*/
void update(const std::string& in)
{
update(cast_char_ptr_to_uint8(in.data()), in.size());
}
/**
* Check the signature of the buffered message, i.e. the one build
* by successive calls to update.
* @param sig the signature to be verified as a byte array
* @param length the length of the above byte array
* @return true if the signature is valid, false otherwise
*/
bool check_signature(const uint8_t sig[], size_t length);
/**
* Check the signature of the buffered message, i.e. the one build
* by successive calls to update.
* @param sig the signature to be verified
* @return true if the signature is valid, false otherwise
*/
template<typename Alloc>
bool check_signature(const std::vector<uint8_t, Alloc>& sig)
{
return check_signature(sig.data(), sig.size());
}
/**
* Set the format of the signatures fed to this verifier.
* @param format the signature format to use
*/
void set_input_format(Signature_Format format);
private:
std::unique_ptr<PK_Ops::Verification> m_op;
Signature_Format m_sig_format;
size_t m_parts, m_part_size;
};
/**
* Key used for key agreement
*/
class BOTAN_PUBLIC_API(2,0) PK_Key_Agreement final
{
public:
/**
* Construct a PK Key Agreement.
* @param key the key to use
* @param rng the random generator to use
* @param kdf name of the KDF to use (or 'Raw' for no KDF)
* @param provider the algo provider to use (or empty for default)
*/
PK_Key_Agreement(const Private_Key& key,
RandomNumberGenerator& rng,
const std::string& kdf,
const std::string& provider = "");
#if defined(BOTAN_PUBKEY_INCLUDE_DEPRECATED_CONSTRUCTORS)
/**
* Construct a PK Key Agreement.
* @param key the key to use
* @param kdf name of the KDF to use (or 'Raw' for no KDF)
* @param provider the algo provider to use (or empty for default)
*/
BOTAN_DEPRECATED("Use constructor taking a RNG object")
PK_Key_Agreement(const Private_Key& key,
const std::string& kdf,
const std::string& provider = "") :
PK_Key_Agreement(key, system_rng(), kdf, provider)
{}
#endif
~PK_Key_Agreement();
// For ECIES
PK_Key_Agreement& operator=(PK_Key_Agreement&&);
PK_Key_Agreement(PK_Key_Agreement&&);
PK_Key_Agreement& operator=(const PK_Key_Agreement&) = delete;
PK_Key_Agreement(const PK_Key_Agreement&) = delete;
/*
* Perform Key Agreement Operation
* @param key_len the desired key output size
* @param in the other parties key
* @param in_len the length of in in bytes
* @param params extra derivation params
* @param params_len the length of params in bytes
*/
SymmetricKey derive_key(size_t key_len,
const uint8_t in[],
size_t in_len,
const uint8_t params[],
size_t params_len) const;
/*
* Perform Key Agreement Operation
* @param key_len the desired key output size
* @param in the other parties key
* @param in_len the length of in in bytes
* @param params extra derivation params
* @param params_len the length of params in bytes
*/
SymmetricKey derive_key(size_t key_len,
const std::vector<uint8_t>& in,
const uint8_t params[],
size_t params_len) const
{
return derive_key(key_len, in.data(), in.size(),
params, params_len);
}
/*
* Perform Key Agreement Operation
* @param key_len the desired key output size
* @param in the other parties key
* @param in_len the length of in in bytes
* @param params extra derivation params
*/
SymmetricKey derive_key(size_t key_len,
const uint8_t in[], size_t in_len,
const std::string& params = "") const
{
return derive_key(key_len, in, in_len,
cast_char_ptr_to_uint8(params.data()),
params.length());
}
/*
* Perform Key Agreement Operation
* @param key_len the desired key output size
* @param in the other parties key
* @param params extra derivation params
*/
SymmetricKey derive_key(size_t key_len,
const std::vector<uint8_t>& in,
const std::string& params = "") const
{
return derive_key(key_len, in.data(), in.size(),
cast_char_ptr_to_uint8(params.data()),
params.length());
}
private:
std::unique_ptr<PK_Ops::Key_Agreement> m_op;
};
/**
* Encryption using a standard message recovery algorithm like RSA or
* ElGamal, paired with an encoding scheme like OAEP.
*/
class BOTAN_PUBLIC_API(2,0) PK_Encryptor_EME final : public PK_Encryptor
{
public:
size_t maximum_input_size() const override;
/**
* Construct an instance.
* @param key the key to use inside the encryptor
* @param rng the RNG to use
* @param padding the message encoding scheme to use (eg "OAEP(SHA-256)")
* @param provider the provider to use
*/
PK_Encryptor_EME(const Public_Key& key,
RandomNumberGenerator& rng,
const std::string& padding,
const std::string& provider = "");
#if defined(BOTAN_PUBKEY_INCLUDE_DEPRECATED_CONSTRUCTORS)
/**
* Construct an instance.
* @param key the key to use inside the encryptor
* @param padding the message encoding scheme to use (eg "OAEP(SHA-256)")
*/
BOTAN_DEPRECATED("Use constructor taking a RNG object")
PK_Encryptor_EME(const Public_Key& key,
const std::string& padding,
const std::string& provider = "") :
PK_Encryptor_EME(key, system_rng(), padding, provider) {}
#endif
~PK_Encryptor_EME();
PK_Encryptor_EME& operator=(const PK_Encryptor_EME&) = delete;
PK_Encryptor_EME(const PK_Encryptor_EME&) = delete;
private:
std::vector<uint8_t> enc(const uint8_t[], size_t,
RandomNumberGenerator& rng) const override;
std::unique_ptr<PK_Ops::Encryption> m_op;
};
/**
* Decryption with an MR algorithm and an EME.
*/
class BOTAN_PUBLIC_API(2,0) PK_Decryptor_EME final : public PK_Decryptor
{
public:
/**
* Construct an instance.
* @param key the key to use inside the decryptor
* @param rng the random generator to use
* @param eme the EME to use
* @param provider the provider to use
*/
PK_Decryptor_EME(const Private_Key& key,
RandomNumberGenerator& rng,
const std::string& eme,
const std::string& provider = "");
#if defined(BOTAN_PUBKEY_INCLUDE_DEPRECATED_CONSTRUCTORS)
/**
* Construct an instance.
* @param key the key to use inside the decryptor
* @param eme the message encoding scheme to use (eg "OAEP(SHA-256)")
*/
BOTAN_DEPRECATED("Use constructor taking a RNG object")
PK_Decryptor_EME(const Private_Key& key,
const std::string& eme,
const std::string& provider = "") :
PK_Decryptor_EME(key, system_rng(), eme, provider) {}
#endif
~PK_Decryptor_EME();
PK_Decryptor_EME& operator=(const PK_Decryptor_EME&) = delete;
PK_Decryptor_EME(const PK_Decryptor_EME&) = delete;
private:
secure_vector<uint8_t> do_decrypt(uint8_t& valid_mask,
const uint8_t in[],
size_t in_len) const override;
std::unique_ptr<PK_Ops::Decryption> m_op;
};
/**
* Public Key Key Encapsulation Mechanism Encryption.
*/
class BOTAN_PUBLIC_API(2,0) PK_KEM_Encryptor final
{
public:
/**
* Construct an instance.
* @param key the key to use inside the encryptor
* @param rng the RNG to use
* @param kem_param additional KEM parameters
* @param provider the provider to use
*/
PK_KEM_Encryptor(const Public_Key& key,
RandomNumberGenerator& rng,
const std::string& kem_param = "",
const std::string& provider = "");
#if defined(BOTAN_PUBKEY_INCLUDE_DEPRECATED_CONSTRUCTORS)
BOTAN_DEPRECATED("Use constructor taking a RNG object")
PK_KEM_Encryptor(const Public_Key& key,
const std::string& kem_param = "",
const std::string& provider = "") :
PK_KEM_Encryptor(key, system_rng(), kem_param, provider) {}
#endif
~PK_KEM_Encryptor();
PK_KEM_Encryptor& operator=(const PK_KEM_Encryptor&) = delete;
PK_KEM_Encryptor(const PK_KEM_Encryptor&) = delete;
/**
* Generate a shared key for data encryption.
* @param out_encapsulated_key the generated encapsulated key
* @param out_shared_key the generated shared key
* @param desired_shared_key_len desired size of the shared key in bytes
* @param rng the RNG to use
* @param salt a salt value used in the KDF
* @param salt_len size of the salt value in bytes
*/
void encrypt(secure_vector<uint8_t>& out_encapsulated_key,
secure_vector<uint8_t>& out_shared_key,
size_t desired_shared_key_len,
Botan::RandomNumberGenerator& rng,
const uint8_t salt[],
size_t salt_len);
/**
* Generate a shared key for data encryption.
* @param out_encapsulated_key the generated encapsulated key
* @param out_shared_key the generated shared key
* @param desired_shared_key_len desired size of the shared key in bytes
* @param rng the RNG to use
* @param salt a salt value used in the KDF
*/
template<typename Alloc>
void encrypt(secure_vector<uint8_t>& out_encapsulated_key,
secure_vector<uint8_t>& out_shared_key,
size_t desired_shared_key_len,
Botan::RandomNumberGenerator& rng,
const std::vector<uint8_t, Alloc>& salt)
{
this->encrypt(out_encapsulated_key,
out_shared_key,
desired_shared_key_len,
rng,
salt.data(), salt.size());
}
/**
* Generate a shared key for data encryption.
* @param out_encapsulated_key the generated encapsulated key
* @param out_shared_key the generated shared key
* @param desired_shared_key_len desired size of the shared key in bytes
* @param rng the RNG to use
*/
void encrypt(secure_vector<uint8_t>& out_encapsulated_key,
secure_vector<uint8_t>& out_shared_key,
size_t desired_shared_key_len,
Botan::RandomNumberGenerator& rng)
{
this->encrypt(out_encapsulated_key,
out_shared_key,
desired_shared_key_len,
rng,
nullptr,
0);
}
private:
std::unique_ptr<PK_Ops::KEM_Encryption> m_op;
};
/**
* Public Key Key Encapsulation Mechanism Decryption.
*/
class BOTAN_PUBLIC_API(2,0) PK_KEM_Decryptor final
{
public:
/**
* Construct an instance.
* @param key the key to use inside the decryptor
* @param rng the RNG to use
* @param kem_param additional KEM parameters
* @param provider the provider to use
*/
PK_KEM_Decryptor(const Private_Key& key,
RandomNumberGenerator& rng,
const std::string& kem_param = "",
const std::string& provider = "");
#if defined(BOTAN_PUBKEY_INCLUDE_DEPRECATED_CONSTRUCTORS)
BOTAN_DEPRECATED("Use constructor taking a RNG object")
PK_KEM_Decryptor(const Private_Key& key,
const std::string& kem_param = "",
const std::string& provider = "") :
PK_KEM_Decryptor(key, system_rng(), kem_param, provider)
{}
#endif
~PK_KEM_Decryptor();
PK_KEM_Decryptor& operator=(const PK_KEM_Decryptor&) = delete;
PK_KEM_Decryptor(const PK_KEM_Decryptor&) = delete;
/**
* Decrypts the shared key for data encryption.
* @param encap_key the encapsulated key
* @param encap_key_len size of the encapsulated key in bytes
* @param desired_shared_key_len desired size of the shared key in bytes
* @param salt a salt value used in the KDF
* @param salt_len size of the salt value in bytes
* @return the shared data encryption key
*/
secure_vector<uint8_t> decrypt(const uint8_t encap_key[],
size_t encap_key_len,
size_t desired_shared_key_len,
const uint8_t salt[],
size_t salt_len);
/**
* Decrypts the shared key for data encryption.
* @param encap_key the encapsulated key
* @param encap_key_len size of the encapsulated key in bytes
* @param desired_shared_key_len desired size of the shared key in bytes
* @return the shared data encryption key
*/
secure_vector<uint8_t> decrypt(const uint8_t encap_key[],
size_t encap_key_len,
size_t desired_shared_key_len)
{
return this->decrypt(encap_key, encap_key_len,
desired_shared_key_len,
nullptr, 0);
}
/**
* Decrypts the shared key for data encryption.
* @param encap_key the encapsulated key
* @param desired_shared_key_len desired size of the shared key in bytes
* @param salt a salt value used in the KDF
* @return the shared data encryption key
*/
template<typename Alloc1, typename Alloc2>
secure_vector<uint8_t> decrypt(const std::vector<uint8_t, Alloc1>& encap_key,
size_t desired_shared_key_len,
const std::vector<uint8_t, Alloc2>& salt)
{
return this->decrypt(encap_key.data(), encap_key.size(),
desired_shared_key_len,
salt.data(), salt.size());
}
private:
std::unique_ptr<PK_Ops::KEM_Decryption> m_op;
};
}
#endif
|