This file is indexed.

/usr/include/polybori/BooleMonomial.h is in libbrial-dev 1.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
// -*- c++ -*-
//*****************************************************************************
/** @file: BooleMonomial.h 
 *
 * @author Alexander Dreyer
 * @date 2006-04-19
 *
 * This file carries the definition of class @c BooleMonomial, which can be used
 * to access the boolean monomials of the currently active Boolean polynomial
 * ring. 
 * 
 * @par Copyright:
 *   (c) 2006-2010 by The PolyBoRi Team
 *
**/
//*****************************************************************************

#ifndef polybori_BooleMonomial_h_
#define polybori_BooleMonomial_h_

// include basic definitions
#include <polybori/pbori_defs.h>

// get definition of BoolePolynomial and BooleVariable
#include <polybori/BoolePolynomial.h>
#include <polybori/BooleVariable.h>
// get standard map functionality
#include <map>

// get variable iterator
#include <polybori/iterators/CVariableIter.h>

// get variable iterator
#include <polybori/except/PBoRiError.h>

BEGIN_NAMESPACE_PBORI

class BooleVariable;
class BooleExponent;
template <class DDType, class MonomType> class CDDOperations;

/** @class BooleMonomial
 * @brief This class is just a wrapper for using variables from @c cudd's
 * decicion diagram. 
 *
 * @note @c BooleMonomial is actually a specialization of @c BoolePolynomial
 * with a special constructor.
 *
 **/
class BooleMonomial:
  public CAuxTypes {

  /// Generic access to current type
  typedef BooleMonomial self;

public:
  template <class, class> friend class CDDOperations;
  friend class COrderingBase;
  template <class> friend class CTermGeneratorBase;
  template <class, class> friend class CTermGeneratorBase__;

  /// Type of Boolean polynomials
  typedef BoolePolynomial poly_type;

  /// @name Adopt global type definitions
  //@{
  typedef poly_type::dd_type dd_type;
  typedef poly_type::integer_type integer_type;
  typedef poly_type::ostream_type ostream_type;
  //@}

  /// Type of Boolean variables
  typedef poly_type::var_type var_type;

  /// Type of Boolean constants
  typedef poly_type::constant_type constant_type;

  /// Type of sets of Boolean variables
  typedef poly_type::set_type set_type;

  /// Type of exponent vector
  typedef poly_type::exp_type exp_type;

  /// Type for Boolean polynomial rings (without ordering)
  typedef poly_type::ring_type ring_type;

  /// Access to iterator over indices
  typedef poly_type::first_iterator const_iterator;

  /// Access to iterator over variables
  typedef CVariableIter<const_iterator, var_type> variable_iterator;

  /// Type for index maps
  //  typedef generate_index_map<self>::type idx_map_type;

  typedef std::map<self, idx_type, symmetric_composition<
    std::less<poly_type::navigator>, 
    navigates<poly_type> > > idx_map_type;

  /// The property whether the equality check is easy is inherited from dd_type
  typedef dd_type::easy_equality_property easy_equality_property;

  /// Copy constructor
  BooleMonomial(const self& rhs):  
    m_poly(rhs.m_poly) {}

  /// Construct from Boolean variable
  BooleMonomial(const var_type& rhs);  // not inlined to avoid dependency loop
                                       // (both depend on poly_type)

  /// Construct from exponent vector
  BooleMonomial(const exp_type& rhs, const ring_type& ring): 
    m_poly(rhs, ring) { }

  /// Construct from given ring
  BooleMonomial(const ring_type& ring): 
    m_poly(ring.one()) {}

  /// Destructor
  ~BooleMonomial() {}

  /// Casting operator
  operator const BoolePolynomial&() const { return m_poly; }

  /// Get exponent vector
  exp_type exp() const;


  /// Start iteration over indices
  const_iterator begin() const { return m_poly.firstBegin(); }

  /// Finish iteration over indices
  const_iterator end() const { return m_poly.firstEnd(); }

  /// Start iteration over variables
  variable_iterator variableBegin() const { 
    return variable_iterator(begin(), ring()); 
  }

  /// Finish iteration over variables
  variable_iterator variableEnd() const { 
    return variable_iterator(end(), ring()); 
  }

  /// Degree of the monomial
  deg_type deg() const {
    return std::distance(m_poly.firstBegin(),m_poly.firstEnd());
  }

  /// Size of the exponents
  size_type size() const { return (size_type)deg(); }  // always nonnegative

  /// Divisors of the monomial
  set_type divisors() const { return m_poly.leadDivisors(); }

  /// multiples of the monomial wrt. given monomial
  set_type multiples(const self&) const; 

  /// Hash value of the monomial
  hash_type stableHash() const {
    return stable_first_hash_range(m_poly.navigation());
  }

  /// Get unique hash value (valid only per runtime)
  hash_type hash() const {  return m_poly.hash(); }

  /// Substitute variable with index idx by its complement
  self change(idx_type) const;


  /// @name Arithmetical operations
  //@{
  self& operator*=(const self&);
  self& operator/=(const self&);
  self& operator*=(const var_type&);
  self& operator/=(const var_type&);
  //@}

  /// @name Logical operations
  //@{
  bool_type operator==(const self& rhs) const { return m_poly == rhs.m_poly; }
  bool_type operator!=(const self& rhs) const { return m_poly != rhs.m_poly; }
  bool_type operator==(constant_type rhs) const { return m_poly == rhs; }
  bool_type operator!=(constant_type rhs) const { return m_poly != rhs; }
  bool_type isOne() const { return m_poly.isOne(); }
  bool_type isConstant() const { return m_poly.isConstant(); }
  //@}

  /// Test for reducibility
  bool_type reducibleBy(const self& rhs) const { 
    return m_poly.firstReducibleBy(rhs); }
  bool_type reducibleBy(const var_type& rhs) const;

  /// Compare with rhs monomial and return comparision code
  comp_type compare(const self&) const;

  /// Degree of the least common multiple
  deg_type LCMDeg(const self&) const;

  /// Compute the least common multiple and assign
  self& LCMAssign(const self&);

  /// Compute the least common multiple
  self LCM(const self&) const;

  /// Compute the greatest common divisor and assign
  self& GCDAssign(const self&);

  /// Compute the greatest common divisor
  self GCD(const self&) const;
 
  /// Read-only access to internal decision diagramm structure
  const dd_type& diagram() const { return m_poly.diagram(); }

  /// Get corresponding subset of of the powerset over all variables
  set_type set() const { return m_poly.set(); }

  /// Removes the first variables from monomial
  self& popFirst() { 
    PBORI_ASSERT(!m_poly.isConstant());
    return *this = set_type( dd_type(m_poly.ring(),
                                     m_poly.navigation().thenBranch()) ); 
  }

  /// Get first variable in monomial
  var_type firstVariable() const;

  /// Get first index in monomial
  /// @note return out-of-range integer for polynomial one 
  idx_type firstIndex() const {
    return *m_poly.navigation();
  }

  /// Access ring, where this belongs to
  const ring_type& ring() const { return m_poly.ring(); } 

protected:
  /// Access to internal decision diagramm structure
  dd_type& internalDiagram() { return m_poly.internalDiagram(); }

  /// Construct from decision diagram
  BooleMonomial(const set_type& rhs): m_poly(rhs.diagram()) {
    PBORI_ASSERT(!m_poly.isZero());
  }

private:
  BoolePolynomial m_poly;
};

/// Multiplication of monomials
inline BooleMonomial
operator*(const BooleMonomial& lhs, const BooleMonomial& rhs) {
  return BooleMonomial(lhs) *= rhs;
}
/// Multiplication of monomials
inline BooleMonomial
operator*(const BooleMonomial& lhs, const BooleVariable& rhs) {
  return BooleMonomial(lhs) *= rhs;
}
/// Multiplication of monomials
inline BoolePolynomial
operator*(const BooleMonomial& lhs, BooleConstant rhs) {
  return BoolePolynomial(lhs) *= rhs;
}

/// Multiplication of monomials
inline BoolePolynomial
operator*(BooleConstant lhs, const BooleMonomial& rhs) {
  return rhs * lhs;
}

/// Division of monomials
inline BooleMonomial
operator/(const BooleMonomial& lhs, const BooleMonomial& rhs) {
  return BooleMonomial(lhs) /= rhs;
}

/// Division of monomials
inline BooleMonomial
operator/(const BooleMonomial& lhs, const BooleVariable& rhs) {
  return  lhs / BooleMonomial(rhs);
}

/// Less than comparision
inline BooleMonomial::bool_type
operator<(const BooleMonomial& lhs, const BooleMonomial& rhs) {

  return (lhs.compare(rhs) == CTypes::less_than);
}

/// Greater than comparision
inline BooleMonomial::bool_type
operator>(const BooleMonomial& lhs, const BooleMonomial& rhs) {

  return (lhs.compare(rhs) == CTypes::greater_than);
}

/// Less or equal than comparision
inline BooleMonomial::bool_type
operator<=(const BooleMonomial& lhs, const BooleMonomial& rhs) {

  return (lhs.compare(rhs) <= CTypes::less_or_equal_max);
}

/// Greater or equal than comparision
inline BooleMonomial::bool_type
operator>=(const BooleMonomial& lhs, const BooleMonomial& rhs) {

  return (lhs.compare(rhs) >= CTypes::greater_or_equal_min);
}


/// Compute the greatest common divisor of two monomials
inline BooleMonomial
GCD(const BooleMonomial& lhs, const BooleMonomial& rhs ){

  return lhs.GCD(rhs);
}

/// Compute the greatest common divisor of two monomials
inline BooleMonomial
LCM(const BooleMonomial& lhs, const BooleMonomial& rhs ){

  return lhs.LCM(rhs);
}

// Anyone need this?
/// @fn greater_variable(BooleMonomial::idx_type lhs, BooleMonomial::idx_type rhs);
/// @brief Checks whether BooleVariable(lhs) > BooleVariable(rhs) 
// BooleMonomial::bool_type
// greater_variable(BooleMonomial::idx_type lhs, BooleMonomial::idx_type rhs);


/// Multiplication of variables by a 0 or 1
inline BoolePolynomial
operator*(const BooleVariable& lhs, const BooleConstant& rhs){

  return BooleMonomial(lhs) * rhs;
}

/// Multiplication of 0 or 1  by a Variable
inline BoolePolynomial
operator*(const BooleConstant& lhs, const BooleVariable& rhs){

  return rhs * lhs;
}

/// Multiplication of variables by a polynomial
inline BoolePolynomial
operator*(const BooleVariable& lhs, 
          const BoolePolynomial& rhs){

  return BoolePolynomial(rhs) *= BooleMonomial(lhs);
}

/// Multiplication of variables by a monomial
inline BooleMonomial
operator*(const BooleVariable& lhs, 
          const BooleMonomial& rhs){

  return BooleMonomial(lhs) * rhs;
}

/// Multiplication of a polynomial by a variable with assignment
inline BoolePolynomial&
operator*=(BoolePolynomial& lhs, 
           const BooleVariable& rhs){

  return lhs *= BooleMonomial(rhs);
}

/// Multiplication of monomials by a polynomial
inline BooleMonomial
operator*(const BooleVariable& lhs, 
          const BooleVariable& rhs){

  return BooleMonomial(lhs) *= BooleMonomial(rhs);
}

/// Multiplication of a polynomial by a variable
inline BoolePolynomial
operator*(const BoolePolynomial& lhs, 
          const BooleVariable& rhs){

  return BoolePolynomial(lhs) *= BooleMonomial(rhs);
}

/// Division of a polynomial by a variable (forcing monomial variant)
inline BoolePolynomial
operator/(const BoolePolynomial& lhs, 
          const BooleVariable& rhs){

  return lhs / BooleMonomial(rhs);
}


/// Remainder of division of a polynomial by a variable 
inline BoolePolynomial
operator%(const BoolePolynomial& lhs, 
          const BooleVariable& rhs){

  return lhs % BooleMonomial(rhs);
}


END_NAMESPACE_PBORI


#endif // of polybori_BooleMonomial_h_