/usr/include/polybori/BooleMonomial.h is in libbrial-dev 1.2.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 | // -*- c++ -*-
//*****************************************************************************
/** @file: BooleMonomial.h
*
* @author Alexander Dreyer
* @date 2006-04-19
*
* This file carries the definition of class @c BooleMonomial, which can be used
* to access the boolean monomials of the currently active Boolean polynomial
* ring.
*
* @par Copyright:
* (c) 2006-2010 by The PolyBoRi Team
*
**/
//*****************************************************************************
#ifndef polybori_BooleMonomial_h_
#define polybori_BooleMonomial_h_
// include basic definitions
#include <polybori/pbori_defs.h>
// get definition of BoolePolynomial and BooleVariable
#include <polybori/BoolePolynomial.h>
#include <polybori/BooleVariable.h>
// get standard map functionality
#include <map>
// get variable iterator
#include <polybori/iterators/CVariableIter.h>
// get variable iterator
#include <polybori/except/PBoRiError.h>
BEGIN_NAMESPACE_PBORI
class BooleVariable;
class BooleExponent;
template <class DDType, class MonomType> class CDDOperations;
/** @class BooleMonomial
* @brief This class is just a wrapper for using variables from @c cudd's
* decicion diagram.
*
* @note @c BooleMonomial is actually a specialization of @c BoolePolynomial
* with a special constructor.
*
**/
class BooleMonomial:
public CAuxTypes {
/// Generic access to current type
typedef BooleMonomial self;
public:
template <class, class> friend class CDDOperations;
friend class COrderingBase;
template <class> friend class CTermGeneratorBase;
template <class, class> friend class CTermGeneratorBase__;
/// Type of Boolean polynomials
typedef BoolePolynomial poly_type;
/// @name Adopt global type definitions
//@{
typedef poly_type::dd_type dd_type;
typedef poly_type::integer_type integer_type;
typedef poly_type::ostream_type ostream_type;
//@}
/// Type of Boolean variables
typedef poly_type::var_type var_type;
/// Type of Boolean constants
typedef poly_type::constant_type constant_type;
/// Type of sets of Boolean variables
typedef poly_type::set_type set_type;
/// Type of exponent vector
typedef poly_type::exp_type exp_type;
/// Type for Boolean polynomial rings (without ordering)
typedef poly_type::ring_type ring_type;
/// Access to iterator over indices
typedef poly_type::first_iterator const_iterator;
/// Access to iterator over variables
typedef CVariableIter<const_iterator, var_type> variable_iterator;
/// Type for index maps
// typedef generate_index_map<self>::type idx_map_type;
typedef std::map<self, idx_type, symmetric_composition<
std::less<poly_type::navigator>,
navigates<poly_type> > > idx_map_type;
/// The property whether the equality check is easy is inherited from dd_type
typedef dd_type::easy_equality_property easy_equality_property;
/// Copy constructor
BooleMonomial(const self& rhs):
m_poly(rhs.m_poly) {}
/// Construct from Boolean variable
BooleMonomial(const var_type& rhs); // not inlined to avoid dependency loop
// (both depend on poly_type)
/// Construct from exponent vector
BooleMonomial(const exp_type& rhs, const ring_type& ring):
m_poly(rhs, ring) { }
/// Construct from given ring
BooleMonomial(const ring_type& ring):
m_poly(ring.one()) {}
/// Destructor
~BooleMonomial() {}
/// Casting operator
operator const BoolePolynomial&() const { return m_poly; }
/// Get exponent vector
exp_type exp() const;
/// Start iteration over indices
const_iterator begin() const { return m_poly.firstBegin(); }
/// Finish iteration over indices
const_iterator end() const { return m_poly.firstEnd(); }
/// Start iteration over variables
variable_iterator variableBegin() const {
return variable_iterator(begin(), ring());
}
/// Finish iteration over variables
variable_iterator variableEnd() const {
return variable_iterator(end(), ring());
}
/// Degree of the monomial
deg_type deg() const {
return std::distance(m_poly.firstBegin(),m_poly.firstEnd());
}
/// Size of the exponents
size_type size() const { return (size_type)deg(); } // always nonnegative
/// Divisors of the monomial
set_type divisors() const { return m_poly.leadDivisors(); }
/// multiples of the monomial wrt. given monomial
set_type multiples(const self&) const;
/// Hash value of the monomial
hash_type stableHash() const {
return stable_first_hash_range(m_poly.navigation());
}
/// Get unique hash value (valid only per runtime)
hash_type hash() const { return m_poly.hash(); }
/// Substitute variable with index idx by its complement
self change(idx_type) const;
/// @name Arithmetical operations
//@{
self& operator*=(const self&);
self& operator/=(const self&);
self& operator*=(const var_type&);
self& operator/=(const var_type&);
//@}
/// @name Logical operations
//@{
bool_type operator==(const self& rhs) const { return m_poly == rhs.m_poly; }
bool_type operator!=(const self& rhs) const { return m_poly != rhs.m_poly; }
bool_type operator==(constant_type rhs) const { return m_poly == rhs; }
bool_type operator!=(constant_type rhs) const { return m_poly != rhs; }
bool_type isOne() const { return m_poly.isOne(); }
bool_type isConstant() const { return m_poly.isConstant(); }
//@}
/// Test for reducibility
bool_type reducibleBy(const self& rhs) const {
return m_poly.firstReducibleBy(rhs); }
bool_type reducibleBy(const var_type& rhs) const;
/// Compare with rhs monomial and return comparision code
comp_type compare(const self&) const;
/// Degree of the least common multiple
deg_type LCMDeg(const self&) const;
/// Compute the least common multiple and assign
self& LCMAssign(const self&);
/// Compute the least common multiple
self LCM(const self&) const;
/// Compute the greatest common divisor and assign
self& GCDAssign(const self&);
/// Compute the greatest common divisor
self GCD(const self&) const;
/// Read-only access to internal decision diagramm structure
const dd_type& diagram() const { return m_poly.diagram(); }
/// Get corresponding subset of of the powerset over all variables
set_type set() const { return m_poly.set(); }
/// Removes the first variables from monomial
self& popFirst() {
PBORI_ASSERT(!m_poly.isConstant());
return *this = set_type( dd_type(m_poly.ring(),
m_poly.navigation().thenBranch()) );
}
/// Get first variable in monomial
var_type firstVariable() const;
/// Get first index in monomial
/// @note return out-of-range integer for polynomial one
idx_type firstIndex() const {
return *m_poly.navigation();
}
/// Access ring, where this belongs to
const ring_type& ring() const { return m_poly.ring(); }
protected:
/// Access to internal decision diagramm structure
dd_type& internalDiagram() { return m_poly.internalDiagram(); }
/// Construct from decision diagram
BooleMonomial(const set_type& rhs): m_poly(rhs.diagram()) {
PBORI_ASSERT(!m_poly.isZero());
}
private:
BoolePolynomial m_poly;
};
/// Multiplication of monomials
inline BooleMonomial
operator*(const BooleMonomial& lhs, const BooleMonomial& rhs) {
return BooleMonomial(lhs) *= rhs;
}
/// Multiplication of monomials
inline BooleMonomial
operator*(const BooleMonomial& lhs, const BooleVariable& rhs) {
return BooleMonomial(lhs) *= rhs;
}
/// Multiplication of monomials
inline BoolePolynomial
operator*(const BooleMonomial& lhs, BooleConstant rhs) {
return BoolePolynomial(lhs) *= rhs;
}
/// Multiplication of monomials
inline BoolePolynomial
operator*(BooleConstant lhs, const BooleMonomial& rhs) {
return rhs * lhs;
}
/// Division of monomials
inline BooleMonomial
operator/(const BooleMonomial& lhs, const BooleMonomial& rhs) {
return BooleMonomial(lhs) /= rhs;
}
/// Division of monomials
inline BooleMonomial
operator/(const BooleMonomial& lhs, const BooleVariable& rhs) {
return lhs / BooleMonomial(rhs);
}
/// Less than comparision
inline BooleMonomial::bool_type
operator<(const BooleMonomial& lhs, const BooleMonomial& rhs) {
return (lhs.compare(rhs) == CTypes::less_than);
}
/// Greater than comparision
inline BooleMonomial::bool_type
operator>(const BooleMonomial& lhs, const BooleMonomial& rhs) {
return (lhs.compare(rhs) == CTypes::greater_than);
}
/// Less or equal than comparision
inline BooleMonomial::bool_type
operator<=(const BooleMonomial& lhs, const BooleMonomial& rhs) {
return (lhs.compare(rhs) <= CTypes::less_or_equal_max);
}
/// Greater or equal than comparision
inline BooleMonomial::bool_type
operator>=(const BooleMonomial& lhs, const BooleMonomial& rhs) {
return (lhs.compare(rhs) >= CTypes::greater_or_equal_min);
}
/// Compute the greatest common divisor of two monomials
inline BooleMonomial
GCD(const BooleMonomial& lhs, const BooleMonomial& rhs ){
return lhs.GCD(rhs);
}
/// Compute the greatest common divisor of two monomials
inline BooleMonomial
LCM(const BooleMonomial& lhs, const BooleMonomial& rhs ){
return lhs.LCM(rhs);
}
// Anyone need this?
/// @fn greater_variable(BooleMonomial::idx_type lhs, BooleMonomial::idx_type rhs);
/// @brief Checks whether BooleVariable(lhs) > BooleVariable(rhs)
// BooleMonomial::bool_type
// greater_variable(BooleMonomial::idx_type lhs, BooleMonomial::idx_type rhs);
/// Multiplication of variables by a 0 or 1
inline BoolePolynomial
operator*(const BooleVariable& lhs, const BooleConstant& rhs){
return BooleMonomial(lhs) * rhs;
}
/// Multiplication of 0 or 1 by a Variable
inline BoolePolynomial
operator*(const BooleConstant& lhs, const BooleVariable& rhs){
return rhs * lhs;
}
/// Multiplication of variables by a polynomial
inline BoolePolynomial
operator*(const BooleVariable& lhs,
const BoolePolynomial& rhs){
return BoolePolynomial(rhs) *= BooleMonomial(lhs);
}
/// Multiplication of variables by a monomial
inline BooleMonomial
operator*(const BooleVariable& lhs,
const BooleMonomial& rhs){
return BooleMonomial(lhs) * rhs;
}
/// Multiplication of a polynomial by a variable with assignment
inline BoolePolynomial&
operator*=(BoolePolynomial& lhs,
const BooleVariable& rhs){
return lhs *= BooleMonomial(rhs);
}
/// Multiplication of monomials by a polynomial
inline BooleMonomial
operator*(const BooleVariable& lhs,
const BooleVariable& rhs){
return BooleMonomial(lhs) *= BooleMonomial(rhs);
}
/// Multiplication of a polynomial by a variable
inline BoolePolynomial
operator*(const BoolePolynomial& lhs,
const BooleVariable& rhs){
return BoolePolynomial(lhs) *= BooleMonomial(rhs);
}
/// Division of a polynomial by a variable (forcing monomial variant)
inline BoolePolynomial
operator/(const BoolePolynomial& lhs,
const BooleVariable& rhs){
return lhs / BooleMonomial(rhs);
}
/// Remainder of division of a polynomial by a variable
inline BoolePolynomial
operator%(const BoolePolynomial& lhs,
const BooleVariable& rhs){
return lhs % BooleMonomial(rhs);
}
END_NAMESPACE_PBORI
#endif // of polybori_BooleMonomial_h_
|