This file is indexed.

/usr/include/ceres/cubic_interpolation.h is in libceres-dev 1.13.0+dfsg0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)

#ifndef CERES_PUBLIC_CUBIC_INTERPOLATION_H_
#define CERES_PUBLIC_CUBIC_INTERPOLATION_H_

#include "ceres/internal/port.h"
#include "Eigen/Core"
#include "glog/logging.h"

namespace ceres {

// Given samples from a function sampled at four equally spaced points,
//
//   p0 = f(-1)
//   p1 = f(0)
//   p2 = f(1)
//   p3 = f(2)
//
// Evaluate the cubic Hermite spline (also known as the Catmull-Rom
// spline) at a point x that lies in the interval [0, 1].
//
// This is also the interpolation kernel (for the case of a = 0.5) as
// proposed by R. Keys, in:
//
// "Cubic convolution interpolation for digital image processing".
// IEEE Transactions on Acoustics, Speech, and Signal Processing
// 29 (6): 1153–1160.
//
// For more details see
//
// http://en.wikipedia.org/wiki/Cubic_Hermite_spline
// http://en.wikipedia.org/wiki/Bicubic_interpolation
//
// f if not NULL will contain the interpolated function values.
// dfdx if not NULL will contain the interpolated derivative values.
template <int kDataDimension>
void CubicHermiteSpline(const Eigen::Matrix<double, kDataDimension, 1>& p0,
                        const Eigen::Matrix<double, kDataDimension, 1>& p1,
                        const Eigen::Matrix<double, kDataDimension, 1>& p2,
                        const Eigen::Matrix<double, kDataDimension, 1>& p3,
                        const double x,
                        double* f,
                        double* dfdx) {
  typedef Eigen::Matrix<double, kDataDimension, 1> VType;
  const VType a = 0.5 * (-p0 + 3.0 * p1 - 3.0 * p2 + p3);
  const VType b = 0.5 * (2.0 * p0 - 5.0 * p1 + 4.0 * p2 - p3);
  const VType c = 0.5 * (-p0 + p2);
  const VType d = p1;

  // Use Horner's rule to evaluate the function value and its
  // derivative.

  // f = ax^3 + bx^2 + cx + d
  if (f != NULL) {
    Eigen::Map<VType>(f, kDataDimension) = d + x * (c + x * (b + x * a));
  }

  // dfdx = 3ax^2 + 2bx + c
  if (dfdx != NULL) {
    Eigen::Map<VType>(dfdx, kDataDimension) = c + x * (2.0 * b + 3.0 * a * x);
  }
}

// Given as input an infinite one dimensional grid, which provides the
// following interface.
//
//   class Grid {
//    public:
//     enum { DATA_DIMENSION = 2; };
//     void GetValue(int n, double* f) const;
//   };
//
// Here, GetValue gives the value of a function f (possibly vector
// valued) for any integer n.
//
// The enum DATA_DIMENSION indicates the dimensionality of the
// function being interpolated. For example if you are interpolating
// rotations in axis-angle format over time, then DATA_DIMENSION = 3.
//
// CubicInterpolator uses cubic Hermite splines to produce a smooth
// approximation to it that can be used to evaluate the f(x) and f'(x)
// at any point on the real number line.
//
// For more details on cubic interpolation see
//
// http://en.wikipedia.org/wiki/Cubic_Hermite_spline
//
// Example usage:
//
//  const double data[] = {1.0, 2.0, 5.0, 6.0};
//  Grid1D<double, 1> grid(x, 0, 4);
//  CubicInterpolator<Grid1D<double, 1> > interpolator(grid);
//  double f, dfdx;
//  interpolator.Evaluator(1.5, &f, &dfdx);
template<typename Grid>
class CubicInterpolator {
 public:
  explicit CubicInterpolator(const Grid& grid)
      : grid_(grid) {
    // The + casts the enum into an int before doing the
    // comparison. It is needed to prevent
    // "-Wunnamed-type-template-args" related errors.
    CHECK_GE(+Grid::DATA_DIMENSION, 1);
  }

  void Evaluate(double x, double* f, double* dfdx) const {
    const int n = std::floor(x);
    Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> p0, p1, p2, p3;
    grid_.GetValue(n - 1, p0.data());
    grid_.GetValue(n,     p1.data());
    grid_.GetValue(n + 1, p2.data());
    grid_.GetValue(n + 2, p3.data());
    CubicHermiteSpline<Grid::DATA_DIMENSION>(p0, p1, p2, p3, x - n, f, dfdx);
  }

  // The following two Evaluate overloads are needed for interfacing
  // with automatic differentiation. The first is for when a scalar
  // evaluation is done, and the second one is for when Jets are used.
  void Evaluate(const double& x, double* f) const {
    Evaluate(x, f, NULL);
  }

  template<typename JetT> void Evaluate(const JetT& x, JetT* f) const {
    double fx[Grid::DATA_DIMENSION], dfdx[Grid::DATA_DIMENSION];
    Evaluate(x.a, fx, dfdx);
    for (int i = 0; i < Grid::DATA_DIMENSION; ++i) {
      f[i].a = fx[i];
      f[i].v = dfdx[i] * x.v;
    }
  }

 private:
  const Grid& grid_;
};

// An object that implements an infinite one dimensional grid needed
// by the CubicInterpolator where the source of the function values is
// an array of type T on the interval
//
//   [begin, ..., end - 1]
//
// Since the input array is finite and the grid is infinite, values
// outside this interval needs to be computed. Grid1D uses the value
// from the nearest edge.
//
// The function being provided can be vector valued, in which case
// kDataDimension > 1. The dimensional slices of the function maybe
// interleaved, or they maybe stacked, i.e, if the function has
// kDataDimension = 2, if kInterleaved = true, then it is stored as
//
//   f01, f02, f11, f12 ....
//
// and if kInterleaved = false, then it is stored as
//
//  f01, f11, .. fn1, f02, f12, .. , fn2
//
template <typename T,
          int kDataDimension = 1,
          bool kInterleaved = true>
struct Grid1D {
 public:
  enum { DATA_DIMENSION = kDataDimension };

  Grid1D(const T* data, const int begin, const int end)
      : data_(data), begin_(begin), end_(end), num_values_(end - begin) {
    CHECK_LT(begin, end);
  }

  EIGEN_STRONG_INLINE void GetValue(const int n, double* f) const {
    const int idx = std::min(std::max(begin_, n), end_ - 1) - begin_;
    if (kInterleaved) {
      for (int i = 0; i < kDataDimension; ++i) {
        f[i] = static_cast<double>(data_[kDataDimension * idx + i]);
      }
    } else {
      for (int i = 0; i < kDataDimension; ++i) {
        f[i] = static_cast<double>(data_[i * num_values_ + idx]);
      }
    }
  }

 private:
  const T* data_;
  const int begin_;
  const int end_;
  const int num_values_;
};

// Given as input an infinite two dimensional grid like object, which
// provides the following interface:
//
//   struct Grid {
//     enum { DATA_DIMENSION = 1 };
//     void GetValue(int row, int col, double* f) const;
//   };
//
// Where, GetValue gives us the value of a function f (possibly vector
// valued) for any pairs of integers (row, col), and the enum
// DATA_DIMENSION indicates the dimensionality of the function being
// interpolated. For example if you are interpolating a color image
// with three channels (Red, Green & Blue), then DATA_DIMENSION = 3.
//
// BiCubicInterpolator uses the cubic convolution interpolation
// algorithm of R. Keys, to produce a smooth approximation to it that
// can be used to evaluate the f(r,c), df(r, c)/dr and df(r,c)/dc at
// any point in the real plane.
//
// For more details on the algorithm used here see:
//
// "Cubic convolution interpolation for digital image processing".
// Robert G. Keys, IEEE Trans. on Acoustics, Speech, and Signal
// Processing 29 (6): 1153–1160, 1981.
//
// http://en.wikipedia.org/wiki/Cubic_Hermite_spline
// http://en.wikipedia.org/wiki/Bicubic_interpolation
//
// Example usage:
//
// const double data[] = {1.0, 3.0, -1.0, 4.0,
//                         3.6, 2.1,  4.2, 2.0,
//                        2.0, 1.0,  3.1, 5.2};
//  Grid2D<double, 1>  grid(data, 3, 4);
//  BiCubicInterpolator<Grid2D<double, 1> > interpolator(grid);
//  double f, dfdr, dfdc;
//  interpolator.Evaluate(1.2, 2.5, &f, &dfdr, &dfdc);

template<typename Grid>
class BiCubicInterpolator {
 public:
  explicit BiCubicInterpolator(const Grid& grid)
      : grid_(grid) {
    // The + casts the enum into an int before doing the
    // comparison. It is needed to prevent
    // "-Wunnamed-type-template-args" related errors.
    CHECK_GE(+Grid::DATA_DIMENSION, 1);
  }

  // Evaluate the interpolated function value and/or its
  // derivative. Returns false if r or c is out of bounds.
  void Evaluate(double r, double c,
                double* f, double* dfdr, double* dfdc) const {
    // BiCubic interpolation requires 16 values around the point being
    // evaluated.  We will use pij, to indicate the elements of the
    // 4x4 grid of values.
    //
    //          col
    //      p00 p01 p02 p03
    // row  p10 p11 p12 p13
    //      p20 p21 p22 p23
    //      p30 p31 p32 p33
    //
    // The point (r,c) being evaluated is assumed to lie in the square
    // defined by p11, p12, p22 and p21.

    const int row = std::floor(r);
    const int col = std::floor(c);

    Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> p0, p1, p2, p3;

    // Interpolate along each of the four rows, evaluating the function
    // value and the horizontal derivative in each row.
    Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> f0, f1, f2, f3;
    Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> df0dc, df1dc, df2dc, df3dc;

    grid_.GetValue(row - 1, col - 1, p0.data());
    grid_.GetValue(row - 1, col    , p1.data());
    grid_.GetValue(row - 1, col + 1, p2.data());
    grid_.GetValue(row - 1, col + 2, p3.data());
    CubicHermiteSpline<Grid::DATA_DIMENSION>(p0, p1, p2, p3, c - col,
                                             f0.data(), df0dc.data());

    grid_.GetValue(row, col - 1, p0.data());
    grid_.GetValue(row, col    , p1.data());
    grid_.GetValue(row, col + 1, p2.data());
    grid_.GetValue(row, col + 2, p3.data());
    CubicHermiteSpline<Grid::DATA_DIMENSION>(p0, p1, p2, p3, c - col,
                                             f1.data(), df1dc.data());

    grid_.GetValue(row + 1, col - 1, p0.data());
    grid_.GetValue(row + 1, col    , p1.data());
    grid_.GetValue(row + 1, col + 1, p2.data());
    grid_.GetValue(row + 1, col + 2, p3.data());
    CubicHermiteSpline<Grid::DATA_DIMENSION>(p0, p1, p2, p3, c - col,
                                             f2.data(), df2dc.data());

    grid_.GetValue(row + 2, col - 1, p0.data());
    grid_.GetValue(row + 2, col    , p1.data());
    grid_.GetValue(row + 2, col + 1, p2.data());
    grid_.GetValue(row + 2, col + 2, p3.data());
    CubicHermiteSpline<Grid::DATA_DIMENSION>(p0, p1, p2, p3, c - col,
                                             f3.data(), df3dc.data());

    // Interpolate vertically the interpolated value from each row and
    // compute the derivative along the columns.
    CubicHermiteSpline<Grid::DATA_DIMENSION>(f0, f1, f2, f3, r - row, f, dfdr);
    if (dfdc != NULL) {
      // Interpolate vertically the derivative along the columns.
      CubicHermiteSpline<Grid::DATA_DIMENSION>(df0dc, df1dc, df2dc, df3dc,
                                               r - row, dfdc, NULL);
    }
  }

  // The following two Evaluate overloads are needed for interfacing
  // with automatic differentiation. The first is for when a scalar
  // evaluation is done, and the second one is for when Jets are used.
  void Evaluate(const double& r, const double& c, double* f) const {
    Evaluate(r, c, f, NULL, NULL);
  }

  template<typename JetT> void Evaluate(const JetT& r,
                                        const JetT& c,
                                        JetT* f) const {
    double frc[Grid::DATA_DIMENSION];
    double dfdr[Grid::DATA_DIMENSION];
    double dfdc[Grid::DATA_DIMENSION];
    Evaluate(r.a, c.a, frc, dfdr, dfdc);
    for (int i = 0; i < Grid::DATA_DIMENSION; ++i) {
      f[i].a = frc[i];
      f[i].v = dfdr[i] * r.v + dfdc[i] * c.v;
    }
  }

 private:
  const Grid& grid_;
};

// An object that implements an infinite two dimensional grid needed
// by the BiCubicInterpolator where the source of the function values
// is an grid of type T on the grid
//
//   [(row_start,   col_start), ..., (row_start,   col_end - 1)]
//   [                          ...                            ]
//   [(row_end - 1, col_start), ..., (row_end - 1, col_end - 1)]
//
// Since the input grid is finite and the grid is infinite, values
// outside this interval needs to be computed. Grid2D uses the value
// from the nearest edge.
//
// The function being provided can be vector valued, in which case
// kDataDimension > 1. The data maybe stored in row or column major
// format and the various dimensional slices of the function maybe
// interleaved, or they maybe stacked, i.e, if the function has
// kDataDimension = 2, is stored in row-major format and if
// kInterleaved = true, then it is stored as
//
//   f001, f002, f011, f012, ...
//
// A commonly occuring example are color images (RGB) where the three
// channels are stored interleaved.
//
// If kInterleaved = false, then it is stored as
//
//  f001, f011, ..., fnm1, f002, f012, ...
template <typename T,
          int kDataDimension = 1,
          bool kRowMajor = true,
          bool kInterleaved = true>
struct Grid2D {
 public:
  enum { DATA_DIMENSION = kDataDimension };

  Grid2D(const T* data,
         const int row_begin, const int row_end,
         const int col_begin, const int col_end)
      : data_(data),
        row_begin_(row_begin), row_end_(row_end),
        col_begin_(col_begin), col_end_(col_end),
        num_rows_(row_end - row_begin), num_cols_(col_end - col_begin),
        num_values_(num_rows_ * num_cols_) {
    CHECK_GE(kDataDimension, 1);
    CHECK_LT(row_begin, row_end);
    CHECK_LT(col_begin, col_end);
  }

  EIGEN_STRONG_INLINE void GetValue(const int r, const int c, double* f) const {
    const int row_idx =
        std::min(std::max(row_begin_, r), row_end_ - 1) - row_begin_;
    const int col_idx =
        std::min(std::max(col_begin_, c), col_end_ - 1) - col_begin_;

    const int n =
        (kRowMajor)
        ? num_cols_ * row_idx + col_idx
        : num_rows_ * col_idx + row_idx;


    if (kInterleaved) {
      for (int i = 0; i < kDataDimension; ++i) {
        f[i] = static_cast<double>(data_[kDataDimension * n + i]);
      }
    } else {
      for (int i = 0; i < kDataDimension; ++i) {
        f[i] = static_cast<double>(data_[i * num_values_ + n]);
      }
    }
  }

 private:
  const T* data_;
  const int row_begin_;
  const int row_end_;
  const int col_begin_;
  const int col_end_;
  const int num_rows_;
  const int num_cols_;
  const int num_values_;
};

}  // namespace ceres

#endif  // CERES_PUBLIC_CUBIC_INTERPOLATOR_H_