This file is indexed.

/usr/include/ceres/local_parameterization.h is in libceres-dev 1.13.0+dfsg0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//         sameeragarwal@google.com (Sameer Agarwal)

#ifndef CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_
#define CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_

#include <vector>
#include "ceres/internal/port.h"
#include "ceres/internal/scoped_ptr.h"
#include "ceres/internal/disable_warnings.h"

namespace ceres {

// Purpose: Sometimes parameter blocks x can overparameterize a problem
//
//   min f(x)
//    x
//
// In that case it is desirable to choose a parameterization for the
// block itself to remove the null directions of the cost. More
// generally, if x lies on a manifold of a smaller dimension than the
// ambient space that it is embedded in, then it is numerically and
// computationally more effective to optimize it using a
// parameterization that lives in the tangent space of that manifold
// at each point.
//
// For example, a sphere in three dimensions is a 2 dimensional
// manifold, embedded in a three dimensional space. At each point on
// the sphere, the plane tangent to it defines a two dimensional
// tangent space. For a cost function defined on this sphere, given a
// point x, moving in the direction normal to the sphere at that point
// is not useful. Thus a better way to do a local optimization is to
// optimize over two dimensional vector delta in the tangent space at
// that point and then "move" to the point x + delta, where the move
// operation involves projecting back onto the sphere. Doing so
// removes a redundent dimension from the optimization, making it
// numerically more robust and efficient.
//
// More generally we can define a function
//
//   x_plus_delta = Plus(x, delta),
//
// where x_plus_delta has the same size as x, and delta is of size
// less than or equal to x. The function Plus, generalizes the
// definition of vector addition. Thus it satisfies the identify
//
//   Plus(x, 0) = x, for all x.
//
// A trivial version of Plus is when delta is of the same size as x
// and
//
//   Plus(x, delta) = x + delta
//
// A more interesting case if x is two dimensional vector, and the
// user wishes to hold the first coordinate constant. Then, delta is a
// scalar and Plus is defined as
//
//   Plus(x, delta) = x + [0] * delta
//                        [1]
//
// An example that occurs commonly in Structure from Motion problems
// is when camera rotations are parameterized using Quaternion. There,
// it is useful only make updates orthogonal to that 4-vector defining
// the quaternion. One way to do this is to let delta be a 3
// dimensional vector and define Plus to be
//
//   Plus(x, delta) = [cos(|delta|), sin(|delta|) delta / |delta|] * x
//
// The multiplication between the two 4-vectors on the RHS is the
// standard quaternion product.
//
// Given g and a point x, optimizing f can now be restated as
//
//     min  f(Plus(x, delta))
//    delta
//
// Given a solution delta to this problem, the optimal value is then
// given by
//
//   x* = Plus(x, delta)
//
// The class LocalParameterization defines the function Plus and its
// Jacobian which is needed to compute the Jacobian of f w.r.t delta.
class CERES_EXPORT LocalParameterization {
 public:
  virtual ~LocalParameterization();

  // Generalization of the addition operation,
  //
  //   x_plus_delta = Plus(x, delta)
  //
  // with the condition that Plus(x, 0) = x.
  virtual bool Plus(const double* x,
                    const double* delta,
                    double* x_plus_delta) const = 0;

  // The jacobian of Plus(x, delta) w.r.t delta at delta = 0.
  //
  // jacobian is a row-major GlobalSize() x LocalSize() matrix.
  virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0;

  // local_matrix = global_matrix * jacobian
  //
  // global_matrix is a num_rows x GlobalSize  row major matrix.
  // local_matrix is a num_rows x LocalSize row major matrix.
  // jacobian(x) is the matrix returned by ComputeJacobian at x.
  //
  // This is only used by GradientProblem. For most normal uses, it is
  // okay to use the default implementation.
  virtual bool MultiplyByJacobian(const double* x,
                                  const int num_rows,
                                  const double* global_matrix,
                                  double* local_matrix) const;

  // Size of x.
  virtual int GlobalSize() const = 0;

  // Size of delta.
  virtual int LocalSize() const = 0;
};

// Some basic parameterizations

// Identity Parameterization: Plus(x, delta) = x + delta
class CERES_EXPORT IdentityParameterization : public LocalParameterization {
 public:
  explicit IdentityParameterization(int size);
  virtual ~IdentityParameterization() {}
  virtual bool Plus(const double* x,
                    const double* delta,
                    double* x_plus_delta) const;
  virtual bool ComputeJacobian(const double* x,
                               double* jacobian) const;
  virtual bool MultiplyByJacobian(const double* x,
                                  const int num_cols,
                                  const double* global_matrix,
                                  double* local_matrix) const;
  virtual int GlobalSize() const { return size_; }
  virtual int LocalSize() const { return size_; }

 private:
  const int size_;
};

// Hold a subset of the parameters inside a parameter block constant.
class CERES_EXPORT SubsetParameterization : public LocalParameterization {
 public:
  explicit SubsetParameterization(int size,
                                  const std::vector<int>& constant_parameters);
  virtual ~SubsetParameterization() {}
  virtual bool Plus(const double* x,
                    const double* delta,
                    double* x_plus_delta) const;
  virtual bool ComputeJacobian(const double* x,
                               double* jacobian) const;
  virtual bool MultiplyByJacobian(const double* x,
                                  const int num_cols,
                                  const double* global_matrix,
                                  double* local_matrix) const;
  virtual int GlobalSize() const {
    return static_cast<int>(constancy_mask_.size());
  }
  virtual int LocalSize() const { return local_size_; }

 private:
  const int local_size_;
  std::vector<char> constancy_mask_;
};

// Plus(x, delta) = [cos(|delta|), sin(|delta|) delta / |delta|] * x
// with * being the quaternion multiplication operator. Here we assume
// that the first element of the quaternion vector is the real (cos
// theta) part.
class CERES_EXPORT QuaternionParameterization : public LocalParameterization {
 public:
  virtual ~QuaternionParameterization() {}
  virtual bool Plus(const double* x,
                    const double* delta,
                    double* x_plus_delta) const;
  virtual bool ComputeJacobian(const double* x,
                               double* jacobian) const;
  virtual int GlobalSize() const { return 4; }
  virtual int LocalSize() const { return 3; }
};

// Implements the quaternion local parameterization for Eigen's representation
// of the quaternion. Eigen uses a different internal memory layout for the
// elements of the quaternion than what is commonly used. Specifically, Eigen
// stores the elements in memory as [x, y, z, w] where the real part is last
// whereas it is typically stored first. Note, when creating an Eigen quaternion
// through the constructor the elements are accepted in w, x, y, z order. Since
// Ceres operates on parameter blocks which are raw double pointers this
// difference is important and requires a different parameterization.
//
// Plus(x, delta) = [sin(|delta|) delta / |delta|, cos(|delta|)] * x
// with * being the quaternion multiplication operator.
class CERES_EXPORT EigenQuaternionParameterization
    : public ceres::LocalParameterization {
 public:
  virtual ~EigenQuaternionParameterization() {}
  virtual bool Plus(const double* x,
                    const double* delta,
                    double* x_plus_delta) const;
  virtual bool ComputeJacobian(const double* x, double* jacobian) const;
  virtual int GlobalSize() const { return 4; }
  virtual int LocalSize() const { return 3; }
};

// This provides a parameterization for homogeneous vectors which are commonly
// used in Structure for Motion problems.  One example where they are used is
// in representing points whose triangulation is ill-conditioned. Here
// it is advantageous to use an over-parameterization since homogeneous vectors
// can represent points at infinity.
//
// The plus operator is defined as
// Plus(x, delta) =
//    [sin(0.5 * |delta|) * delta / |delta|, cos(0.5 * |delta|)] * x
// with * defined as an operator which applies the update orthogonal to x to
// remain on the sphere. We assume that the last element of x is the scalar
// component. The size of the homogeneous vector is required to be greater than
// 1.
class CERES_EXPORT HomogeneousVectorParameterization :
      public LocalParameterization {
 public:
  explicit HomogeneousVectorParameterization(int size);
  virtual ~HomogeneousVectorParameterization() {}
  virtual bool Plus(const double* x,
                    const double* delta,
                    double* x_plus_delta) const;
  virtual bool ComputeJacobian(const double* x,
                               double* jacobian) const;
  virtual int GlobalSize() const { return size_; }
  virtual int LocalSize() const { return size_ - 1; }

 private:
  const int size_;
};

// Construct a local parameterization by taking the Cartesian product
// of a number of other local parameterizations. This is useful, when
// a parameter block is the cartesian product of two or more
// manifolds. For example the parameters of a camera consist of a
// rotation and a translation, i.e., SO(3) x R^3.
//
// Currently this class supports taking the cartesian product of up to
// four local parameterizations.
//
// Example usage:
//
// ProductParameterization product_param(new QuaterionionParameterization(),
//                                       new IdentityParameterization(3));
//
// is the local parameterization for a rigid transformation, where the
// rotation is represented using a quaternion.
class CERES_EXPORT ProductParameterization : public LocalParameterization {
 public:
  //
  // NOTE: All the constructors take ownership of the input local
  // parameterizations.
  //
  ProductParameterization(LocalParameterization* local_param1,
                          LocalParameterization* local_param2);

  ProductParameterization(LocalParameterization* local_param1,
                          LocalParameterization* local_param2,
                          LocalParameterization* local_param3);

  ProductParameterization(LocalParameterization* local_param1,
                          LocalParameterization* local_param2,
                          LocalParameterization* local_param3,
                          LocalParameterization* local_param4);

  virtual ~ProductParameterization();
  virtual bool Plus(const double* x,
                    const double* delta,
                    double* x_plus_delta) const;
  virtual bool ComputeJacobian(const double* x,
                               double* jacobian) const;
  virtual int GlobalSize() const { return global_size_; }
  virtual int LocalSize() const { return local_size_; }

 private:
  void Init();

  std::vector<LocalParameterization*> local_params_;
  int local_size_;
  int global_size_;
  int buffer_size_;
};

}  // namespace ceres

#include "ceres/internal/reenable_warnings.h"

#endif  // CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_