This file is indexed.

/usr/include/ceres/loss_function.h is in libceres-dev 1.13.0+dfsg0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//
// The LossFunction interface is the way users describe how residuals
// are converted to cost terms for the overall problem cost function.
// For the exact manner in which loss functions are converted to the
// overall cost for a problem, see problem.h.
//
// For least squares problem where there are no outliers and standard
// squared loss is expected, it is not necessary to create a loss
// function; instead passing a NULL to the problem when adding
// residuals implies a standard squared loss.
//
// For least squares problems where the minimization may encounter
// input terms that contain outliers, that is, completely bogus
// measurements, it is important to use a loss function that reduces
// their associated penalty.
//
// Consider a structure from motion problem. The unknowns are 3D
// points and camera parameters, and the measurements are image
// coordinates describing the expected reprojected position for a
// point in a camera. For example, we want to model the geometry of a
// street scene with fire hydrants and cars, observed by a moving
// camera with unknown parameters, and the only 3D points we care
// about are the pointy tippy-tops of the fire hydrants. Our magic
// image processing algorithm, which is responsible for producing the
// measurements that are input to Ceres, has found and matched all
// such tippy-tops in all image frames, except that in one of the
// frame it mistook a car's headlight for a hydrant. If we didn't do
// anything special (i.e. if we used a basic quadratic loss), the
// residual for the erroneous measurement will result in extreme error
// due to the quadratic nature of squared loss. This results in the
// entire solution getting pulled away from the optimimum to reduce
// the large error that would otherwise be attributed to the wrong
// measurement.
//
// Using a robust loss function, the cost for large residuals is
// reduced. In the example above, this leads to outlier terms getting
// downweighted so they do not overly influence the final solution.
//
// What cost function is best?
//
// In general, there isn't a principled way to select a robust loss
// function. The authors suggest starting with a non-robust cost, then
// only experimenting with robust loss functions if standard squared
// loss doesn't work.

#ifndef CERES_PUBLIC_LOSS_FUNCTION_H_
#define CERES_PUBLIC_LOSS_FUNCTION_H_

#include "glog/logging.h"
#include "ceres/internal/macros.h"
#include "ceres/internal/scoped_ptr.h"
#include "ceres/types.h"
#include "ceres/internal/disable_warnings.h"

namespace ceres {

class CERES_EXPORT LossFunction {
 public:
  virtual ~LossFunction() {}

  // For a residual vector with squared 2-norm 'sq_norm', this method
  // is required to fill in the value and derivatives of the loss
  // function (rho in this example):
  //
  //   out[0] = rho(sq_norm),
  //   out[1] = rho'(sq_norm),
  //   out[2] = rho''(sq_norm),
  //
  // Here the convention is that the contribution of a term to the
  // cost function is given by 1/2 rho(s),  where
  //
  //   s = ||residuals||^2.
  //
  // Calling the method with a negative value of 's' is an error and
  // the implementations are not required to handle that case.
  //
  // Most sane choices of rho() satisfy:
  //
  //   rho(0) = 0,
  //   rho'(0) = 1,
  //   rho'(s) < 1 in outlier region,
  //   rho''(s) < 0 in outlier region,
  //
  // so that they mimic the least squares cost for small residuals.
  virtual void Evaluate(double sq_norm, double out[3]) const = 0;
};

// Some common implementations follow below.
//
// Note: in the region of interest (i.e. s < 3) we have:
//   TrivialLoss >= HuberLoss >= SoftLOneLoss >= CauchyLoss


// This corresponds to no robustification.
//
//   rho(s) = s
//
// At s = 0: rho = [0, 1, 0].
//
// It is not normally necessary to use this, as passing NULL for the
// loss function when building the problem accomplishes the same
// thing.
class CERES_EXPORT TrivialLoss : public LossFunction {
 public:
  virtual void Evaluate(double, double*) const;
};

// Scaling
// -------
// Given one robustifier
//   s -> rho(s)
// one can change the length scale at which robustification takes
// place, by adding a scale factor 'a' as follows:
//
//   s -> a^2 rho(s / a^2).
//
// The first and second derivatives are:
//
//   s -> rho'(s / a^2),
//   s -> (1 / a^2) rho''(s / a^2),
//
// but the behaviour near s = 0 is the same as the original function,
// i.e.
//
//   rho(s) = s + higher order terms,
//   a^2 rho(s / a^2) = s + higher order terms.
//
// The scalar 'a' should be positive.
//
// The reason for the appearance of squaring is that 'a' is in the
// units of the residual vector norm whereas 's' is a squared
// norm. For applications it is more convenient to specify 'a' than
// its square. The commonly used robustifiers below are described in
// un-scaled format (a = 1) but their implementations work for any
// non-zero value of 'a'.

// Huber.
//
//   rho(s) = s               for s <= 1,
//   rho(s) = 2 sqrt(s) - 1   for s >= 1.
//
// At s = 0: rho = [0, 1, 0].
//
// The scaling parameter 'a' corresponds to 'delta' on this page:
//   http://en.wikipedia.org/wiki/Huber_Loss_Function
class CERES_EXPORT HuberLoss : public LossFunction {
 public:
  explicit HuberLoss(double a) : a_(a), b_(a * a) { }
  virtual void Evaluate(double, double*) const;

 private:
  const double a_;
  // b = a^2.
  const double b_;
};

// Soft L1, similar to Huber but smooth.
//
//   rho(s) = 2 (sqrt(1 + s) - 1).
//
// At s = 0: rho = [0, 1, -1/2].
class CERES_EXPORT SoftLOneLoss : public LossFunction {
 public:
  explicit SoftLOneLoss(double a) : b_(a * a), c_(1 / b_) { }
  virtual void Evaluate(double, double*) const;

 private:
  // b = a^2.
  const double b_;
  // c = 1 / a^2.
  const double c_;
};

// Inspired by the Cauchy distribution
//
//   rho(s) = log(1 + s).
//
// At s = 0: rho = [0, 1, -1].
class CERES_EXPORT CauchyLoss : public LossFunction {
 public:
  explicit CauchyLoss(double a) : b_(a * a), c_(1 / b_) { }
  virtual void Evaluate(double, double*) const;

 private:
  // b = a^2.
  const double b_;
  // c = 1 / a^2.
  const double c_;
};

// Loss that is capped beyond a certain level using the arc-tangent function.
// The scaling parameter 'a' determines the level where falloff occurs.
// For costs much smaller than 'a', the loss function is linear and behaves like
// TrivialLoss, and for values much larger than 'a' the value asymptotically
// approaches the constant value of a * PI / 2.
//
//   rho(s) = a atan(s / a).
//
// At s = 0: rho = [0, 1, 0].
class CERES_EXPORT ArctanLoss : public LossFunction {
 public:
  explicit ArctanLoss(double a) : a_(a), b_(1 / (a * a)) { }
  virtual void Evaluate(double, double*) const;

 private:
  const double a_;
  // b = 1 / a^2.
  const double b_;
};

// Loss function that maps to approximately zero cost in a range around the
// origin, and reverts to linear in error (quadratic in cost) beyond this range.
// The tolerance parameter 'a' sets the nominal point at which the
// transition occurs, and the transition size parameter 'b' sets the nominal
// distance over which most of the transition occurs. Both a and b must be
// greater than zero, and typically b will be set to a fraction of a.
// The slope rho'[s] varies smoothly from about 0 at s <= a - b to
// about 1 at s >= a + b.
//
// The term is computed as:
//
//   rho(s) = b log(1 + exp((s - a) / b)) - c0.
//
// where c0 is chosen so that rho(0) == 0
//
//   c0 = b log(1 + exp(-a / b)
//
// This has the following useful properties:
//
//   rho(s) == 0               for s = 0
//   rho'(s) ~= 0              for s << a - b
//   rho'(s) ~= 1              for s >> a + b
//   rho''(s) > 0              for all s
//
// In addition, all derivatives are continuous, and the curvature is
// concentrated in the range a - b to a + b.
//
// At s = 0: rho = [0, ~0, ~0].
class CERES_EXPORT TolerantLoss : public LossFunction {
 public:
  explicit TolerantLoss(double a, double b);
  virtual void Evaluate(double, double*) const;

 private:
  const double a_, b_, c_;
};

// This is the Tukey biweight loss function which aggressively
// attempts to suppress large errors.
//
// The term is computed as:
//
//   rho(s) = a^2 / 6 * (1 - (1 - s / a^2)^3 )   for s <= a^2,
//   rho(s) = a^2 / 6                            for s >  a^2.
//
// At s = 0: rho = [0, 0.5, -1 / a^2]
class CERES_EXPORT TukeyLoss : public ceres::LossFunction {
 public:
  explicit TukeyLoss(double a) : a_squared_(a * a) { }
  virtual void Evaluate(double, double*) const;

 private:
  const double a_squared_;
};

// Composition of two loss functions.  The error is the result of first
// evaluating g followed by f to yield the composition f(g(s)).
// The loss functions must not be NULL.
class CERES_EXPORT ComposedLoss : public LossFunction {
 public:
  explicit ComposedLoss(const LossFunction* f, Ownership ownership_f,
                        const LossFunction* g, Ownership ownership_g);
  virtual ~ComposedLoss();
  virtual void Evaluate(double, double*) const;

 private:
  internal::scoped_ptr<const LossFunction> f_, g_;
  const Ownership ownership_f_, ownership_g_;
};

// The discussion above has to do with length scaling: it affects the space
// in which s is measured. Sometimes you want to simply scale the output
// value of the robustifier. For example, you might want to weight
// different error terms differently (e.g., weight pixel reprojection
// errors differently from terrain errors).
//
// If rho is the wrapped robustifier, then this simply outputs
// s -> a * rho(s)
//
// The first and second derivatives are, not surprisingly
// s -> a * rho'(s)
// s -> a * rho''(s)
//
// Since we treat the a NULL Loss function as the Identity loss
// function, rho = NULL is a valid input and will result in the input
// being scaled by a. This provides a simple way of implementing a
// scaled ResidualBlock.
class CERES_EXPORT ScaledLoss : public LossFunction {
 public:
  // Constructs a ScaledLoss wrapping another loss function. Takes
  // ownership of the wrapped loss function or not depending on the
  // ownership parameter.
  ScaledLoss(const LossFunction* rho, double a, Ownership ownership) :
      rho_(rho), a_(a), ownership_(ownership) { }

  virtual ~ScaledLoss() {
    if (ownership_ == DO_NOT_TAKE_OWNERSHIP) {
      rho_.release();
    }
  }
  virtual void Evaluate(double, double*) const;

 private:
  internal::scoped_ptr<const LossFunction> rho_;
  const double a_;
  const Ownership ownership_;
  CERES_DISALLOW_COPY_AND_ASSIGN(ScaledLoss);
};

// Sometimes after the optimization problem has been constructed, we
// wish to mutate the scale of the loss function. For example, when
// performing estimation from data which has substantial outliers,
// convergence can be improved by starting out with a large scale,
// optimizing the problem and then reducing the scale. This can have
// better convergence behaviour than just using a loss function with a
// small scale.
//
// This templated class allows the user to implement a loss function
// whose scale can be mutated after an optimization problem has been
// constructed.
//
// Since we treat the a NULL Loss function as the Identity loss
// function, rho = NULL is a valid input.
//
// Example usage
//
//  Problem problem;
//
//  // Add parameter blocks
//
//  CostFunction* cost_function =
//    new AutoDiffCostFunction < UW_Camera_Mapper, 2, 9, 3>(
//      new UW_Camera_Mapper(feature_x, feature_y));
//
//  LossFunctionWrapper* loss_function(new HuberLoss(1.0), TAKE_OWNERSHIP);
//
//  problem.AddResidualBlock(cost_function, loss_function, parameters);
//
//  Solver::Options options;
//  Solger::Summary summary;
//
//  Solve(options, &problem, &summary)
//
//  loss_function->Reset(new HuberLoss(1.0), TAKE_OWNERSHIP);
//
//  Solve(options, &problem, &summary)
//
class CERES_EXPORT LossFunctionWrapper : public LossFunction {
 public:
  LossFunctionWrapper(LossFunction* rho, Ownership ownership)
      : rho_(rho), ownership_(ownership) {
  }

  virtual ~LossFunctionWrapper() {
    if (ownership_ == DO_NOT_TAKE_OWNERSHIP) {
      rho_.release();
    }
  }

  virtual void Evaluate(double sq_norm, double out[3]) const {
    if (rho_.get() == NULL) {
      out[0] = sq_norm;
      out[1] = 1.0;
      out[2] = 0.0;
    }
    else {
      rho_->Evaluate(sq_norm, out);
    }
  }

  void Reset(LossFunction* rho, Ownership ownership) {
    if (ownership_ == DO_NOT_TAKE_OWNERSHIP) {
      rho_.release();
    }
    rho_.reset(rho);
    ownership_ = ownership;
  }

 private:
  internal::scoped_ptr<const LossFunction> rho_;
  Ownership ownership_;
  CERES_DISALLOW_COPY_AND_ASSIGN(LossFunctionWrapper);
};

}  // namespace ceres

#include "ceres/internal/reenable_warnings.h"

#endif  // CERES_PUBLIC_LOSS_FUNCTION_H_