/usr/include/ceres/problem.h is in libceres-dev 1.13.0+dfsg0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 | // Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
// keir@google.com (Keir Mierle)
//
// The Problem object is used to build and hold least squares problems.
#ifndef CERES_PUBLIC_PROBLEM_H_
#define CERES_PUBLIC_PROBLEM_H_
#include <cstddef>
#include <map>
#include <set>
#include <vector>
#include "glog/logging.h"
#include "ceres/internal/macros.h"
#include "ceres/internal/port.h"
#include "ceres/internal/scoped_ptr.h"
#include "ceres/types.h"
#include "ceres/internal/disable_warnings.h"
namespace ceres {
class CostFunction;
class LossFunction;
class LocalParameterization;
class Solver;
struct CRSMatrix;
namespace internal {
class Preprocessor;
class ProblemImpl;
class ParameterBlock;
class ResidualBlock;
} // namespace internal
// A ResidualBlockId is an opaque handle clients can use to remove residual
// blocks from a Problem after adding them.
typedef internal::ResidualBlock* ResidualBlockId;
// A class to represent non-linear least squares problems. Such
// problems have a cost function that is a sum of error terms (known
// as "residuals"), where each residual is a function of some subset
// of the parameters. The cost function takes the form
//
// N 1
// SUM --- loss( || r_i1, r_i2,..., r_ik ||^2 ),
// i=1 2
//
// where
//
// r_ij is residual number i, component j; the residual is a
// function of some subset of the parameters x1...xk. For
// example, in a structure from motion problem a residual
// might be the difference between a measured point in an
// image and the reprojected position for the matching
// camera, point pair. The residual would have two
// components, error in x and error in y.
//
// loss(y) is the loss function; for example, squared error or
// Huber L1 loss. If loss(y) = y, then the cost function is
// non-robustified least squares.
//
// This class is specifically designed to address the important subset
// of "sparse" least squares problems, where each component of the
// residual depends only on a small number number of parameters, even
// though the total number of residuals and parameters may be very
// large. This property affords tremendous gains in scale, allowing
// efficient solving of large problems that are otherwise
// inaccessible.
//
// The canonical example of a sparse least squares problem is
// "structure-from-motion" (SFM), where the parameters are points and
// cameras, and residuals are reprojection errors. Typically a single
// residual will depend only on 9 parameters (3 for the point, 6 for
// the camera).
//
// To create a least squares problem, use the AddResidualBlock() and
// AddParameterBlock() methods, documented below. Here is an example least
// squares problem containing 3 parameter blocks of sizes 3, 4 and 5
// respectively and two residual terms of size 2 and 6:
//
// double x1[] = { 1.0, 2.0, 3.0 };
// double x2[] = { 1.0, 2.0, 3.0, 5.0 };
// double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 };
//
// Problem problem;
//
// problem.AddResidualBlock(new MyUnaryCostFunction(...), x1);
// problem.AddResidualBlock(new MyBinaryCostFunction(...), x2, x3);
//
// Please see cost_function.h for details of the CostFunction object.
class CERES_EXPORT Problem {
public:
struct CERES_EXPORT Options {
Options()
: cost_function_ownership(TAKE_OWNERSHIP),
loss_function_ownership(TAKE_OWNERSHIP),
local_parameterization_ownership(TAKE_OWNERSHIP),
enable_fast_removal(false),
disable_all_safety_checks(false) {}
// These flags control whether the Problem object owns the cost
// functions, loss functions, and parameterizations passed into
// the Problem. If set to TAKE_OWNERSHIP, then the problem object
// will delete the corresponding cost or loss functions on
// destruction. The destructor is careful to delete the pointers
// only once, since sharing cost/loss/parameterizations is
// allowed.
Ownership cost_function_ownership;
Ownership loss_function_ownership;
Ownership local_parameterization_ownership;
// If true, trades memory for faster RemoveResidualBlock() and
// RemoveParameterBlock() operations.
//
// By default, RemoveParameterBlock() and RemoveResidualBlock() take time
// proportional to the size of the entire problem. If you only ever remove
// parameters or residuals from the problem occassionally, this might be
// acceptable. However, if you have memory to spare, enable this option to
// make RemoveParameterBlock() take time proportional to the number of
// residual blocks that depend on it, and RemoveResidualBlock() take (on
// average) constant time.
//
// The increase in memory usage is twofold: an additonal hash set per
// parameter block containing all the residuals that depend on the parameter
// block; and a hash set in the problem containing all residuals.
bool enable_fast_removal;
// By default, Ceres performs a variety of safety checks when constructing
// the problem. There is a small but measurable performance penalty to
// these checks, typically around 5% of construction time. If you are sure
// your problem construction is correct, and 5% of the problem construction
// time is truly an overhead you want to avoid, then you can set
// disable_all_safety_checks to true.
//
// WARNING: Do not set this to true, unless you are absolutely sure of what
// you are doing.
bool disable_all_safety_checks;
};
// The default constructor is equivalent to the
// invocation Problem(Problem::Options()).
Problem();
explicit Problem(const Options& options);
~Problem();
// Add a residual block to the overall cost function. The cost
// function carries with it information about the sizes of the
// parameter blocks it expects. The function checks that these match
// the sizes of the parameter blocks listed in parameter_blocks. The
// program aborts if a mismatch is detected. loss_function can be
// NULL, in which case the cost of the term is just the squared norm
// of the residuals.
//
// The user has the option of explicitly adding the parameter blocks
// using AddParameterBlock. This causes additional correctness
// checking; however, AddResidualBlock implicitly adds the parameter
// blocks if they are not present, so calling AddParameterBlock
// explicitly is not required.
//
// The Problem object by default takes ownership of the
// cost_function and loss_function pointers. These objects remain
// live for the life of the Problem object. If the user wishes to
// keep control over the destruction of these objects, then they can
// do this by setting the corresponding enums in the Options struct.
//
// Note: Even though the Problem takes ownership of cost_function
// and loss_function, it does not preclude the user from re-using
// them in another residual block. The destructor takes care to call
// delete on each cost_function or loss_function pointer only once,
// regardless of how many residual blocks refer to them.
//
// Example usage:
//
// double x1[] = {1.0, 2.0, 3.0};
// double x2[] = {1.0, 2.0, 5.0, 6.0};
// double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0};
//
// Problem problem;
//
// problem.AddResidualBlock(new MyUnaryCostFunction(...), NULL, x1);
// problem.AddResidualBlock(new MyBinaryCostFunction(...), NULL, x2, x1);
//
ResidualBlockId AddResidualBlock(
CostFunction* cost_function,
LossFunction* loss_function,
const std::vector<double*>& parameter_blocks);
// Convenience methods for adding residuals with a small number of
// parameters. This is the common case. Instead of specifying the
// parameter block arguments as a vector, list them as pointers.
ResidualBlockId AddResidualBlock(CostFunction* cost_function,
LossFunction* loss_function,
double* x0);
ResidualBlockId AddResidualBlock(CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1);
ResidualBlockId AddResidualBlock(CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2);
ResidualBlockId AddResidualBlock(CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2,
double* x3);
ResidualBlockId AddResidualBlock(CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2,
double* x3, double* x4);
ResidualBlockId AddResidualBlock(CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2,
double* x3, double* x4, double* x5);
ResidualBlockId AddResidualBlock(CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2,
double* x3, double* x4, double* x5,
double* x6);
ResidualBlockId AddResidualBlock(CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2,
double* x3, double* x4, double* x5,
double* x6, double* x7);
ResidualBlockId AddResidualBlock(CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2,
double* x3, double* x4, double* x5,
double* x6, double* x7, double* x8);
ResidualBlockId AddResidualBlock(CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2,
double* x3, double* x4, double* x5,
double* x6, double* x7, double* x8,
double* x9);
// Add a parameter block with appropriate size to the problem.
// Repeated calls with the same arguments are ignored. Repeated
// calls with the same double pointer but a different size results
// in undefined behaviour.
void AddParameterBlock(double* values, int size);
// Add a parameter block with appropriate size and parameterization
// to the problem. Repeated calls with the same arguments are
// ignored. Repeated calls with the same double pointer but a
// different size results in undefined behaviour.
void AddParameterBlock(double* values,
int size,
LocalParameterization* local_parameterization);
// Remove a parameter block from the problem. The parameterization of the
// parameter block, if it exists, will persist until the deletion of the
// problem (similar to cost/loss functions in residual block removal). Any
// residual blocks that depend on the parameter are also removed, as
// described above in RemoveResidualBlock().
//
// If Problem::Options::enable_fast_removal is true, then the
// removal is fast (almost constant time). Otherwise, removing a parameter
// block will incur a scan of the entire Problem object.
//
// WARNING: Removing a residual or parameter block will destroy the implicit
// ordering, rendering the jacobian or residuals returned from the solver
// uninterpretable. If you depend on the evaluated jacobian, do not use
// remove! This may change in a future release.
void RemoveParameterBlock(double* values);
// Remove a residual block from the problem. Any parameters that the residual
// block depends on are not removed. The cost and loss functions for the
// residual block will not get deleted immediately; won't happen until the
// problem itself is deleted.
//
// WARNING: Removing a residual or parameter block will destroy the implicit
// ordering, rendering the jacobian or residuals returned from the solver
// uninterpretable. If you depend on the evaluated jacobian, do not use
// remove! This may change in a future release.
void RemoveResidualBlock(ResidualBlockId residual_block);
// Hold the indicated parameter block constant during optimization.
void SetParameterBlockConstant(double* values);
// Allow the indicated parameter block to vary during optimization.
void SetParameterBlockVariable(double* values);
// Returns true if a parameter block is set constant, and false otherwise.
bool IsParameterBlockConstant(double* values) const;
// Set the local parameterization for one of the parameter blocks.
// The local_parameterization is owned by the Problem by default. It
// is acceptable to set the same parameterization for multiple
// parameters; the destructor is careful to delete local
// parameterizations only once. The local parameterization can only
// be set once per parameter, and cannot be changed once set.
void SetParameterization(double* values,
LocalParameterization* local_parameterization);
// Get the local parameterization object associated with this
// parameter block. If there is no parameterization object
// associated then NULL is returned.
const LocalParameterization* GetParameterization(double* values) const;
// Set the lower/upper bound for the parameter with position "index".
void SetParameterLowerBound(double* values, int index, double lower_bound);
void SetParameterUpperBound(double* values, int index, double upper_bound);
// Number of parameter blocks in the problem. Always equals
// parameter_blocks().size() and parameter_block_sizes().size().
int NumParameterBlocks() const;
// The size of the parameter vector obtained by summing over the
// sizes of all the parameter blocks.
int NumParameters() const;
// Number of residual blocks in the problem. Always equals
// residual_blocks().size().
int NumResidualBlocks() const;
// The size of the residual vector obtained by summing over the
// sizes of all of the residual blocks.
int NumResiduals() const;
// The size of the parameter block.
int ParameterBlockSize(const double* values) const;
// The size of local parameterization for the parameter block. If
// there is no local parameterization associated with this parameter
// block, then ParameterBlockLocalSize = ParameterBlockSize.
int ParameterBlockLocalSize(const double* values) const;
// Is the given parameter block present in this problem or not?
bool HasParameterBlock(const double* values) const;
// Fills the passed parameter_blocks vector with pointers to the
// parameter blocks currently in the problem. After this call,
// parameter_block.size() == NumParameterBlocks.
void GetParameterBlocks(std::vector<double*>* parameter_blocks) const;
// Fills the passed residual_blocks vector with pointers to the
// residual blocks currently in the problem. After this call,
// residual_blocks.size() == NumResidualBlocks.
void GetResidualBlocks(std::vector<ResidualBlockId>* residual_blocks) const;
// Get all the parameter blocks that depend on the given residual block.
void GetParameterBlocksForResidualBlock(
const ResidualBlockId residual_block,
std::vector<double*>* parameter_blocks) const;
// Get the CostFunction for the given residual block.
const CostFunction* GetCostFunctionForResidualBlock(
const ResidualBlockId residual_block) const;
// Get the LossFunction for the given residual block. Returns NULL
// if no loss function is associated with this residual block.
const LossFunction* GetLossFunctionForResidualBlock(
const ResidualBlockId residual_block) const;
// Get all the residual blocks that depend on the given parameter block.
//
// If Problem::Options::enable_fast_removal is true, then
// getting the residual blocks is fast and depends only on the number of
// residual blocks. Otherwise, getting the residual blocks for a parameter
// block will incur a scan of the entire Problem object.
void GetResidualBlocksForParameterBlock(
const double* values,
std::vector<ResidualBlockId>* residual_blocks) const;
// Options struct to control Problem::Evaluate.
struct EvaluateOptions {
EvaluateOptions()
: apply_loss_function(true),
num_threads(1) {
}
// The set of parameter blocks for which evaluation should be
// performed. This vector determines the order that parameter
// blocks occur in the gradient vector and in the columns of the
// jacobian matrix. If parameter_blocks is empty, then it is
// assumed to be equal to vector containing ALL the parameter
// blocks. Generally speaking the parameter blocks will occur in
// the order in which they were added to the problem. But, this
// may change if the user removes any parameter blocks from the
// problem.
//
// NOTE: This vector should contain the same pointers as the ones
// used to add parameter blocks to the Problem. These parameter
// block should NOT point to new memory locations. Bad things will
// happen otherwise.
std::vector<double*> parameter_blocks;
// The set of residual blocks to evaluate. This vector determines
// the order in which the residuals occur, and how the rows of the
// jacobian are ordered. If residual_blocks is empty, then it is
// assumed to be equal to the vector containing ALL the residual
// blocks. Generally speaking the residual blocks will occur in
// the order in which they were added to the problem. But, this
// may change if the user removes any residual blocks from the
// problem.
std::vector<ResidualBlockId> residual_blocks;
// Even though the residual blocks in the problem may contain loss
// functions, setting apply_loss_function to false will turn off
// the application of the loss function to the output of the cost
// function. This is of use for example if the user wishes to
// analyse the solution quality by studying the distribution of
// residuals before and after the solve.
bool apply_loss_function;
int num_threads;
};
// Evaluate Problem. Any of the output pointers can be NULL. Which
// residual blocks and parameter blocks are used is controlled by
// the EvaluateOptions struct above.
//
// Note 1: The evaluation will use the values stored in the memory
// locations pointed to by the parameter block pointers used at the
// time of the construction of the problem. i.e.,
//
// Problem problem;
// double x = 1;
// problem.AddResidualBlock(new MyCostFunction, NULL, &x);
//
// double cost = 0.0;
// problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);
//
// The cost is evaluated at x = 1. If you wish to evaluate the
// problem at x = 2, then
//
// x = 2;
// problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);
//
// is the way to do so.
//
// Note 2: If no local parameterizations are used, then the size of
// the gradient vector (and the number of columns in the jacobian)
// is the sum of the sizes of all the parameter blocks. If a
// parameter block has a local parameterization, then it contributes
// "LocalSize" entries to the gradient vector (and the number of
// columns in the jacobian).
//
// Note 3: This function cannot be called while the problem is being
// solved, for example it cannot be called from an IterationCallback
// at the end of an iteration during a solve.
bool Evaluate(const EvaluateOptions& options,
double* cost,
std::vector<double>* residuals,
std::vector<double>* gradient,
CRSMatrix* jacobian);
private:
friend class Solver;
friend class Covariance;
internal::scoped_ptr<internal::ProblemImpl> problem_impl_;
CERES_DISALLOW_COPY_AND_ASSIGN(Problem);
};
} // namespace ceres
#include "ceres/internal/reenable_warnings.h"
#endif // CERES_PUBLIC_PROBLEM_H_
|