This file is indexed.

/usr/include/ceres/rotation.h is in libceres-dev 1.13.0+dfsg0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//         sameeragarwal@google.com (Sameer Agarwal)
//
// Templated functions for manipulating rotations. The templated
// functions are useful when implementing functors for automatic
// differentiation.
//
// In the following, the Quaternions are laid out as 4-vectors, thus:
//
//   q[0]  scalar part.
//   q[1]  coefficient of i.
//   q[2]  coefficient of j.
//   q[3]  coefficient of k.
//
// where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.

#ifndef CERES_PUBLIC_ROTATION_H_
#define CERES_PUBLIC_ROTATION_H_

#include <algorithm>
#include <cmath>
#include <limits>

namespace ceres {

// Trivial wrapper to index linear arrays as matrices, given a fixed
// column and row stride. When an array "T* array" is wrapped by a
//
//   (const) MatrixAdapter<T, row_stride, col_stride> M"
//
// the expression  M(i, j) is equivalent to
//
//   arrary[i * row_stride + j * col_stride]
//
// Conversion functions to and from rotation matrices accept
// MatrixAdapters to permit using row-major and column-major layouts,
// and rotation matrices embedded in larger matrices (such as a 3x4
// projection matrix).
template <typename T, int row_stride, int col_stride>
struct MatrixAdapter;

// Convenience functions to create a MatrixAdapter that treats the
// array pointed to by "pointer" as a 3x3 (contiguous) column-major or
// row-major matrix.
template <typename T>
MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer);

template <typename T>
MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer);

// Convert a value in combined axis-angle representation to a quaternion.
// The value angle_axis is a triple whose norm is an angle in radians,
// and whose direction is aligned with the axis of rotation,
// and quaternion is a 4-tuple that will contain the resulting quaternion.
// The implementation may be used with auto-differentiation up to the first
// derivative, higher derivatives may have unexpected results near the origin.
template<typename T>
void AngleAxisToQuaternion(const T* angle_axis, T* quaternion);

// Convert a quaternion to the equivalent combined axis-angle representation.
// The value quaternion must be a unit quaternion - it is not normalized first,
// and angle_axis will be filled with a value whose norm is the angle of
// rotation in radians, and whose direction is the axis of rotation.
// The implemention may be used with auto-differentiation up to the first
// derivative, higher derivatives may have unexpected results near the origin.
template<typename T>
void QuaternionToAngleAxis(const T* quaternion, T* angle_axis);

// Conversions between 3x3 rotation matrix (in column major order) and
// quaternion rotation representations.  Templated for use with
// autodifferentiation.
template <typename T>
void RotationMatrixToQuaternion(const T* R, T* quaternion);

template <typename T, int row_stride, int col_stride>
void RotationMatrixToQuaternion(
    const MatrixAdapter<const T, row_stride, col_stride>& R,
    T* quaternion);

// Conversions between 3x3 rotation matrix (in column major order) and
// axis-angle rotation representations.  Templated for use with
// autodifferentiation.
template <typename T>
void RotationMatrixToAngleAxis(const T* R, T* angle_axis);

template <typename T, int row_stride, int col_stride>
void RotationMatrixToAngleAxis(
    const MatrixAdapter<const T, row_stride, col_stride>& R,
    T* angle_axis);

template <typename T>
void AngleAxisToRotationMatrix(const T* angle_axis, T* R);

template <typename T, int row_stride, int col_stride>
void AngleAxisToRotationMatrix(
    const T* angle_axis,
    const MatrixAdapter<T, row_stride, col_stride>& R);

// Conversions between 3x3 rotation matrix (in row major order) and
// Euler angle (in degrees) rotation representations.
//
// The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
// axes, respectively.  They are applied in that same order, so the
// total rotation R is Rz * Ry * Rx.
template <typename T>
void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R);

template <typename T, int row_stride, int col_stride>
void EulerAnglesToRotationMatrix(
    const T* euler,
    const MatrixAdapter<T, row_stride, col_stride>& R);

// Convert a 4-vector to a 3x3 scaled rotation matrix.
//
// The choice of rotation is such that the quaternion [1 0 0 0] goes to an
// identity matrix and for small a, b, c the quaternion [1 a b c] goes to
// the matrix
//
//         [  0 -c  b ]
//   I + 2 [  c  0 -a ] + higher order terms
//         [ -b  a  0 ]
//
// which corresponds to a Rodrigues approximation, the last matrix being
// the cross-product matrix of [a b c]. Together with the property that
// R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R.
//
// No normalization of the quaternion is performed, i.e.
// R = ||q||^2 * Q, where Q is an orthonormal matrix
// such that det(Q) = 1 and Q*Q' = I
//
// WARNING: The rotation matrix is ROW MAJOR
template <typename T> inline
void QuaternionToScaledRotation(const T q[4], T R[3 * 3]);

template <typename T, int row_stride, int col_stride> inline
void QuaternionToScaledRotation(
    const T q[4],
    const MatrixAdapter<T, row_stride, col_stride>& R);

// Same as above except that the rotation matrix is normalized by the
// Frobenius norm, so that R * R' = I (and det(R) = 1).
//
// WARNING: The rotation matrix is ROW MAJOR
template <typename T> inline
void QuaternionToRotation(const T q[4], T R[3 * 3]);

template <typename T, int row_stride, int col_stride> inline
void QuaternionToRotation(
    const T q[4],
    const MatrixAdapter<T, row_stride, col_stride>& R);

// Rotates a point pt by a quaternion q:
//
//   result = R(q) * pt
//
// Assumes the quaternion is unit norm. This assumption allows us to
// write the transform as (something)*pt + pt, as is clear from the
// formula below. If you pass in a quaternion with |q|^2 = 2 then you
// WILL NOT get back 2 times the result you get for a unit quaternion.
template <typename T> inline
void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);

// With this function you do not need to assume that q has unit norm.
// It does assume that the norm is non-zero.
template <typename T> inline
void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);

// zw = z * w, where * is the Quaternion product between 4 vectors.
template<typename T> inline
void QuaternionProduct(const T z[4], const T w[4], T zw[4]);

// xy = x cross y;
template<typename T> inline
void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]);

template<typename T> inline
T DotProduct(const T x[3], const T y[3]);

// y = R(angle_axis) * x;
template<typename T> inline
void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]);

// --- IMPLEMENTATION

template<typename T, int row_stride, int col_stride>
struct MatrixAdapter {
  T* pointer_;
  explicit MatrixAdapter(T* pointer)
    : pointer_(pointer)
  {}

  T& operator()(int r, int c) const {
    return pointer_[r * row_stride + c * col_stride];
  }
};

template <typename T>
MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer) {
  return MatrixAdapter<T, 1, 3>(pointer);
}

template <typename T>
MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer) {
  return MatrixAdapter<T, 3, 1>(pointer);
}

template<typename T>
inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) {
  const T& a0 = angle_axis[0];
  const T& a1 = angle_axis[1];
  const T& a2 = angle_axis[2];
  const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;

  // For points not at the origin, the full conversion is numerically stable.
  if (theta_squared > T(0.0)) {
    const T theta = sqrt(theta_squared);
    const T half_theta = theta * T(0.5);
    const T k = sin(half_theta) / theta;
    quaternion[0] = cos(half_theta);
    quaternion[1] = a0 * k;
    quaternion[2] = a1 * k;
    quaternion[3] = a2 * k;
  } else {
    // At the origin, sqrt() will produce NaN in the derivative since
    // the argument is zero.  By approximating with a Taylor series,
    // and truncating at one term, the value and first derivatives will be
    // computed correctly when Jets are used.
    const T k(0.5);
    quaternion[0] = T(1.0);
    quaternion[1] = a0 * k;
    quaternion[2] = a1 * k;
    quaternion[3] = a2 * k;
  }
}

template<typename T>
inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {
  const T& q1 = quaternion[1];
  const T& q2 = quaternion[2];
  const T& q3 = quaternion[3];
  const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3;

  // For quaternions representing non-zero rotation, the conversion
  // is numerically stable.
  if (sin_squared_theta > T(0.0)) {
    const T sin_theta = sqrt(sin_squared_theta);
    const T& cos_theta = quaternion[0];

    // If cos_theta is negative, theta is greater than pi/2, which
    // means that angle for the angle_axis vector which is 2 * theta
    // would be greater than pi.
    //
    // While this will result in the correct rotation, it does not
    // result in a normalized angle-axis vector.
    //
    // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi,
    // which is equivalent saying
    //
    //   theta - pi = atan(sin(theta - pi), cos(theta - pi))
    //              = atan(-sin(theta), -cos(theta))
    //
    const T two_theta =
        T(2.0) * ((cos_theta < 0.0)
                  ? atan2(-sin_theta, -cos_theta)
                  : atan2(sin_theta, cos_theta));
    const T k = two_theta / sin_theta;
    angle_axis[0] = q1 * k;
    angle_axis[1] = q2 * k;
    angle_axis[2] = q3 * k;
  } else {
    // For zero rotation, sqrt() will produce NaN in the derivative since
    // the argument is zero.  By approximating with a Taylor series,
    // and truncating at one term, the value and first derivatives will be
    // computed correctly when Jets are used.
    const T k(2.0);
    angle_axis[0] = q1 * k;
    angle_axis[1] = q2 * k;
    angle_axis[2] = q3 * k;
  }
}

template <typename T>
void RotationMatrixToQuaternion(const T* R, T* angle_axis) {
  RotationMatrixToQuaternion(ColumnMajorAdapter3x3(R), angle_axis);
}

// This algorithm comes from "Quaternion Calculus and Fast Animation",
// Ken Shoemake, 1987 SIGGRAPH course notes
template <typename T, int row_stride, int col_stride>
void RotationMatrixToQuaternion(
    const MatrixAdapter<const T, row_stride, col_stride>& R,
    T* quaternion) {
  const T trace = R(0, 0) + R(1, 1) + R(2, 2);
  if (trace >= 0.0) {
    T t = sqrt(trace + T(1.0));
    quaternion[0] = T(0.5) * t;
    t = T(0.5) / t;
    quaternion[1] = (R(2, 1) - R(1, 2)) * t;
    quaternion[2] = (R(0, 2) - R(2, 0)) * t;
    quaternion[3] = (R(1, 0) - R(0, 1)) * t;
  } else {
    int i = 0;
    if (R(1, 1) > R(0, 0)) {
      i = 1;
    }

    if (R(2, 2) > R(i, i)) {
      i = 2;
    }

    const int j = (i + 1) % 3;
    const int k = (j + 1) % 3;
    T t = sqrt(R(i, i) - R(j, j) - R(k, k) + T(1.0));
    quaternion[i + 1] = T(0.5) * t;
    t = T(0.5) / t;
    quaternion[0] = (R(k, j) - R(j, k)) * t;
    quaternion[j + 1] = (R(j, i) + R(i, j)) * t;
    quaternion[k + 1] = (R(k, i) + R(i, k)) * t;
  }
}

// The conversion of a rotation matrix to the angle-axis form is
// numerically problematic when then rotation angle is close to zero
// or to Pi. The following implementation detects when these two cases
// occurs and deals with them by taking code paths that are guaranteed
// to not perform division by a small number.
template <typename T>
inline void RotationMatrixToAngleAxis(const T* R, T* angle_axis) {
  RotationMatrixToAngleAxis(ColumnMajorAdapter3x3(R), angle_axis);
}

template <typename T, int row_stride, int col_stride>
void RotationMatrixToAngleAxis(
    const MatrixAdapter<const T, row_stride, col_stride>& R,
    T* angle_axis) {
  T quaternion[4];
  RotationMatrixToQuaternion(R, quaternion);
  QuaternionToAngleAxis(quaternion, angle_axis);
  return;
}

template <typename T>
inline void AngleAxisToRotationMatrix(const T* angle_axis, T* R) {
  AngleAxisToRotationMatrix(angle_axis, ColumnMajorAdapter3x3(R));
}

template <typename T, int row_stride, int col_stride>
void AngleAxisToRotationMatrix(
    const T* angle_axis,
    const MatrixAdapter<T, row_stride, col_stride>& R) {
  static const T kOne = T(1.0);
  const T theta2 = DotProduct(angle_axis, angle_axis);
  if (theta2 > T(std::numeric_limits<double>::epsilon())) {
    // We want to be careful to only evaluate the square root if the
    // norm of the angle_axis vector is greater than zero. Otherwise
    // we get a division by zero.
    const T theta = sqrt(theta2);
    const T wx = angle_axis[0] / theta;
    const T wy = angle_axis[1] / theta;
    const T wz = angle_axis[2] / theta;

    const T costheta = cos(theta);
    const T sintheta = sin(theta);

    R(0, 0) =     costheta   + wx*wx*(kOne -    costheta);
    R(1, 0) =  wz*sintheta   + wx*wy*(kOne -    costheta);
    R(2, 0) = -wy*sintheta   + wx*wz*(kOne -    costheta);
    R(0, 1) =  wx*wy*(kOne - costheta)     - wz*sintheta;
    R(1, 1) =     costheta   + wy*wy*(kOne -    costheta);
    R(2, 1) =  wx*sintheta   + wy*wz*(kOne -    costheta);
    R(0, 2) =  wy*sintheta   + wx*wz*(kOne -    costheta);
    R(1, 2) = -wx*sintheta   + wy*wz*(kOne -    costheta);
    R(2, 2) =     costheta   + wz*wz*(kOne -    costheta);
  } else {
    // Near zero, we switch to using the first order Taylor expansion.
    R(0, 0) =  kOne;
    R(1, 0) =  angle_axis[2];
    R(2, 0) = -angle_axis[1];
    R(0, 1) = -angle_axis[2];
    R(1, 1) =  kOne;
    R(2, 1) =  angle_axis[0];
    R(0, 2) =  angle_axis[1];
    R(1, 2) = -angle_axis[0];
    R(2, 2) = kOne;
  }
}

template <typename T>
inline void EulerAnglesToRotationMatrix(const T* euler,
                                        const int row_stride_parameter,
                                        T* R) {
  EulerAnglesToRotationMatrix(euler, RowMajorAdapter3x3(R));
}

template <typename T, int row_stride, int col_stride>
void EulerAnglesToRotationMatrix(
    const T* euler,
    const MatrixAdapter<T, row_stride, col_stride>& R) {
  const double kPi = 3.14159265358979323846;
  const T degrees_to_radians(kPi / 180.0);

  const T pitch(euler[0] * degrees_to_radians);
  const T roll(euler[1] * degrees_to_radians);
  const T yaw(euler[2] * degrees_to_radians);

  const T c1 = cos(yaw);
  const T s1 = sin(yaw);
  const T c2 = cos(roll);
  const T s2 = sin(roll);
  const T c3 = cos(pitch);
  const T s3 = sin(pitch);

  R(0, 0) = c1*c2;
  R(0, 1) = -s1*c3 + c1*s2*s3;
  R(0, 2) = s1*s3 + c1*s2*c3;

  R(1, 0) = s1*c2;
  R(1, 1) = c1*c3 + s1*s2*s3;
  R(1, 2) = -c1*s3 + s1*s2*c3;

  R(2, 0) = -s2;
  R(2, 1) = c2*s3;
  R(2, 2) = c2*c3;
}

template <typename T> inline
void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) {
  QuaternionToScaledRotation(q, RowMajorAdapter3x3(R));
}

template <typename T, int row_stride, int col_stride> inline
void QuaternionToScaledRotation(
    const T q[4],
    const MatrixAdapter<T, row_stride, col_stride>& R) {
  // Make convenient names for elements of q.
  T a = q[0];
  T b = q[1];
  T c = q[2];
  T d = q[3];
  // This is not to eliminate common sub-expression, but to
  // make the lines shorter so that they fit in 80 columns!
  T aa = a * a;
  T ab = a * b;
  T ac = a * c;
  T ad = a * d;
  T bb = b * b;
  T bc = b * c;
  T bd = b * d;
  T cc = c * c;
  T cd = c * d;
  T dd = d * d;

  R(0, 0) = aa + bb - cc - dd; R(0, 1) = T(2) * (bc - ad);  R(0, 2) = T(2) * (ac + bd);  // NOLINT
  R(1, 0) = T(2) * (ad + bc);  R(1, 1) = aa - bb + cc - dd; R(1, 2) = T(2) * (cd - ab);  // NOLINT
  R(2, 0) = T(2) * (bd - ac);  R(2, 1) = T(2) * (ab + cd);  R(2, 2) = aa - bb - cc + dd; // NOLINT
}

template <typename T> inline
void QuaternionToRotation(const T q[4], T R[3 * 3]) {
  QuaternionToRotation(q, RowMajorAdapter3x3(R));
}

template <typename T, int row_stride, int col_stride> inline
void QuaternionToRotation(const T q[4],
                          const MatrixAdapter<T, row_stride, col_stride>& R) {
  QuaternionToScaledRotation(q, R);

  T normalizer = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
  normalizer = T(1) / normalizer;

  for (int i = 0; i < 3; ++i) {
    for (int j = 0; j < 3; ++j) {
      R(i, j) *= normalizer;
    }
  }
}

template <typename T> inline
void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
  const T t2 =  q[0] * q[1];
  const T t3 =  q[0] * q[2];
  const T t4 =  q[0] * q[3];
  const T t5 = -q[1] * q[1];
  const T t6 =  q[1] * q[2];
  const T t7 =  q[1] * q[3];
  const T t8 = -q[2] * q[2];
  const T t9 =  q[2] * q[3];
  const T t1 = -q[3] * q[3];
  result[0] = T(2) * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0];  // NOLINT
  result[1] = T(2) * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1];  // NOLINT
  result[2] = T(2) * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2];  // NOLINT
}

template <typename T> inline
void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
  // 'scale' is 1 / norm(q).
  const T scale = T(1) / sqrt(q[0] * q[0] +
                              q[1] * q[1] +
                              q[2] * q[2] +
                              q[3] * q[3]);

  // Make unit-norm version of q.
  const T unit[4] = {
    scale * q[0],
    scale * q[1],
    scale * q[2],
    scale * q[3],
  };

  UnitQuaternionRotatePoint(unit, pt, result);
}

template<typename T> inline
void QuaternionProduct(const T z[4], const T w[4], T zw[4]) {
  zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];
  zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];
  zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];
  zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];
}

// xy = x cross y;
template<typename T> inline
void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) {
  x_cross_y[0] = x[1] * y[2] - x[2] * y[1];
  x_cross_y[1] = x[2] * y[0] - x[0] * y[2];
  x_cross_y[2] = x[0] * y[1] - x[1] * y[0];
}

template<typename T> inline
T DotProduct(const T x[3], const T y[3]) {
  return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
}

template<typename T> inline
void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) {
  const T theta2 = DotProduct(angle_axis, angle_axis);
  if (theta2 > T(std::numeric_limits<double>::epsilon())) {
    // Away from zero, use the rodriguez formula
    //
    //   result = pt costheta +
    //            (w x pt) * sintheta +
    //            w (w . pt) (1 - costheta)
    //
    // We want to be careful to only evaluate the square root if the
    // norm of the angle_axis vector is greater than zero. Otherwise
    // we get a division by zero.
    //
    const T theta = sqrt(theta2);
    const T costheta = cos(theta);
    const T sintheta = sin(theta);
    const T theta_inverse = T(1.0) / theta;

    const T w[3] = { angle_axis[0] * theta_inverse,
                     angle_axis[1] * theta_inverse,
                     angle_axis[2] * theta_inverse };

    // Explicitly inlined evaluation of the cross product for
    // performance reasons.
    const T w_cross_pt[3] = { w[1] * pt[2] - w[2] * pt[1],
                              w[2] * pt[0] - w[0] * pt[2],
                              w[0] * pt[1] - w[1] * pt[0] };
    const T tmp =
        (w[0] * pt[0] + w[1] * pt[1] + w[2] * pt[2]) * (T(1.0) - costheta);

    result[0] = pt[0] * costheta + w_cross_pt[0] * sintheta + w[0] * tmp;
    result[1] = pt[1] * costheta + w_cross_pt[1] * sintheta + w[1] * tmp;
    result[2] = pt[2] * costheta + w_cross_pt[2] * sintheta + w[2] * tmp;
  } else {
    // Near zero, the first order Taylor approximation of the rotation
    // matrix R corresponding to a vector w and angle w is
    //
    //   R = I + hat(w) * sin(theta)
    //
    // But sintheta ~ theta and theta * w = angle_axis, which gives us
    //
    //  R = I + hat(w)
    //
    // and actually performing multiplication with the point pt, gives us
    // R * pt = pt + w x pt.
    //
    // Switching to the Taylor expansion near zero provides meaningful
    // derivatives when evaluated using Jets.
    //
    // Explicitly inlined evaluation of the cross product for
    // performance reasons.
    const T w_cross_pt[3] = { angle_axis[1] * pt[2] - angle_axis[2] * pt[1],
                              angle_axis[2] * pt[0] - angle_axis[0] * pt[2],
                              angle_axis[0] * pt[1] - angle_axis[1] * pt[0] };

    result[0] = pt[0] + w_cross_pt[0];
    result[1] = pt[1] + w_cross_pt[1];
    result[2] = pt[2] + w_cross_pt[2];
  }
}

}  // namespace ceres

#endif  // CERES_PUBLIC_ROTATION_H_