This file is indexed.

/usr/include/CGAL/Arr_accessor.h is in libcgal-dev 4.11-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
// Copyright (c) 2006,2007,2009,2010,2011 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Ron Wein          <wein@post.tau.ac.il>
//                 Efi Fogel         <efif@post.tau.ac.il>

#ifndef CGAL_ARR_ACCESSOR_H
#define CGAL_ARR_ACCESSOR_H

#include <CGAL/license/Arrangement_on_surface_2.h>


/*! \file
 * Definition of the Arr_accessor<Arrangement> class.
 */

#include <CGAL/Arrangement_2/Arr_traits_adaptor_2.h>

namespace CGAL {

/*! \class
 * A class that provides access to some of the internal arrangement operations.
 * Used mostly by the global insertion functions and by the sweep-line visitors
 * for utilizing topological and geometrical information available during the
 * algorithms they perform.
 * The Arrangement parameter corresponds to an arrangement instantiation
 * (of the template Arrangement_on_surface_2).
 */
template <typename Arrangement_>
class Arr_accessor {
public:
  typedef Arrangement_                                  Arrangement_2;
  typedef Arr_accessor<Arrangement_2>                   Self;

  typedef typename Arrangement_2::Size                  Size;
  typedef typename Arrangement_2::Point_2               Point_2;
  typedef typename Arrangement_2::X_monotone_curve_2    X_monotone_curve_2;

  typedef typename Arrangement_2::Vertex_handle         Vertex_handle;
  typedef typename Arrangement_2::Vertex_const_handle   Vertex_const_handle;
  typedef typename Arrangement_2::Halfedge_handle       Halfedge_handle;
  typedef typename Arrangement_2::Halfedge_const_handle Halfedge_const_handle;
  typedef typename Arrangement_2::Face_handle           Face_handle;
  typedef typename Arrangement_2::Face_const_handle     Face_const_handle;
  typedef typename Arrangement_2::Ccb_halfedge_circulator
                                                        Ccb_halfedge_circulator;

private:
  typedef typename Arrangement_2::DVertex               DVertex;
  typedef typename Arrangement_2::DHalfedge             DHalfedge;
  typedef typename Arrangement_2::DFace                 DFace;
  typedef typename Arrangement_2::DOuter_ccb            DOuter_ccb;
  typedef typename Arrangement_2::DInner_ccb            DInner_ccb;
  typedef typename Arrangement_2::DIso_vertex           DIso_vertex;

private:
  Arrangement_2* p_arr;           // The associated arrangement.

public:

  /*! Constructor with an associated arrangement. */
  Arr_accessor(Arrangement_2& arr) : p_arr(&arr) {}

  /* Get the arrangement. */
  Arrangement_2& arrangement() { return (*p_arr); }

  /* Get the arrangement (const version). */
  const Arrangement_2& arrangement() const { return (*p_arr); }

  /// \name Accessing the notification functions (for the global functions).
  //@{

  /*! Notify that a global operation is about to take place. */
  void notify_before_global_change() { p_arr->_notify_before_global_change(); }

  /*! Notify that a global operation was completed. */
  void notify_after_global_change() { p_arr->_notify_after_global_change(); }
  //@}

  /// \name Local operations and predicates for the arrangement.
  //@{

  /*!
   * Locate the arrangement feature that contains the given curve-end.
   * \param cv The curve.
   * \param ind ARR_MIN_END if we refer to cv's minimal end;
   *            ARR_MAX_END if we refer to its maximal end.
   * \param ps_x The boundary condition in x.
   * \param ps_y The boundary condition in y.
   * \pre The relevant end of cv has boundary conditions in x or in y.
   * \return An object that contains the curve end.
   *         This object may wrap a Face_const_handle (the general case),
   *         or a Halfedge_const_handle (in case of an overlap).
   */
  CGAL::Object locate_curve_end(const X_monotone_curve_2& cv,
                                Arr_curve_end ind,
                                Arr_parameter_space ps_x,
                                Arr_parameter_space ps_y) const
  {
    CGAL_precondition((ps_x != ARR_INTERIOR) || (ps_y != ARR_INTERIOR));

    // Use the topology traits to locate the unbounded curve end.
    CGAL::Object obj =
      p_arr->topology_traits()->locate_curve_end(cv, ind, ps_x, ps_y);

    // Return a handle to the DCEL feature.
    DFace* f;
    if (CGAL::assign(f, obj))
      return (CGAL::make_object(p_arr->_const_handle_for(f)));

    DHalfedge* he;
    if (CGAL::assign(he, obj))
      return (CGAL::make_object(p_arr->_const_handle_for(he)));

    DVertex* v;
    if (CGAL::assign(v, obj))
      return (CGAL::make_object(p_arr->_const_handle_for(v)));

    // We should never reach here:
    CGAL_error();
    return Object();
  }

  /*!
   * Locate the place for the given curve around the given vertex.
   * \param vh A handle for the arrangement vertex.
   * \param cv The given x-monotone curve.
   * \pre v is one of cv's endpoints.
   * \return A handle for a halfedge whose target is v, where cv should be
   *         inserted between this halfedge and the next halfedge around this
   *         vertex (in a clockwise order).
   */
  Halfedge_handle locate_around_vertex(Vertex_handle vh,
                                       const X_monotone_curve_2& cv) const
  {
    typedef
      Arr_traits_basic_adaptor_2<typename Arrangement_2::Geometry_traits_2>
      Traits_adaptor_2;

    const Traits_adaptor_2* m_traits = 
      static_cast<const Traits_adaptor_2*> (p_arr->geometry_traits());

    Arr_curve_end ind = ARR_MIN_END;

    if (m_traits->is_closed_2_object() (cv, ARR_MAX_END) &&
        m_traits->equal_2_object()
        (vh->point(), m_traits->construct_max_vertex_2_object()(cv)))
    {
      ind = ARR_MAX_END;
    }

    DHalfedge* he = p_arr->_locate_around_vertex(p_arr->_vertex (vh), cv, ind);

    CGAL_assertion(he != NULL);
    return (p_arr->_handle_for (he));
  }

  /*!
   * Locate the place for the given curve-end around the given vertex,
   * which lies on the boundary.
   * \param vh A handle for the arrangement vertex.
   * \param cv The curve.
   * \param ind ARR_MIN_END if we refer to cv's minimal end;
   *            ARR_MAX_END if we refer to its maximal end.
   * \param ps_x The boundary condition in x.
   * \param ps_y The boundary condition in y.
   * \pre The relevant end of cv has boundary conditions in x or in y.
   * \return A handle for a halfedge whose target is v, where cv should be
   *         inserted between this halfedge and the next halfedge around this
   *         vertex (in a clockwise order).
   */
  Halfedge_handle
      locate_around_boundary_vertex(Vertex_handle vh,
                                    const X_monotone_curve_2& cv,
                                    Arr_curve_end ind,
                                    Arr_parameter_space ps_x,
                                    Arr_parameter_space ps_y) const
  {
    CGAL_precondition((ps_x != ARR_INTERIOR) || (ps_y != ARR_INTERIOR));

    // Use the topology traits to locate the unbounded curve end.
    DHalfedge* he = p_arr->topology_traits()->
      locate_around_boundary_vertex(p_arr->_vertex (vh), cv, ind, ps_x, ps_y);

    CGAL_assertion(he != NULL);
    return (p_arr->_handle_for (he));
  }

  /*!
   * Compute the distance (in halfedges) between two halfedges.
   * \param e1 A handle for the source halfedge.
   * \param e2 A handle for the destination halfedge.
   * \return In case e1 and e2 belong to the same connected component, the 
   *         function returns number of boundary halfedges between the two 
   *         halfedges. Otherwise, it returns (-1).
   */
  int halfedge_distance(Halfedge_const_handle e1,
                        Halfedge_const_handle e2) const
  {
    // If the two halfedges do not belong to the same component, return (-1).
    const DHalfedge* he1 = p_arr->_halfedge(e1);
    const DHalfedge* he2 = p_arr->_halfedge(e2);
    
    if (he1 == he2) return (0);

    const DInner_ccb* ic1 = (he1->is_on_inner_ccb()) ? he1->inner_ccb() : NULL;
    const DOuter_ccb* oc1 = (ic1 == NULL) ? he1->outer_ccb() : NULL;
    const DInner_ccb* ic2 = (he2->is_on_inner_ccb()) ? he2->inner_ccb() : NULL;
    const DOuter_ccb* oc2 = (ic2 == NULL) ? he2->outer_ccb() : NULL;

    if ((oc1 != oc2) || (ic1 != ic2)) return (-1);

    // Compute the distance between the two halfedges.
    unsigned int dist = p_arr->_halfedge_distance(he1, he2);
    return (static_cast<int>(dist));
  }

  /*!
   * Determine whether a given query halfedge lies in the interior of a new
   * face we are about to create, by connecting it with another halfedge
   * using a given x-monotone curve.
   * \param prev1 A handle for the query halfedge.
   * \param prev2 The other halfedge we are about to connect with prev1.
   * \param cv The x-monotone curve we use to connect prev1 and prev2.
   * \pre prev1 and prev2 belong to the same connected component, and by
   *      connecting them using cv we form a new face.
   * \return (true) if prev1 lies in the interior of the face we are about
   *         to create, (false) otherwise - in which case prev2 must lie
   *         inside this new face.
   */
  bool defines_outer_ccb_of_new_face(Halfedge_handle prev1,
                                     Halfedge_handle prev2,
                                     const X_monotone_curve_2& cv) const
  {
    return (p_arr->_defines_outer_ccb_of_new_face(p_arr->_halfedge (prev1),
                                                  p_arr->_halfedge (prev2),
                                                  cv));
  }

  /*!
   * Check if the given vertex represents one of the ends of a given curve.
   * \param v The vertex.
   * \param cv The curve.
   * \param ind ARR_MIN_END if we refer to cv's minimal end;
   *            ARR_MAX_END if we refer to its maximal end.
   * \param ps_x The boundary condition of the curve end in x.
   * \param ps_y The boundary condition of the curve end in y.
   * \return Whether v represents the left (or right) end of cv.
   */
  bool are_equal(Vertex_const_handle v,
                 const X_monotone_curve_2& cv, Arr_curve_end ind,
                 Arr_parameter_space ps_x, Arr_parameter_space ps_y) const
  {
    return (p_arr->topology_traits()->are_equal(p_arr->_vertex (v),
                                                cv, ind, ps_x, ps_y));
  }

  /*!
   * Check whether the given halfedge lies on the outer boundary of its
   * incident face.
   * \param he The given halfedge.
   * \return (true) in case he lies on the outer boundary of its incident face;
   *         (false) if he lies on a hole inside this face.
   */
  bool is_on_outer_boundary(Halfedge_const_handle he) const
  {
    const DHalfedge* p_he = p_arr->_halfedge(he);
    return (! p_he->is_on_inner_ccb());
  }

  /*!
   * Check whether the given halfedge lies on the inner boundary of its
   * incident face.
   * \param he The given halfedge.
   * \return (true) in case he lies on a hole inside its incident face;
   *         (false) if he lies on the outer boundary of this face.
   */
  bool is_on_inner_boundary(Halfedge_const_handle he) const
  {
    const DHalfedge* p_he = p_arr->_halfedge (he);
    return (p_he->is_on_inner_ccb());
  }

  /*!
   * Create a new vertex and associate it with the given point.
   * \param p The point.
   * \return A handle for the newly created vertex.
   */
  Vertex_handle create_vertex(const Point_2& p)
  {
    DVertex* v = p_arr->_create_vertex (p);
    CGAL_assertion(v != NULL);
    return (p_arr->_handle_for (v));
  }
  
  /*!
   * Create a new boundary vertex.
   * \param cv The curve incident to the boundary.
   * \param ind The relevant curve-end.
   * \param ps_x The boundary condition in x.
   * \param by The boundary condition in y.
   * \param notify Should we send a notification to the topology traits
   *               on the creation of the vertex (true by default).
   * \pre Either ps_x or by does not equal ARR_INTERIOR.
   * \return A handle for the newly created vertex.
   */
  Vertex_handle create_boundary_vertex(const X_monotone_curve_2& cv,
                                       Arr_curve_end ind,
                                       Arr_parameter_space ps_x,
                                       Arr_parameter_space ps_y,
                                       bool notify = true)
  {
    DVertex* v = p_arr->_create_boundary_vertex (cv, ind, ps_x, ps_y);

    CGAL_assertion(v != NULL);

    // Notify the topology traits on the creation of the boundary vertex.
    if (notify)
      p_arr->topology_traits()->notify_on_boundary_vertex_creation(v, cv, ind,
                                                                   ps_x, ps_y);
    return (p_arr->_handle_for(v));
  }

  /*!
   * Locate the arrangement features that will be used for inserting the
   * given curve end, which has a boundary condition, and set a proper vertex
   * there.
   * \param f The face that contains the curve end.
   * \param cv The x-monotone curve.
   * \param ind The curve end.
   * \param ps_x The boundary condition at the x-coordinate.
   * \param ps_y The boundary condition at the y-coordinate.
   * \return A pair of <Vertex_handle, Halfedge_handle>:
   *         The first element is the vertex that corresponds to the curve end.
   *         The second is its predecessor halfedge (if valid).
   */
  std::pair<Vertex_handle, Halfedge_handle>
  place_and_set_curve_end(Face_handle f,
                          const X_monotone_curve_2& cv, Arr_curve_end ind,
                          Arr_parameter_space ps_x, Arr_parameter_space ps_y)
  {
    DHalfedge* pred;
    DVertex* v = p_arr->_place_and_set_curve_end(p_arr->_face (f), cv, ind,
                                                 ps_x, ps_y, &pred);

    if (pred == NULL)
      // No predecessor halfedge, return just the vertex:
      return (std::make_pair(p_arr->_handle_for(v), Halfedge_handle()));

    // Return a pair of the vertex and predecessor halfedge:
    return (std::make_pair(p_arr->_handle_for(v), p_arr->_handle_for(pred)));
  }

  /*!
   * Insert an x-monotone curve into the arrangement, where the end vertices
   * are given by the target points of two given halfedges.
   * The two halfedges should be given such that in case a new face is formed,
   * it will be the incident face of the halfedge directed from the first
   * vertex to the second vertex.
   * \param he_to The reference halfedge pointing to the first vertex.
   * \param cv the given curve.
   * \param cv_dir the direction of the curve
   * \param he_away The reference halfedge pointing away from the second vertex.
   * \param new_face Output - whether a new face has been created.
   * \param swapped_predecessors Output - whether roles of prev1 and prev2 have
   *        been switched
   * \param allow_swap_of_predecessors - set to false if no swapping should
   *        take place at all
   * \return A handle for one of the halfedges corresponding to the inserted
   *         curve directed from prev1's target to prev2's target.
   *         In case a new face has been created, it is given as the incident
   *         face of this halfedge.
   */
  Halfedge_handle insert_at_vertices_ex(Halfedge_handle he_to, 
                                        const X_monotone_curve_2& cv,
                                        Arr_halfedge_direction cv_dir,
                                        Halfedge_handle he_away,
                                        bool& new_face,
                                        bool& swapped_predecessors,
                                        bool allow_swap_of_predecessors = true)
  {
    DHalfedge* he = p_arr->_insert_at_vertices(p_arr->_halfedge (he_to),
                                               cv, cv_dir,
                                               p_arr->_halfedge (he_away),
                                               new_face, swapped_predecessors,
                                               allow_swap_of_predecessors);

    CGAL_assertion(he != NULL);
    return (p_arr->_handle_for(he));
  }

  /*!
   * Insert an x-monotone curve into the arrangement, such that one of its
   * endpoints corresponds to a given arrangement vertex, given the exact
   * place for the curve in the circular list around this vertex. The other
   * endpoint corrsponds to a free vertex (a newly created vertex or an
   * isolated vertex).
   * \param he_to The reference halfedge. We should represent cv as a pair
   *              of edges, one of them should become he_to's successor.
   * \param cv The given x-monotone curve.
   * \param cv_dir The direction of the curve.
   * \param v The free vertex that corresponds to the other endpoint.
   * \return A handle to one of the halfedges corresponding to the inserted
   *         curve, whose target is the vertex v.
   */
  Halfedge_handle insert_from_vertex_ex(Halfedge_handle he_to,
                                        const X_monotone_curve_2& cv,
                                        Arr_halfedge_direction cv_dir, 
                                        Vertex_handle v)
  {
    DVertex* p_v = p_arr->_vertex(v);
    if (p_v->is_isolated()) {
      // Remove the isolated vertex record, which will not be isolated any
      // more.
      DIso_vertex* iv = p_v->isolated_vertex();
      DFace* f = iv->face();

      f->erase_isolated_vertex (iv);
      p_arr->_dcel().delete_isolated_vertex(iv);
    }

    DHalfedge* he =
      p_arr->_insert_from_vertex(p_arr->_halfedge(he_to), cv, cv_dir, p_v);

    CGAL_assertion(he != NULL);
    return (p_arr->_handle_for (he));
  }

  /*!
   * Insert an x-monotone curve into the arrangement, such that both its
   * endpoints correspond to free arrangement vertices (newly created vertices
   * or existing isolated vertices), so a new hole is formed in the face
   * that contains the two vertices.
   * \param f The face containing the two end vertices.
   * \param cv The given x-monotone curve.
   * \param cv_dir The direction of the curve.
   * \param v1 The free vertex that corresponds to the left endpoint of cv.
   * \param v2 The free vertex that corresponds to the right endpoint of cv.
   * \return A handle to one of the halfedges corresponding to the inserted
   *         curve, directed from v1 to v2.
   */
  Halfedge_handle insert_in_face_interior_ex(Face_handle f,
                                             const X_monotone_curve_2& cv,
                                             Arr_halfedge_direction cv_dir, 
                                             Vertex_handle v1,
                                             Vertex_handle v2)
  {
    DVertex* p_v1 = p_arr->_vertex (v1);
    DVertex* p_v2 = p_arr->_vertex (v2);

    if (p_v1->is_isolated()) {
      // Remove the isolated vertex record, which will not be isolated any
      // more.
      DIso_vertex* iv1 = p_v1->isolated_vertex();
      DFace* f1 = iv1->face();
      f1->erase_isolated_vertex(iv1);
      p_arr->_dcel().delete_isolated_vertex(iv1);
    }

    if (p_v2->is_isolated()) {
      // Remove the isolated vertex record, which will not be isolated any
      // more.
      DIso_vertex* iv2 = p_v2->isolated_vertex();
      DFace* f2 = iv2->face();
      f2->erase_isolated_vertex(iv2);
      p_arr->_dcel().delete_isolated_vertex(iv2);
    }

    DHalfedge* he = p_arr->_insert_in_face_interior(p_arr->_face (f),
                                                    cv, cv_dir, p_v1, p_v2);

    CGAL_assertion(he != NULL);
    return (p_arr->_handle_for (he));
  
  }

  /*!
   * Insert the given vertex as an isolated vertex inside the given face.
   * \param f The face that should contain the isolated vertex.
   * \param v The isolated vertex.
   */
  void insert_isolated_vertex(Face_handle f, Vertex_handle v)
  { p_arr->_insert_isolated_vertex(p_arr->_face (f), p_arr->_vertex(v)); }
  
  /*!
   * Relocate all holes and isolated vertices to their proper position,
   * immediately after a face has split due to the insertion of a new halfedge.
   * In case insert_at_vertices_ex() was invoked and indicated that a new face
   * has been created, this function should be called with the halfedge
   * returned by insert_at_vertices_ex().
   * \param new_he The new halfedge that caused the split, such that the new
   *               face lies to its left and the old face to its right.
   */
  void relocate_in_new_face(Halfedge_handle new_he)
  { p_arr->_relocate_in_new_face (p_arr->_halfedge (new_he)); }

  void relocate_isolated_vertices_in_new_face(Halfedge_handle new_he)
  {
    p_arr->_relocate_isolated_vertices_in_new_face(p_arr->_halfedge(new_he));
  }

  void relocate_holes_in_new_face(Halfedge_handle new_he)
  { p_arr->_relocate_holes_in_new_face(p_arr->_halfedge(new_he)); }

  /*!
   * Move an outer CCB from one face to another.
   * \param from_face The source face.
   * \param to_face The destination face.
   * \param ccb A CCB circulator that corresponds to component to move.
   */
  void move_outer_ccb(Face_handle from_face, Face_handle to_face,
                      Ccb_halfedge_circulator ccb)
  {
    p_arr->_move_outer_ccb(p_arr->_face(from_face), p_arr->_face(to_face),
                           p_arr->_halfedge (ccb));
  }

  /*!
   * Move an inner CCB from one face to another.
   * \param from_face The source face.
   * \param to_face The destination face.
   * \param ccb A CCB circulator that corresponds to component to move.
   */
  void move_inner_ccb (Face_handle from_face, Face_handle to_face,
                       Ccb_halfedge_circulator ccb)
  {
    p_arr->_move_inner_ccb(p_arr->_face(from_face), p_arr->_face(to_face),
                           p_arr->_halfedge(ccb));
  }
  
  /*!
   * Move an isolated vertex from one face to another.
   * \param from_face The source face.
   * \param to_face The destination face.
   * \param v The isolated vertex to move.
   */
  void move_isolated_vertex(Face_handle from_face, Face_handle to_face,
                            Vertex_handle v)
  {
    p_arr->_move_isolated_vertex(p_arr->_face(from_face),
                                 p_arr->_face(to_face), p_arr->_vertex(v));
  }

  /*!
   * Remove an isolated vertex from its face.
   * \param v The isolated vertex to remove.
   */
  void remove_isolated_vertex_ex (Vertex_handle v)
  {
    CGAL_precondition(v->is_isolated());
    DVertex* iso_v = p_arr->_vertex(v);
    p_arr->_remove_isolated_vertex(iso_v);
  }

  /*!
   * Modify the point associated with a given vertex. The point may be
   * geometrically different than the one currently associated with the vertex.
   * \param v The vertex to modify.
   * \param p The new point to associate with v.
   * \return A handle for the modified vertex (same as v).
   */
  Vertex_handle modify_vertex_ex(Vertex_handle v, const Point_2& p)
  {
    p_arr->_modify_vertex(p_arr->_vertex(v), p);
    return v;
  }
        
  /*!
   * Modify the x-monotone curve associated with a given edge. The curve may be
   * geometrically different than the one currently associated with the edge.
   * \param e The edge to modify.
   * \param cv The new x-monotone curve to associate with e.
   * \return A handle for the modified edge (same as e).
   */
  Halfedge_handle modify_edge_ex(Halfedge_handle e,
                                 const X_monotone_curve_2& cv)
  {
    p_arr->_modify_edge(p_arr->_halfedge (e), cv);
    return e;
  }
          
  /*!
   * Split a given edge into two at a given point, and associate the given
   * x-monotone curves with the split edges.
   * \param e The edge to split (one of the pair of twin halfegdes).
   * \param p The split point.
   * \param cv1 The curve that should be associated with the first split edge,
   *            whose source equals e's source and its target is p.
   * \param cv2 The curve that should be associated with the second split edge,
   *            whose source is p and its target equals e's target.
   * \return A handle for the first split halfedge, whose source equals the
   *         source of e, and whose target is the split point.
   */
  Halfedge_handle split_edge_ex(Halfedge_handle e, const Point_2& p,
                                const X_monotone_curve_2& cv1, 
                                const X_monotone_curve_2& cv2)
  {
    DHalfedge* he = p_arr->_split_edge (p_arr->_halfedge(e), p, cv1, cv2);

    CGAL_assertion(he != NULL);
    return (p_arr->_handle_for(he));
  }

  /*!
   * Split a given edge into two at the given vertex, and associate the given
   * x-monotone curves with the split edges.
   * \param e The edge to split (one of the pair of twin halfegdes).
   * \param v The split vertex.
   * \param cv1 The curve that should be associated with the first split edge,
   *            whose source equals e's source and its target is v's point.
   * \param cv2 The curve that should be associated with the second split edge,
   *            whose source is v's point and its target equals e's target.
   * \return A handle for the first split halfedge, whose source equals the
   *         source of e, and whose target is the split vertex v.
   */
  Halfedge_handle split_edge_ex(Halfedge_handle e, Vertex_handle v,
                                const X_monotone_curve_2& cv1,
                                const X_monotone_curve_2& cv2)
  {
    DHalfedge* he = p_arr->_split_edge(p_arr->_halfedge(e), p_arr->_vertex(v),
                                       cv1, cv2);

    CGAL_assertion (he != NULL);
    return (p_arr->_handle_for(he));
  }

  /*!
   * Split a fictitious edge at the given vertex.
   * \param e The edge to split (one of the pair of twin halfegdes).
   * \param v The split vertex.
   * \return A handle for the first split halfedge, whose source equals the
   *         source of e, and whose target is the split vertex v.
   */
  Halfedge_handle split_fictitious_edge(Halfedge_handle e, Vertex_handle v)
  {
    CGAL_precondition(e->is_fictitious());
    DHalfedge* he =  
      p_arr->topology_traits()->split_fictitious_edge(p_arr->_halfedge(e),
                                                      p_arr->_vertex(v));
    return (p_arr->_handle_for(he));
  }

  /*!
   * Remove a pair of twin halfedges from the arrangement.
   * \param e A handle for one of the halfedges to be removed.
   * \param remove_source Should the source vertex of e be removed if it
   *                      becomes isolated (true by default).
   * \param remove_target Should the target vertex of e be removed if it
   *                      becomes isolated (true by default).
   * \pre In case the removal causes the creation of a new hole, e should 
   *      point at this hole.
   * \return A handle for the remaining face.
   */
  Face_handle remove_edge_ex(Halfedge_handle e,
                             bool remove_source = true,
                             bool remove_target = true)
  {
    DFace* f =
      p_arr->_remove_edge(p_arr->_halfedge (e), remove_source, remove_target);
    CGAL_assertion(f != NULL);
    return (p_arr->_handle_for(f));
  }

  /*!
   * Check if the two given halfedges lie on the same inner component.
   * \param e1 A handle for the first halfedge.
   * \param e2 A handle for the second halfedge.
   * \return Whether e1 and e2 lie on the same inner component.
   */
  bool are_on_same_inner_component(Halfedge_handle e1, Halfedge_handle e2)
  {
     DHalfedge* he1 = p_arr->_halfedge(e1);
     DHalfedge* he2 = p_arr->_halfedge(e2);
    const DInner_ccb* ic1 = (he1->is_on_inner_ccb()) ? he1->inner_ccb() : NULL;
    if (ic1 == NULL) return (false);
    const DInner_ccb* ic2 = (he2->is_on_inner_ccb()) ? he2->inner_ccb() : NULL;
    return (ic1 == ic2);
  }

  /*!
   * Check if the two given halfedges lie on the same outer component.
   * \param e1 A handle for the first halfedge.
   * \param e2 A handle for the second halfedge.
   * \return Whether e1 and e2 lie on the same outer component.
   */
  bool are_on_same_outer_component(Halfedge_handle e1, Halfedge_handle e2)
  {
     DHalfedge* he1 = p_arr->_halfedge(e1);
     DHalfedge* he2 = p_arr->_halfedge(e2);
    const DOuter_ccb* oc1 = (he1->is_on_outer_ccb()) ? he1->outer_ccb() : NULL;
    if (oc1 == NULL) return (false);
    const DOuter_ccb* oc2 = (he2->is_on_outer_ccb()) ? he2->outer_ccb() : NULL;
    return (oc1 == oc2);
  }
  //@}

  /// \name Traversal methods for the BOOST graph traits.
  //@{

  /*! \class
   * An iterator for traversing all arrangement vertices, including vertices
   * at infinity (not including fictitious vertices).
   */
  typedef typename Arrangement_2::_Is_valid_vertex       Is_valid_vertex;
  typedef typename Arrangement_2::_Valid_vertex_iterator Valid_vertex_iterator;

  /*! Get an iterator for the first valid arrangement vertex. */
  Valid_vertex_iterator valid_vertices_begin()
  { 
    return (Valid_vertex_iterator
            (p_arr->topology_traits()->dcel().vertices_begin(),
             p_arr->topology_traits()->dcel().vertices_end(),
             Is_valid_vertex (p_arr->topology_traits()))); 
  }

  /*! Get a past-the-end iterator for the valid arrangement vertices. */
  Valid_vertex_iterator valid_vertices_end()
  { 
    return (Valid_vertex_iterator
            (p_arr->topology_traits()->dcel().vertices_end(),
             p_arr->topology_traits()->dcel().vertices_end(),
             Is_valid_vertex (p_arr->topology_traits()))); 
  }

  /*! Get the number of valid arrangement vertices. */
  Size number_of_valid_vertices() const
  {
    return (p_arr->topology_traits()->number_of_valid_vertices());
  }
  //@}

  /// \name Functions used by the arrangement reader and writer.
  //@{
  typedef typename Arrangement_2::Dcel                Dcel;
  typedef typename Arrangement_2::DVertex_const_iter  Dcel_vertex_iterator;
  typedef typename Arrangement_2::DEdge_const_iter    Dcel_edge_iterator;
  typedef typename Arrangement_2::DFace_const_iter    Dcel_face_iterator;
  typedef typename Arrangement_2::DOuter_ccb_const_iter
                                                      Dcel_outer_ccb_iterator;
  typedef typename Arrangement_2::DInner_ccb_const_iter
                                                      Dcel_inner_ccb_iterator;
  typedef typename Arrangement_2::DIso_vertex_const_iter
                                                      Dcel_iso_vertex_iterator;

  typedef DVertex                                     Dcel_vertex;
  typedef DHalfedge                                   Dcel_halfedge;
  typedef DFace                                       Dcel_face;
  typedef DOuter_ccb                                  Dcel_outer_ccb;
  typedef DInner_ccb                                  Dcel_inner_ccb;
  typedef DIso_vertex                                 Dcel_isolated_vertex;

  /*!
   * Get the arrangement DCEL.
   */
  const Dcel& dcel() const { return (p_arr->_dcel()); }

  /*!
   * Clear the entire arrangment.
   */
  void clear_all()
  {
    p_arr->clear();
    p_arr->_dcel().delete_all();
  }

   /*!
   * Set the boundary of a vertex
   * \param p A vertex
   * \param ps_x The boundary condition at x.
   * \param ps_y The boundary condition at y.
   * \return A pointer to the created DCEL vertex.
   */
  Dcel_vertex* set_vertex_boundary(const Vertex_handle v,
                                   Arr_parameter_space ps_x,
                                   Arr_parameter_space ps_y)
  {
    Dcel_vertex* v_to_set = p_arr->_vertex(v);
    v_to_set->set_boundary(ps_x, ps_y);
    return (v_to_set);
  }

  /*!
   * Create a new vertex.
   * \param p A pointer to the point (may be NULL in case of a vertex at
   *          infinity).
   * \param ps_x The boundary condition at x.
   * \param ps_y The boundary condition at y.
   * \return A pointer to the created DCEL vertex.
   */
  Dcel_vertex* new_vertex(const Point_2* p,
                          Arr_parameter_space ps_x, Arr_parameter_space ps_y)
  {
    Dcel_vertex* new_v = p_arr->_dcel().new_vertex();
    if (p != NULL) {
      typename Dcel::Vertex::Point* p_pt = p_arr->_new_point(*p);
      new_v->set_point(p_pt);
    }
    else
    {
      CGAL_precondition (p_arr->is_open(ps_x, ps_y));
      new_v->set_point (NULL);
    }

    new_v->set_boundary (ps_x, ps_y);
    return (new_v);
  }

  /*!
   * Create a new edge (halfedge pair), associated with the given curve.
   * \param cv A pointer to the x-monotone curve (may be NULL in case of
   *           a fictitious edge).
   * \return A pointer to one of the created DCEL halfedge.
   */
  Dcel_halfedge* new_edge(const X_monotone_curve_2* cv)
  {
    Dcel_halfedge* new_he = p_arr->_dcel().new_edge();

    if (cv != NULL) {
      typename Dcel::Halfedge::X_monotone_curve* p_cv = p_arr->_new_curve(*cv);
      new_he->set_curve(p_cv);
    }
    else new_he->set_curve(NULL);
    return new_he;
  }

  /*!
   * Create a new face.
   * \return A pointer to the created DCEL face.
   */
  Dcel_face* new_face() { return (p_arr->_dcel().new_face()); }

  /*!
   * Create a new outer CCB.
   * \return A pointer to the created DCEL outer CCB.
   */
  Dcel_outer_ccb* new_outer_ccb() { return (p_arr->_dcel().new_outer_ccb()); }

  /*!
   * Create a new inner CCB.
   * \return A pointer to the created DCEL inner CCB.
   */
  Dcel_inner_ccb* new_inner_ccb()
  {  return (p_arr->_dcel().new_inner_ccb()); }

  /*!
   * Create a new isolated vertex.
   * \return A pointer to the created DCEL isolated vertex.
   */
  Dcel_isolated_vertex* new_isolated_vertex()
  { return (p_arr->_dcel().new_isolated_vertex()); }

  /*!
   * Remove a range of vertices
   */
  template <typename VertexRange>
  void delete_vertices(const VertexRange& range)
  {
    for(typename VertexRange::const_iterator  it=range.begin(),
                                              end=range.end();
                                              it!=end; ++it)
    {
      CGAL_assertion(! (*it)->has_null_point());
      p_arr->_delete_point( (*it)->point() );
      p_arr->_dcel().delete_vertex( *it );
    }
  }

  /*!
   * Remove a range of edges
   */
  template <typename EdgeRange>
  void delete_edges(const EdgeRange& range)
  {
    for(typename EdgeRange::const_iterator  it=range.begin(),
                                            end=range.end();
                                            it!=end; ++it)
    {
      CGAL_assertion(! (*it)->has_null_curve());
      p_arr->_delete_curve( (*it)->curve() );
      p_arr->_dcel().delete_edge( *it );
    }
  }

  /*!
   * Remove a range of faces
   */
  template <typename FaceRange>
  void delete_faces(const FaceRange& range)
  {
    for(typename FaceRange::const_iterator  it=range.begin(),
                                            end=range.end();
                                            it!=end; ++it)
    {
      p_arr->_dcel().delete_face( *it );
    }
  }

  /*!
   * Remove a range of outer ccbs
   */
  template <typename CcbRange>
  void delete_outer_ccbs(const CcbRange& range)
  {
    for(typename CcbRange::const_iterator  it=range.begin(),
                                           end=range.end();
                                           it!=end; ++it)
    {
      p_arr->_dcel().delete_outer_ccb( *it );
    }
  }

  /*!
   * Remove a range of inner ccbs
   */
  template <typename CcbRange>
  void delete_inner_ccbs(const CcbRange& range)
  {
    for(typename CcbRange::const_iterator  it=range.begin(),
                                           end=range.end();
                                           it!=end; ++it)
    {
      p_arr->_dcel().delete_inner_ccb( *it );
    }
  }

  /*!
   * Update the topology traits after the DCEL has been updated.
   */
  void dcel_updated() { p_arr->topology_traits()->dcel_updated(); }
  //@}

};

} //namespace CGAL

#endif