This file is indexed.

/usr/include/CGAL/Min_annulus_d.h is in libcgal-dev 4.11-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
// Copyright (c) 1997-2001  ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Sven Schoenherr <sven@inf.ethz.ch>

#ifndef CGAL_MIN_ANNULUS_D_H
#define CGAL_MIN_ANNULUS_D_H

#include <CGAL/license/Bounding_volumes.h>


#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable: 4244) // conversion warning in Boost iterator_adaptor
#endif

// includes
// --------
#include <CGAL/Optimisation/basic.h>
#include <CGAL/function_objects.h>
#include <CGAL/QP_options.h>
#include <CGAL/QP_solver/QP_solver.h>
#include <CGAL/QP_solver/functors.h>
#include <CGAL/QP_solver/QP_full_filtered_pricing.h>
#include <CGAL/QP_solver/QP_full_exact_pricing.h>
#include <CGAL/boost/iterator/counting_iterator.hpp>
#include <boost/iterator/transform_iterator.hpp>
#include <boost/functional.hpp>

// here is how it works. We have d+2 variables: 
// R (big radius), r (small radius), c (center). The problem is
//
// min R^2 - r^2 
// s.t. ||p - c||^2 >= r^2   for all p
//      ||p - c||^2 <= R^2   for all p
//
// This looks nonlinear, but we can in fact make the substitutions
// u = R^2 - c^Tc, v = r^2 - c^Tc and get the following equivalent
// linear program:
//
// min u - v
// s.t. p^Tp - 2p^Tc >= v  for all p
//      p^Tp - 2p^Tc <= u  for all p
// 
// or 
//
// max  v - u
// s.t. v     + 2p_1c_1 + 2p_2c_2 + ...  + 2p_dc_d <=  p^Tp for all p
//        - u - 2p_1c_1 - 2p_2c_2 - ...  - 2p_dc_d <= -p^Tp for all p
//
// When we introduce a dual variable x_p for every constraint in the first
// set and a dual variable y_p for every constraint in the second set,
// we obtain the following dual program:
//
// min \sum_p x_p p^Tp -  \sum_p y_p p^Tp
// s.t.
//    2\sum_p x_p p    - 2\sum_p y_p p     =  0
//     \sum_p x_p                          =  1  (constraint for v)
//                     -  \sum_p y_p       = -1  (constraint for u)
//                                               x_p >= 0  for all p        
//                                               y_p >= 0  for all p 
//
// in the following functors, the ordering of the constraints is as above; 
// the indices of the variables are: x_p_j <-> 2 * j, y_p_j <-> 2 * j + 1 
// we also make the substitutions x'_p = x_p / h_p^2, y'_p = y_p / h_p^2
// where h_p is the homogenizing coordinate of p, in order to allow
// homogeneous points. This, however, means that the computed annulus is
// not necessarily correct. If P is a set of homogeneous points, 
//     P = { (p_0,...,p_{d-1}, h_p) }, 
// then we always get a *feasible* annulus for the point set 
//     P' = { (p_0*h_p,...,p_{d-1}*h_p, h_p*h_p) }. 
// If the type NT is inexact, this annulus might not even be optimal, since
// the objective function involves terms p^Tp that might not be exactly
// computed -> document all this!!!

namespace CGAL {

namespace MA_detail {

  // functor for a fixed column of A
  template <class NT, class Iterator>
  class A_column : public std::unary_function <int, NT>
  {
  public:
    typedef NT result_type;
    A_column()
    {}
  
    A_column (int j, int d, Iterator it)
      : j_ (j), d_ (d), it_ (it), h_p (*(it+d)), nt_0_ (0), nt_2_ (2)
    {}

    result_type operator() (int i) const
    {
      if (j_ % 2 == 0) {
	// column for x_p
	if (i < d_) return  *(it_ + i) * h_p * nt_2_;  
	if (i == d_) return h_p * h_p;  
	return nt_0_;
      } else {
	// column for y_p
	if (i < d_) return  -(*(it_ + i)) * h_p * nt_2_;
	if (i == d_+1) return -h_p * h_p;
	return nt_0_;
      }
    }
    
  private:
    int j_;                  // column number
    int d_;                  // dimension
    Iterator it_;            // the iterator through the column's point
    NT h_p;                  // the homogenizing coordinate of p
    NT nt_0_;
    NT nt_2_; 
  };
  
  // functor for matrix A
  template <class NT, class Access_coordinate_begin_d,
	    class Point_iterator >
  class A_matrix : public std::unary_function
  <int, boost::transform_iterator <A_column
    <NT, typename Access_coordinate_begin_d::Coordinate_iterator>, 
				   boost::counting_iterator<int> > >
  { 
    typedef typename MA_detail::A_column
    <NT, typename Access_coordinate_begin_d::Coordinate_iterator> A_column;
  public:
    typedef boost::transform_iterator
    <A_column, boost::counting_iterator<int> > result_type;
    
    A_matrix ()
    {}

    A_matrix (int d, 
	      const Access_coordinate_begin_d& da_coord,
	      Point_iterator P) 
      : d_ (d), da_coord_ (da_coord), P_ (P)
    {}

    result_type operator () (int j) const
    { 
      return result_type
	(0, A_column (j, d_, da_coord_ (*(P_+j/2)))); 
    }

  private:
    int d_;                  // dimension
    Access_coordinate_begin_d da_coord_; // data accessor
    Point_iterator P_;       // point set P
  };

  // The functor necessary to realize access to b
  template <class NT>
  class B_vector : public std::unary_function<int, NT>
  {
  public:
    typedef NT result_type;
    B_vector()
    {}

    B_vector (int d)
      : d_ (d), nt_0_ (0), nt_1_ (1)
    {}

    result_type operator() (int i) const
    {
      if (i == d_) return nt_1_;
      if (i == d_+1) return -nt_1_;
      return nt_0_;
    }

  private:
    int d_;
    NT nt_0_;
    NT nt_1_;
  };

}

// Class interfaces
// ================
template < class Traits_ >
class Min_annulus_d {
public:
  // self
  typedef  Traits_                    Traits;
  typedef  Min_annulus_d<Traits>      Self;

  // types from the traits class
  typedef  typename Traits::Point_d   Point;

  typedef  typename Traits::Rep_tag   Rep_tag;

  typedef  typename Traits::RT        RT;
  typedef  typename Traits::FT        FT;

  typedef  typename Traits::Access_dimension_d
  Access_dimension_d;
  typedef  typename Traits::Access_coordinates_begin_d
  Access_coordinates_begin_d;

  typedef  typename Traits::Construct_point_d
  Construct_point_d;

  typedef  typename Traits::ET        ET;
  typedef  typename Traits::NT        NT;

  // public types 
  typedef  std::vector<Point>         Point_vector;
  typedef  typename Point_vector::const_iterator
  Point_iterator;

private:  
  // QP solver iterator types
  typedef MA_detail::A_matrix <NT, Access_coordinates_begin_d,
			       Point_iterator> A_matrix;
  typedef boost::transform_iterator
  <A_matrix,  
   boost::counting_iterator<int> >   A_iterator;

  typedef MA_detail::B_vector <NT> B_vector;
  typedef  boost::transform_iterator
  <B_vector,
    boost::counting_iterator<int> >  B_iterator;

  typedef CGAL::Const_oneset_iterator<CGAL::Comparison_result> R_iterator;  
 
  typedef  std::vector<NT>                                     C_vector; 
  typedef  typename C_vector::const_iterator                   C_iterator; 

  // Program type
  typedef CGAL::Nonnegative_linear_program_from_iterators
  <A_iterator, B_iterator, R_iterator, C_iterator> LP;

  // Tags
  typedef QP_solver_impl::QP_tags <Tag_true, Tag_true> QP_tags;

  // Solver types
  typedef  CGAL::QP_solver <LP, ET, QP_tags > Solver;

  typedef  typename Solver::Pricing_strategy Pricing_strategy;

  // types from the QP solver
  typedef  typename Solver::Basic_variable_index_iterator
  Basic_variable_index_iterator;
    
  // private types
  typedef  std::vector<ET>            ET_vector;
    
  typedef  QP_access_by_index
  <typename std::vector<Point>::const_iterator, int> Point_by_index;
    
  typedef  boost::binder2nd< std::divides<int> >
  Divide;
    
  typedef  std::vector<int>           Index_vector;
    
  typedef  std::vector<NT>            NT_vector;
  typedef  std::vector<NT_vector>     NT_matrix;
    

public:
  // public types
    
  typedef  CGAL::Join_input_iterator_1<
    Basic_variable_index_iterator,
    CGAL::Unary_compose_1<Point_by_index,Divide> >
  Support_point_iterator;
    
    
  typedef  typename Index_vector::const_iterator IVCI;
  typedef  CGAL::Join_input_iterator_1<
    IVCI, Point_by_index >
  Inner_support_point_iterator;
  typedef  CGAL::Join_input_iterator_1<
    IVCI, Point_by_index >
  Outer_support_point_iterator;

  typedef IVCI Inner_support_point_index_iterator;
  typedef IVCI Outer_support_point_index_iterator;
    
  typedef  typename ET_vector::const_iterator
  Coordinate_iterator;
    

  // creation
  Min_annulus_d( const Traits&  traits  = Traits())
    : tco( traits), da_coord(tco.access_coordinates_begin_d_object()),
      d( -1), solver(0){}
    
  template < class InputIterator >
  Min_annulus_d( InputIterator  first,
		 InputIterator  last,
		 const Traits&  traits = Traits())
    : tco( traits), da_coord(tco.access_coordinates_begin_d_object()), 
      solver(0) {
    set( first, last);
  }

  ~Min_annulus_d() {
    if (solver)
      delete solver;
  }
    
  // access to point set
  int  ambient_dimension( ) const { return d; }
    
  int  number_of_points( ) const { return static_cast<int>(points.size()); }
    
  Point_iterator  points_begin( ) const { return points.begin(); }
  Point_iterator  points_end  ( ) const { return points.end  (); }
    
  // access to support points
  int
  number_of_support_points( ) const
  { return number_of_points() < 2 ?
      number_of_points() :
    solver->number_of_basic_variables(); }
    
  Support_point_iterator
  support_points_begin() const {
    CGAL_optimisation_assertion_msg(number_of_points() >= 2,
				    "support_points_begin: not enough points");
    return Support_point_iterator(
				  solver->basic_original_variable_indices_begin(),
				  CGAL::compose1_1(
						   Point_by_index( points.begin()),
						   boost::bind2nd( std::divides<int>(), 2)));
  }
    
  Support_point_iterator
  support_points_end() const {
    CGAL_optimisation_assertion_msg(number_of_points() >= 2,
				    "support_points_begin: not enough points");
    return Support_point_iterator(
				  solver->basic_original_variable_indices_end(),
				  CGAL::compose1_1(
						   Point_by_index( points.begin()),
						   boost::bind2nd( std::divides<int>(), 2)));
  }
    
  int  number_of_inner_support_points() const { return static_cast<int>(inner_indices.size());}
  int  number_of_outer_support_points() const { return static_cast<int>(outer_indices.size());}
    
  Inner_support_point_iterator
  inner_support_points_begin() const
  { return Inner_support_point_iterator(
					inner_indices.begin(),
					Point_by_index( points.begin())); }
    
  Inner_support_point_iterator
  inner_support_points_end() const
  { return Inner_support_point_iterator(
					inner_indices.end(),
					Point_by_index( points.begin())); }
    
  Outer_support_point_iterator
  outer_support_points_begin() const
  { return Outer_support_point_iterator(
					outer_indices.begin(),
					Point_by_index( points.begin())); }
    
  Outer_support_point_iterator
  outer_support_points_end() const
  { return Outer_support_point_iterator(
					outer_indices.end(),
					Point_by_index( points.begin())); }

  Inner_support_point_index_iterator
  inner_support_points_indices_begin() const
  { return inner_indices.begin(); }
    
  Inner_support_point_index_iterator
  inner_support_points_indices_end() const
  { return inner_indices.end(); }

  Outer_support_point_index_iterator
  outer_support_points_indices_begin() const
  { return outer_indices.begin(); }

  Outer_support_point_index_iterator
  outer_support_points_indices_end() const
  { return outer_indices.end(); }


  // access to center (rational representation)
  Coordinate_iterator
  center_coordinates_begin( ) const { return center_coords.begin(); }
    
  Coordinate_iterator
  center_coordinates_end  ( ) const { return center_coords.end  (); }
    
  // access to squared radii (rational representation)
  ET  squared_inner_radius_numerator( ) const { return sqr_i_rad_numer; }
  ET  squared_outer_radius_numerator( ) const { return sqr_o_rad_numer; }
  ET  squared_radii_denominator     ( ) const { return sqr_rad_denom; }
    
  // access to center and squared radii
  // NOTE: an implicit conversion from ET to RT must be available!
  Point
  center( ) const
  { CGAL_optimisation_precondition( ! is_empty());
  return tco.construct_point_d_object()( ambient_dimension(),
					 center_coordinates_begin(),
					 center_coordinates_end()); }
    
  FT
  squared_inner_radius( ) const
  { CGAL_optimisation_precondition( ! is_empty());
  return FT( squared_inner_radius_numerator()) /
    FT( squared_radii_denominator()); }
    
  FT
  squared_outer_radius( ) const
  { CGAL_optimisation_precondition( ! is_empty());
  return FT( squared_outer_radius_numerator()) /
    FT( squared_radii_denominator()); }
    
  // predicates
  CGAL::Bounded_side
  bounded_side( const Point& p) const
  { CGAL_optimisation_precondition(
				   is_empty() || tco.access_dimension_d_object()( p) == d);
  ET sqr_d = sqr_dist( p);
  ET h_p_sqr = da_coord(p)[d] * da_coord(p)[d];
  return CGAL::Bounded_side
    (CGAL_NTS sign( sqr_d - h_p_sqr * sqr_i_rad_numer)
     * CGAL_NTS sign( h_p_sqr * sqr_o_rad_numer - sqr_d)); }
    
  bool
  has_on_bounded_side( const Point& p) const
  { CGAL_optimisation_precondition(
				   is_empty() || tco.access_dimension_d_object()( p) == d);
  ET sqr_d = sqr_dist( p);
  ET h_p_sqr = da_coord(p)[d] * da_coord(p)[d];
  return ( ( h_p_sqr * sqr_i_rad_numer < sqr_d) && 
	   ( sqr_d < h_p_sqr * sqr_o_rad_numer)); }
    
  bool
  has_on_boundary( const Point& p) const
  { CGAL_optimisation_precondition(
				   is_empty() || tco.access_dimension_d_object()( p) == d);
  ET sqr_d = sqr_dist( p);
  ET h_p_sqr = da_coord(p)[d] * da_coord(p)[d];
  return (( sqr_d == h_p_sqr * sqr_i_rad_numer) || 
	  ( sqr_d == h_p_sqr * sqr_o_rad_numer));}
    
  bool
  has_on_unbounded_side( const Point& p) const
  { CGAL_optimisation_precondition(
				   is_empty() || tco.access_dimension_d_object()( p) == d);
  ET sqr_d = sqr_dist( p);
  ET h_p_sqr = da_coord(p)[d] * da_coord(p)[d];
  return ( ( sqr_d < h_p_sqr * sqr_i_rad_numer) || 
	   ( h_p_sqr * sqr_o_rad_numer < sqr_d)); }
    
  bool  is_empty     ( ) const { return number_of_points() == 0; }
  bool  is_degenerate( ) const
  { return ! CGAL_NTS is_positive( sqr_o_rad_numer); }
    
  // modifiers
  template < class InputIterator >
  void
  set( InputIterator first, InputIterator last)
  { if ( points.size() > 0) points.erase( points.begin(), points.end());
  std::copy( first, last, std::back_inserter( points));
  set_dimension();
  CGAL_optimisation_precondition_msg( check_dimension(),
				      "Not all points have the same dimension.");
  compute_min_annulus(); }
    
  void
  insert( const Point& p)
  { if ( is_empty()) d = tco.access_dimension_d_object()( p);
  CGAL_optimisation_precondition(
				 tco.access_dimension_d_object()( p) == d);
  points.push_back( p);
  compute_min_annulus(); }
    
  template < class InputIterator >
  void
  insert( InputIterator first, InputIterator last)
  { CGAL_optimisation_precondition_code( std::size_t old_n = points.size());
  points.insert( points.end(), first, last);
  set_dimension();
  CGAL_optimisation_precondition_msg( check_dimension( old_n),
				      "Not all points have the same dimension.");
  compute_min_annulus(); }
    
  void
  clear( )
  { points.erase( points.begin(), points.end());
  compute_min_annulus(); }
    
  // validity check
  bool  is_valid( bool verbose = false, int level = 0) const;
    
  // traits class access
  const Traits&  traits( ) const { return tco; }
    

private:
    
  Traits                   tco;       // traits class object
  Access_coordinates_begin_d da_coord; // data accessor
    
  Point_vector             points;    // input points
  int                      d;         // dimension of input points
    
  ET_vector                center_coords;     // center of small.encl.annulus
    
  ET                       sqr_i_rad_numer;   // squared inner radius of
  ET                       sqr_o_rad_numer;   // ---"--- outer ----"----
  ET                       sqr_rad_denom;     // smallest enclosing annulus
    
  Solver                   *solver;    // linear programming solver
     
  Index_vector             inner_indices;
  Index_vector             outer_indices;
    
  NT_matrix                a_matrix;  // matrix `A' of dual LP
  NT_vector                b_vector;  // vector `b' of dual LP
  NT_vector                c_vector;  // vector `c' of dual LP
    
private:
  // squared distance to center * h_p^2 * c_d^2 
  ET sqr_dist_exact( const Point& p) const
  {
    ET result(0);
    typename Access_coordinates_begin_d::Coordinate_iterator 
      p_it (da_coord ( p));     // this is p * h_p
    ET c_d = center_coords[d];
    ET h_p = p_it[d];
    for (int i=0; i<d; ++i) {
      ET x = 
	c_d * ET(p_it[i]) -      /* this is c_d *    p_i * h_p */
	h_p * center_coords[i]   /* this is h_p *    c_i * c_d */ ;
      result += x * x;
    }
    return result;
  }

  // the function above computes sqr_dist as ||p-c||^2 
  // (endowed with a factor of c_d^2 * h_p^2)
  // but we know that c was computed from (possibly slightly wrong)
  // data if NT is inexact; in order to compensate for this, let
  // us instead compute sqr_dist as p^Tp - 2c^Tp + c^Tc, where we use
  // the (potentially wrong) values of p^Tp and p that went into the
  // linear program; this will give us correct containment / on_boundary 
  // checks also in the inexact-NT case.
  ET sqr_dist( const Point& p) const
  {
    ET result(0), two(2);
    NT pTp(0); // computed over input type, possibly slightly wrong
    ET cTc(0); 
    ET two_pTc(0);
    typename Access_coordinates_begin_d::Coordinate_iterator 
      p_it (da_coord ( p));     // this is p * h_p
    NT h_p = p_it[d]; // input type!
    for (int i=0; i<d; ++i) {
      NT p_i (p_it[i]);  // input type!
      pTp += p_i * p_i;  // p_i^2 * h_p^2 
      cTc += center_coords[i] * center_coords[i]; // c_i^2 * c_d^2
      two_pTc += 
	// 2 * c_i * c_d * p_i * h_p^2  
	2 * center_coords[i] * ET(h_p * p_i); 
    } 
    ET c_d = center_coords[d];
    result = 
      ET(pTp) * c_d * c_d +      
      cTc * ET (h_p * h_p) +
      - two_pTc * c_d;
    return result;
  }
    
  // set dimension of input points
  void
  set_dimension( )
  { d = ( points.size() == 0 ? -1 :
	  tco.access_dimension_d_object()( points[ 0])); }
    
  // check dimension of input points
  bool
  check_dimension( std::size_t  offset = 0)
  { return ( std::find_if( points.begin()+offset, points.end(),
			   CGAL::compose1_1( boost::bind2nd(
							  std::not_equal_to<int>(), d),
					     tco.access_dimension_d_object()))
	     == points.end()); }
    
  // compute smallest enclosing annulus
  void
  compute_min_annulus( )
  {
    // clear inner and outer support points
    inner_indices.erase( inner_indices.begin(), inner_indices.end());
    outer_indices.erase( outer_indices.begin(), outer_indices.end());
    
    if ( is_empty()) {
      center_coords.resize( 1);
      sqr_i_rad_numer = -ET( 1);
      sqr_o_rad_numer = -ET( 1);
      return;
    }
    
    if ( number_of_points() == 1) {
      inner_indices.push_back( 0);
      outer_indices.push_back( 0);
      center_coords.resize( d+1);
      std::copy( da_coord( points[ 0]),
		 da_coord( points[ 0])+d+1,
		 center_coords.begin());
      sqr_i_rad_numer = ET( 0);
      sqr_o_rad_numer = ET( 0);
      sqr_rad_denom   = ET( 1);
      return;
    }
    
    // set up vector c and solve dual LP
    // the ordering of the constraints is as above; the ordering
    // of the variables is: z_p_j <-> 2 * j, y_p_j <-> 2 * j + 1 
    c_vector.resize( 2*points.size());
    for ( int j = 0; j < number_of_points(); ++j) {
      typename Traits::Access_coordinates_begin_d::Coordinate_iterator
	coord_it = da_coord( points[j]);
      NT  sum = 0;
      for ( int i = 0; i < d; ++i) {
	sum += NT( coord_it[ i])*NT( coord_it[ i]);
      }
      c_vector[ 2*j  ] =  sum;
      c_vector[ 2*j+1] = -sum;
    }
        
    LP lp (2*static_cast<int>(points.size()), d+2, 
	   A_iterator ( boost::counting_iterator<int>(0), 
			A_matrix (d, da_coord, points.begin())),
	   B_iterator ( boost::counting_iterator<int>(0), 
			B_vector (d)), 
	   R_iterator (CGAL::EQUAL), 
	   c_vector.begin());
    
    Quadratic_program_options options;
    options.set_pricing_strategy(pricing_strategy(NT()));
    delete solver;
    solver = new Solver(lp, options);
    CGAL_optimisation_assertion(solver->status() == QP_OPTIMAL);
 
    // compute center and squared radius
    ET sqr_sum = 0;
    center_coords.resize( ambient_dimension()+1);
    for ( int i = 0; i < d; ++i) {
      center_coords[ i] = -solver->dual_variable( i);
      sqr_sum += center_coords[ i] * center_coords[ i];
    }
    center_coords[ d] = solver->variables_common_denominator();
    sqr_i_rad_numer = sqr_sum
      - solver->dual_variable( d  )*center_coords[ d];
    sqr_o_rad_numer = sqr_sum
      - solver->dual_variable( d+1)*center_coords[ d];
    sqr_rad_denom   = center_coords[ d] * center_coords[ d];
        
    // split up support points
    for ( int i = 0; i < solver->number_of_basic_original_variables(); ++i) {
      int index = solver->basic_original_variable_indices_begin()[ i];
      if ( index % 2 == 0) {
	inner_indices.push_back( index/2);
      } else {
	outer_indices.push_back( index/2);
      }
    }
  }
  
  template < class NT >
  Quadratic_program_pricing_strategy pricing_strategy( NT) {
    return QP_PARTIAL_FILTERED_DANTZIG;
  }
  
  Quadratic_program_pricing_strategy pricing_strategy( ET) {
    return QP_PARTIAL_DANTZIG;
  }
 
    
};

// Function declarations
// =====================
// I/O operators
template < class Traits_ >
std::ostream&
operator << ( std::ostream& os, const Min_annulus_d<Traits_>& min_annulus);

template < class Traits_ >
std::istream&
operator >> ( std::istream& is,       Min_annulus_d<Traits_>& min_annulus);

// ============================================================================

// Class implementation
// ====================

// validity check
template < class Traits_ >
bool
Min_annulus_d<Traits_>::
is_valid( bool verbose, int level) const
{
  using namespace std;

  CGAL::Verbose_ostream verr( verbose);
  verr << "CGAL::Min_annulus_d<Traits>::" << endl;
  verr << "is_valid( true, " << level << "):" << endl;
  verr << "  |P| = " << number_of_points()
       << ", |S| = " << number_of_support_points() << endl;

  // containment check (a)
  // ---------------------
  verr << "  (a) containment check..." << flush;
    
  Point_iterator  point_it = points_begin();
  for ( ; point_it != points_end(); ++point_it) {
    if ( has_on_unbounded_side( *point_it))
      return CGAL::_optimisation_is_valid_fail( verr,
						"annulus does not contain all points");
  }
    
  verr << "passed." << endl;

  // support set check (b)
  // ---------------------
  verr << "  (b) support set check..." << flush;
    
  // all inner support points on inner boundary?
  Inner_support_point_iterator  i_pt_it = inner_support_points_begin();
  for ( ; i_pt_it != inner_support_points_end(); ++i_pt_it) {
    ET h_p_sqr = da_coord (*i_pt_it)[d] * da_coord (*i_pt_it)[d];
    if ( sqr_dist( *i_pt_it) != h_p_sqr * sqr_i_rad_numer)
      return CGAL::_optimisation_is_valid_fail( verr,
						"annulus does not have all inner support points on its inner boundary");
  }
    
  // all outer support points on outer boundary?
  Outer_support_point_iterator  o_pt_it = outer_support_points_begin();
  for ( ; o_pt_it != outer_support_points_end(); ++o_pt_it) {
    ET h_p_sqr = da_coord (*o_pt_it)[d] * da_coord (*o_pt_it)[d];
    if ( sqr_dist( *o_pt_it) != h_p_sqr * sqr_o_rad_numer)
      return CGAL::_optimisation_is_valid_fail( verr,
						"annulus does not have all outer support points on its outer boundary");
  }
  /*
  // center strictly in convex hull of support points?
  typename Solver::Basic_variable_numerator_iterator
  num_it = solver.basic_variables_numerator_begin();
  for ( ; num_it != solver.basic_variables_numerator_end(); ++num_it) {
  if ( ! (    CGAL_NTS is_positive( *num_it)
  && *num_it <= solver.variables_common_denominator()))
  return CGAL::_optimisation_is_valid_fail( verr,
  "center does not lie strictly in convex hull of support points");
  }
  */
    
  verr << "passed." << endl;

  verr << "  object is valid!" << endl;
  return( true);
}

// output operator
template < class Traits_ >
std::ostream&
operator << ( std::ostream& os,
              const Min_annulus_d<Traits_>& min_annulus)
{
  using namespace std;

  typedef  typename Min_annulus_d<Traits_>::Point  Point;
  typedef  ostream_iterator<Point>       Os_it;
  typedef  typename Traits_::ET          ET;
  typedef  ostream_iterator<ET>          Et_it;

  switch ( CGAL::get_mode( os)) {

  case CGAL::IO::PRETTY:
    os << "CGAL::Min_annulus_d( |P| = "
       << min_annulus.number_of_points() << ", |S| = "
       << min_annulus.number_of_inner_support_points() << '+'
       << min_annulus.number_of_outer_support_points() << endl;
    os << "  P = {" << endl;
    os << "    ";
    copy( min_annulus.points_begin(), min_annulus.points_end(),
	  Os_it( os, ",\n    "));
    os << "}" << endl;
    os << "  S_i = {" << endl;
    os << "    ";
    copy( min_annulus.inner_support_points_begin(),
	  min_annulus.inner_support_points_end(),
	  Os_it( os, ",\n    "));
    os << "}" << endl;
    os << "  S_o = {" << endl;
    os << "    ";
    copy( min_annulus.outer_support_points_begin(),
	  min_annulus.outer_support_points_end(),
	  Os_it( os, ",\n    "));
    os << "}" << endl;
    os << "  center = ( ";
    copy( min_annulus.center_coordinates_begin(),
	  min_annulus.center_coordinates_end(),
	  Et_it( os, " "));
    os << ")" << endl;
    os << "  squared inner radius = "
       << min_annulus.squared_inner_radius_numerator() << " / "
       << min_annulus.squared_radii_denominator() << endl;
    os << "  squared outer radius = "
       << min_annulus.squared_outer_radius_numerator() << " / "
       << min_annulus.squared_radii_denominator() << endl;
    break;

  case CGAL::IO::ASCII:
    copy( min_annulus.points_begin(), min_annulus.points_end(),
	  Os_it( os, "\n"));
    break;

  case CGAL::IO::BINARY:
    copy( min_annulus.points_begin(), min_annulus.points_end(),
	  Os_it( os));
    break;

  default:
    CGAL_optimisation_assertion_msg( false,
				     "CGAL::get_mode( os) invalid!");
    break; }

  return( os);
}

// input operator
template < class Traits_ >
std::istream&
operator >> ( std::istream& is, CGAL::Min_annulus_d<Traits_>& min_annulus)
{
  using namespace std;

  switch ( CGAL::get_mode( is)) {

  case CGAL::IO::PRETTY:
    cerr << endl;
    cerr << "Stream must be in ascii or binary mode" << endl;
    break;

  case CGAL::IO::ASCII:
  case CGAL::IO::BINARY:
    typedef  typename CGAL::Min_annulus_d<Traits_>::Point  Point;
    typedef  istream_iterator<Point>             Is_it;
    min_annulus.set( Is_it( is), Is_it());
    break;

  default:
    CGAL_optimisation_assertion_msg( false, "CGAL::IO::mode invalid!");
    break; }

  return( is);
}

} //namespace CGAL

#ifdef _MSC_VER
# pragma warning(pop)
#endif

#endif // CGAL_MIN_ANNULUS_D_H

// ===== EOF ==================================================================