/usr/include/CGAL/NewKernel_d/Coaffine.h is in libcgal-dev 4.11-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | // Copyright (c) 2014
// INRIA Saclay-Ile de France (France)
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Marc Glisse
#ifndef CGAL_KD_COAFFINE_H
#define CGAL_KD_COAFFINE_H
#include <vector>
#include <algorithm>
#include <iterator>
#include <CGAL/Dimension.h>
#include <CGAL/NewKernel_d/functor_tags.h>
namespace CGAL {
namespace CartesianDKernelFunctors {
struct Flat_orientation {
std::vector<int> proj;
std::vector<int> rest;
bool reverse;
};
// For debugging purposes
inline std::ostream& operator<< (std::ostream& o, Flat_orientation const& f) {
o << "Proj: ";
for(std::vector<int>::const_iterator i=f.proj.begin();
i!=f.proj.end(); ++i)
o << *i << ' ';
o << "\nRest: ";
for(std::vector<int>::const_iterator i=f.rest.begin();
i!=f.rest.end(); ++i)
o << *i << ' ';
o << "\nInv: " << f.reverse;
return o << '\n';
}
namespace internal {
namespace coaffine {
template<class Mat>
inline void debug_matrix(std::ostream& o, Mat const&mat) {
for(int i=0;i<mat.rows();++i){
for(int j=0;j<mat.cols();++j){
o<<mat(i,j)<<' ';
}
o<<'\n';
}
}
}
}
template<class R_> struct Construct_flat_orientation : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Construct_flat_orientation)
typedef R_ R;
typedef typename Get_type<R, FT_tag>::type FT;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type Dplusone;
typedef typename R::LA::template Rebind_dimension<Dynamic_dimension_tag,Dplusone>::Other LA;
typedef typename LA::Square_matrix Matrix;
typedef typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type CCC;
typedef typename Get_functor<R, Point_dimension_tag>::type PD;
typedef Flat_orientation result_type;
// This implementation is going to suck. Maybe we should push the
// functionality into LA. And we should check (in debug mode) that
// the points are affinely independent.
template<class Iter>
result_type operator()(Iter f, Iter e)const{
Iter f_save = f;
PD pd (this->kernel());
CCC ccc (this->kernel());
int dim = pd(*f);
Matrix coord (dim+1, dim+1); // use distance(f,e)? This matrix doesn't need to be square.
int col = 0;
Flat_orientation o;
std::vector<int>& proj=o.proj;
std::vector<int>& rest=o.rest; rest.reserve(dim+1);
for(int i=0; i<dim+1; ++i) rest.push_back(i);
for( ; f != e ; ++col, ++f ) {
//std::cerr << "(*f)[0]=" << (*f)[0] << std::endl;
Point const&p=*f;
// use a coordinate iterator instead?
for(int i=0; i<dim; ++i) coord(col, i) = ccc(p, i);
coord(col,dim)=1;
int d = (int)proj.size()+1;
Matrix m (d, d);
// Fill the matrix with what we already have
for(int i=0; i<d; ++i)
for(int j=0; j<d-1; ++j)
m(i,j) = coord(i, proj[j]);
// Try to complete with any other coordinate
// TODO: iterate on rest by the end, or use a (forward_)list.
for(std::vector<int>::iterator it=rest.begin();;++it) {
CGAL_assertion(it!=rest.end());
for(int i=0; i<d; ++i) m(i,d-1) = coord(i, *it);
if(LA::sign_of_determinant(m)!=0) {
proj.push_back(*it);
rest.erase(it);
break;
}
}
}
std::sort(proj.begin(),proj.end());
typename Get_functor<R, In_flat_orientation_tag>::type ifo(this->kernel());
o.reverse = false;
o.reverse = ifo(o, f_save, e) != CGAL::POSITIVE;
return o;
}
};
template<class R_> struct Contained_in_affine_hull : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(Contained_in_affine_hull)
typedef R_ R;
typedef typename Get_type<R, FT_tag>::type FT;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_type<R, Bool_tag>::type result_type;
typedef typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type CCC;
typedef typename Get_functor<R, Point_dimension_tag>::type PD;
//typedef typename Increment_dimension<typename R::Default_ambient_dimension>::type D1;
//typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type D2;
//typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type Dplusone;
typedef typename R::LA::template Rebind_dimension<Dynamic_dimension_tag,Dplusone>::Other LA;
typedef typename LA::Square_matrix Matrix;
// mostly copied from Construct_flat_orientation. TODO: dedup this code or use LA.
template<class Iter>
result_type operator()(Iter f, Iter e, Point const&x) const {
// FIXME: are the points in (f,e) required to be affinely independent?
PD pd (this->kernel());
CCC ccc (this->kernel());
int dim=pd(*f);
Matrix coord (dim+1, dim+1); // use distance
int col = 0;
std::vector<int> proj;
std::vector<int> rest; rest.reserve(dim+1);
for(int i=0; i<dim+1; ++i) rest.push_back(i);
for( ; f != e ; ++col, ++f ) {
Point const&p=*f;
for(int i=0; i<dim; ++i) coord(col, i) = ccc(p, i);
coord(col,dim)=1;
int d = (int)proj.size()+1;
Matrix m (d, d);
for(int i=0; i<d; ++i)
for(int j=0; j<d-1; ++j)
m(i,j) = coord(i, proj[j]);
for(std::vector<int>::iterator it=rest.begin();it!=rest.end();++it) {
for(int i=0; i<d; ++i) m(i,d-1) = coord(i, *it);
if(LA::sign_of_determinant(m)!=0) {
proj.push_back(*it);
rest.erase(it);
break;
}
}
}
for(int i=0; i<dim; ++i) coord(col, i) = ccc(x, i);
coord(col,dim)=1;
int d = (int)proj.size()+1;
Matrix m (d, d);
for(int i=0; i<d; ++i)
for(int j=0; j<d-1; ++j)
m(i,j) = coord(i, proj[j]);
for(std::vector<int>::iterator it=rest.begin();it!=rest.end();++it) {
for(int i=0; i<d; ++i) m(i,d-1) = coord(i, *it);
if(LA::sign_of_determinant(m)!=0) return false;
}
return true;
}
};
template<class R_> struct In_flat_orientation : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(In_flat_orientation)
typedef R_ R;
typedef typename Get_type<R, FT_tag>::type FT;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_type<R, Orientation_tag>::type result_type;
typedef typename Increment_dimension<typename R::Default_ambient_dimension>::type D1;
typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type D2;
typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
typedef typename LA::Square_matrix Matrix;
template<class Iter>
result_type operator()(Flat_orientation const&o, Iter f, Iter e) const {
// TODO: work in the projection instead of the ambient space.
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
int d=pd(*f);
Matrix m(d+1,d+1);
int i=0;
for(;f!=e;++f,++i) {
Point const& p=*f;
m(i,0)=1;
for(int j=0;j<d;++j){
m(i,j+1)=c(p,j);
}
}
for(std::vector<int>::const_iterator it = o.rest.begin(); it != o.rest.end() /* i<d+1 */; ++i, ++it) {
m(i,0)=1;
for(int j=0;j<d;++j){
m(i,j+1)=0; // unneeded if the matrix is initialized to 0
}
if(*it != d) m(i,1+*it)=1;
}
result_type ret = LA::sign_of_determinant(CGAL_MOVE(m));
if(o.reverse) ret=-ret;
return ret;
}
};
template<class R_> struct In_flat_side_of_oriented_sphere : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(In_flat_side_of_oriented_sphere)
typedef R_ R;
typedef typename Get_type<R, FT_tag>::type FT;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_type<R, Orientation_tag>::type result_type;
typedef typename Increment_dimension<typename R::Default_ambient_dimension,2>::type D1;
typedef typename Increment_dimension<typename R::Max_ambient_dimension,2>::type D2;
typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
typedef typename LA::Square_matrix Matrix;
template<class Iter>
result_type operator()(Flat_orientation const&o, Iter f, Iter e, Point const&x) const {
// TODO: can't work in the projection, but we should at least remove the row of 1s.
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
int d=pd(*f);
Matrix m(d+2,d+2);
int i=0;
for(;f!=e;++f,++i) {
Point const& p=*f;
m(i,0)=1;
m(i,d+1)=0;
for(int j=0;j<d;++j){
m(i,j+1)=c(p,j);
m(i,d+1)+=CGAL_NTS square(m(i,j+1));
}
}
for(std::vector<int>::const_iterator it = o.rest.begin(); it != o.rest.end() /* i<d+1 */; ++i, ++it) {
m(i,0)=1;
for(int j=0;j<d;++j){
m(i,j+1)=0; // unneeded if the matrix is initialized to 0
}
if(*it != d) m(i,d+1)=m(i,1+*it)=1;
else m(i,d+1)=0;
}
m(d+1,0)=1;
m(d+1,d+1)=0;
for(int j=0;j<d;++j){
m(d+1,j+1)=c(x,j);
m(d+1,d+1)+=CGAL_NTS square(m(d+1,j+1));
}
result_type ret = -LA::sign_of_determinant(CGAL_MOVE(m));
if(o.reverse) ret=-ret;
return ret;
}
};
template<class R_> struct In_flat_power_side_of_power_sphere_raw : private Store_kernel<R_> {
CGAL_FUNCTOR_INIT_STORE(In_flat_power_side_of_power_sphere_raw)
typedef R_ R;
typedef typename Get_type<R, FT_tag>::type FT;
typedef typename Get_type<R, Point_tag>::type Point;
typedef typename Get_type<R, Orientation_tag>::type result_type;
typedef typename Increment_dimension<typename R::Default_ambient_dimension,2>::type D1;
typedef typename Increment_dimension<typename R::Max_ambient_dimension,2>::type D2;
typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
typedef typename LA::Square_matrix Matrix;
template<class Iter, class IterW, class Wt>
result_type operator()(Flat_orientation const&o, Iter f, Iter e, IterW fw, Point const&x, Wt const&w) const {
// TODO: can't work in the projection, but we should at least remove the row of 1s.
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
int d=pd(*f);
Matrix m(d+2,d+2);
int i=0;
for(;f!=e;++f,++fw,++i) {
Point const& p=*f;
m(i,0)=1;
m(i,d+1)=-*fw;
for(int j=0;j<d;++j){
m(i,j+1)=c(p,j);
m(i,d+1)+=CGAL_NTS square(m(i,j+1));
}
}
for(std::vector<int>::const_iterator it = o.rest.begin(); it != o.rest.end() /* i<d+1 */; ++i, ++it) {
m(i,0)=1;
for(int j=0;j<d;++j){
m(i,j+1)=0; // unneeded if the matrix is initialized to 0
}
if(*it != d) m(i,d+1)=m(i,1+*it)=1;
else m(i,d+1)=0;
}
m(d+1,0)=1;
m(d+1,d+1)=-w;
for(int j=0;j<d;++j){
m(d+1,j+1)=c(x,j);
m(d+1,d+1)+=CGAL_NTS square(m(d+1,j+1));
}
result_type ret = -LA::sign_of_determinant(CGAL_MOVE(m));
if(o.reverse) ret=-ret;
return ret;
}
};
}
CGAL_KD_DEFAULT_TYPE(Flat_orientation_tag,(CGAL::CartesianDKernelFunctors::Flat_orientation),(),());
CGAL_KD_DEFAULT_FUNCTOR(In_flat_orientation_tag,(CartesianDKernelFunctors::In_flat_orientation<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
CGAL_KD_DEFAULT_FUNCTOR(In_flat_side_of_oriented_sphere_tag,(CartesianDKernelFunctors::In_flat_side_of_oriented_sphere<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
CGAL_KD_DEFAULT_FUNCTOR(In_flat_power_side_of_power_sphere_raw_tag,(CartesianDKernelFunctors::In_flat_power_side_of_power_sphere_raw<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
CGAL_KD_DEFAULT_FUNCTOR(Construct_flat_orientation_tag,(CartesianDKernelFunctors::Construct_flat_orientation<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag,In_flat_orientation_tag));
CGAL_KD_DEFAULT_FUNCTOR(Contained_in_affine_hull_tag,(CartesianDKernelFunctors::Contained_in_affine_hull<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
}
#endif
|