This file is indexed.

/usr/include/CGAL/NewKernel_d/Coaffine.h is in libcgal-dev 4.11-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
// Copyright (c) 2014
// INRIA Saclay-Ile de France (France)
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s)     : Marc Glisse

#ifndef CGAL_KD_COAFFINE_H
#define CGAL_KD_COAFFINE_H
#include <vector>
#include <algorithm>
#include <iterator>
#include <CGAL/Dimension.h>
#include <CGAL/NewKernel_d/functor_tags.h>

namespace CGAL {
namespace CartesianDKernelFunctors {
struct Flat_orientation {
	std::vector<int> proj;
	std::vector<int> rest;
	bool reverse;
};

// For debugging purposes
inline std::ostream& operator<< (std::ostream& o, Flat_orientation const& f) {
  o << "Proj: ";
  for(std::vector<int>::const_iterator i=f.proj.begin();
      i!=f.proj.end(); ++i)
    o << *i << ' ';
  o << "\nRest: ";
  for(std::vector<int>::const_iterator i=f.rest.begin();
      i!=f.rest.end(); ++i)
    o << *i << ' ';
  o << "\nInv: " << f.reverse;
  return o << '\n';
}

namespace internal {
namespace coaffine {
template<class Mat>
inline void debug_matrix(std::ostream& o, Mat const&mat) {
  for(int i=0;i<mat.rows();++i){
  for(int j=0;j<mat.cols();++j){
    o<<mat(i,j)<<' ';
  }
  o<<'\n';
  }
}
}
}

template<class R_> struct Construct_flat_orientation : private Store_kernel<R_> {
	CGAL_FUNCTOR_INIT_STORE(Construct_flat_orientation)
	typedef R_ R;
	typedef typename Get_type<R, FT_tag>::type FT;
	typedef typename Get_type<R, Point_tag>::type Point;
	typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type Dplusone;
	typedef typename R::LA::template Rebind_dimension<Dynamic_dimension_tag,Dplusone>::Other LA;
	typedef typename LA::Square_matrix Matrix;
	typedef typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type CCC;
	typedef typename Get_functor<R, Point_dimension_tag>::type PD;
	typedef Flat_orientation result_type;

	// This implementation is going to suck. Maybe we should push the
	// functionality into LA. And we should check (in debug mode) that
	// the points are affinely independent.
	template<class Iter>
	result_type operator()(Iter f, Iter e)const{
		Iter f_save = f;
		PD pd (this->kernel());
		CCC ccc (this->kernel());
		int dim = pd(*f);
		Matrix coord (dim+1, dim+1); // use distance(f,e)? This matrix doesn't need to be square.
		int col = 0;
		Flat_orientation o;
		std::vector<int>& proj=o.proj;
		std::vector<int>& rest=o.rest; rest.reserve(dim+1);
		for(int i=0; i<dim+1; ++i) rest.push_back(i);
		for( ; f != e ; ++col, ++f ) {
      //std::cerr << "(*f)[0]=" << (*f)[0] << std::endl;
			Point const&p=*f;
			// use a coordinate iterator instead?
			for(int i=0; i<dim; ++i) coord(col, i) = ccc(p, i);
			coord(col,dim)=1;
			int d = (int)proj.size()+1;
			Matrix m (d, d);
			// Fill the matrix with what we already have
			for(int i=0; i<d; ++i)
			for(int j=0; j<d-1; ++j)
				m(i,j) = coord(i, proj[j]);
			// Try to complete with any other coordinate
			// TODO: iterate on rest by the end, or use a (forward_)list.
			for(std::vector<int>::iterator it=rest.begin();;++it) {
				CGAL_assertion(it!=rest.end());
				for(int i=0; i<d; ++i) m(i,d-1) = coord(i, *it);
				if(LA::sign_of_determinant(m)!=0) {
					proj.push_back(*it);
					rest.erase(it);
					break;
				}
			}
		}
		std::sort(proj.begin(),proj.end());
		typename Get_functor<R, In_flat_orientation_tag>::type ifo(this->kernel());
		o.reverse = false;
		o.reverse = ifo(o, f_save, e) != CGAL::POSITIVE;
		return o;
	}
};

template<class R_> struct Contained_in_affine_hull : private Store_kernel<R_> {
        CGAL_FUNCTOR_INIT_STORE(Contained_in_affine_hull)
        typedef R_ R;
	typedef typename Get_type<R, FT_tag>::type FT;
        typedef typename Get_type<R, Point_tag>::type Point;
	typedef typename Get_type<R, Bool_tag>::type result_type;
	typedef typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type CCC;
	typedef typename Get_functor<R, Point_dimension_tag>::type PD;
	//typedef typename Increment_dimension<typename R::Default_ambient_dimension>::type D1;
	//typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type D2;
	//typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
	typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type Dplusone;
	typedef typename R::LA::template Rebind_dimension<Dynamic_dimension_tag,Dplusone>::Other LA;
	typedef typename LA::Square_matrix Matrix;

	// mostly copied from Construct_flat_orientation. TODO: dedup this code or use LA.
        template<class Iter>
        result_type operator()(Iter f, Iter e, Point const&x) const {
	  // FIXME: are the points in (f,e) required to be affinely independent?
		PD pd (this->kernel());
		CCC ccc (this->kernel());
		int dim=pd(*f);
		Matrix coord (dim+1, dim+1); // use distance
		int col = 0;
		std::vector<int> proj;
		std::vector<int> rest; rest.reserve(dim+1);
		for(int i=0; i<dim+1; ++i) rest.push_back(i);
		for( ; f != e ; ++col, ++f ) {
			Point const&p=*f;
			for(int i=0; i<dim; ++i) coord(col, i) = ccc(p, i);
			coord(col,dim)=1;
			int d = (int)proj.size()+1;
			Matrix m (d, d);
			for(int i=0; i<d; ++i)
			for(int j=0; j<d-1; ++j)
				m(i,j) = coord(i, proj[j]);
			for(std::vector<int>::iterator it=rest.begin();it!=rest.end();++it) {
				for(int i=0; i<d; ++i) m(i,d-1) = coord(i, *it);
				if(LA::sign_of_determinant(m)!=0) {
					proj.push_back(*it);
					rest.erase(it);
					break;
				}
			}
		}
			for(int i=0; i<dim; ++i) coord(col, i) = ccc(x, i);
			coord(col,dim)=1;
			int d = (int)proj.size()+1;
			Matrix m (d, d);
			for(int i=0; i<d; ++i)
			for(int j=0; j<d-1; ++j)
				m(i,j) = coord(i, proj[j]);
			for(std::vector<int>::iterator it=rest.begin();it!=rest.end();++it) {
				for(int i=0; i<d; ++i) m(i,d-1) = coord(i, *it);
				if(LA::sign_of_determinant(m)!=0) return false;
			}
			return true;
        }
};

template<class R_> struct In_flat_orientation : private Store_kernel<R_> {
        CGAL_FUNCTOR_INIT_STORE(In_flat_orientation)
        typedef R_ R;
	typedef typename Get_type<R, FT_tag>::type FT;
        typedef typename Get_type<R, Point_tag>::type Point;
	typedef typename Get_type<R, Orientation_tag>::type result_type;
	typedef typename Increment_dimension<typename R::Default_ambient_dimension>::type D1;
	typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type D2;
	typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
	typedef typename LA::Square_matrix Matrix;

        template<class Iter>
        result_type operator()(Flat_orientation const&o, Iter f, Iter e) const {
		// TODO: work in the projection instead of the ambient space.
                typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
                typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
                int d=pd(*f);
                Matrix m(d+1,d+1);
                int i=0;
		for(;f!=e;++f,++i) {
			Point const& p=*f;
			m(i,0)=1;
			for(int j=0;j<d;++j){
				m(i,j+1)=c(p,j);
			}
		}
		for(std::vector<int>::const_iterator it = o.rest.begin(); it != o.rest.end() /* i<d+1 */; ++i, ++it) {
			m(i,0)=1;
			for(int j=0;j<d;++j){
				m(i,j+1)=0; // unneeded if the matrix is initialized to 0
			}
			if(*it != d) m(i,1+*it)=1;
		}

		result_type ret = LA::sign_of_determinant(CGAL_MOVE(m));
		if(o.reverse) ret=-ret;
		return ret;
	}
};

template<class R_> struct In_flat_side_of_oriented_sphere : private Store_kernel<R_> {
        CGAL_FUNCTOR_INIT_STORE(In_flat_side_of_oriented_sphere)
        typedef R_ R;
	typedef typename Get_type<R, FT_tag>::type FT;
        typedef typename Get_type<R, Point_tag>::type Point;
	typedef typename Get_type<R, Orientation_tag>::type result_type;
	typedef typename Increment_dimension<typename R::Default_ambient_dimension,2>::type D1;
	typedef typename Increment_dimension<typename R::Max_ambient_dimension,2>::type D2;
	typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
	typedef typename LA::Square_matrix Matrix;

        template<class Iter>
        result_type operator()(Flat_orientation const&o, Iter f, Iter e, Point const&x) const {
		// TODO: can't work in the projection, but we should at least remove the row of 1s.
                typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
                typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
                int d=pd(*f);
                Matrix m(d+2,d+2);
                int i=0;
		for(;f!=e;++f,++i) {
			Point const& p=*f;
			m(i,0)=1;
			m(i,d+1)=0;
			for(int j=0;j<d;++j){
				m(i,j+1)=c(p,j);
				m(i,d+1)+=CGAL_NTS square(m(i,j+1));
			}
		}
		for(std::vector<int>::const_iterator it = o.rest.begin(); it != o.rest.end() /* i<d+1 */; ++i, ++it) {
			m(i,0)=1;
			for(int j=0;j<d;++j){
				m(i,j+1)=0; // unneeded if the matrix is initialized to 0
			}
			if(*it != d) m(i,d+1)=m(i,1+*it)=1;
			else m(i,d+1)=0;
		}
		m(d+1,0)=1;
		m(d+1,d+1)=0;
		for(int j=0;j<d;++j){
			m(d+1,j+1)=c(x,j);
			m(d+1,d+1)+=CGAL_NTS square(m(d+1,j+1));
		}

		result_type ret = -LA::sign_of_determinant(CGAL_MOVE(m));
		if(o.reverse) ret=-ret;
		return ret;
	}
};

template<class R_> struct In_flat_power_side_of_power_sphere_raw : private Store_kernel<R_> {
        CGAL_FUNCTOR_INIT_STORE(In_flat_power_side_of_power_sphere_raw)
        typedef R_ R;
	typedef typename Get_type<R, FT_tag>::type FT;
        typedef typename Get_type<R, Point_tag>::type Point;
	typedef typename Get_type<R, Orientation_tag>::type result_type;
	typedef typename Increment_dimension<typename R::Default_ambient_dimension,2>::type D1;
	typedef typename Increment_dimension<typename R::Max_ambient_dimension,2>::type D2;
	typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
	typedef typename LA::Square_matrix Matrix;

        template<class Iter, class IterW, class Wt>
        result_type operator()(Flat_orientation const&o, Iter f, Iter e, IterW fw, Point const&x, Wt const&w) const {
		// TODO: can't work in the projection, but we should at least remove the row of 1s.
                typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
                typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
                int d=pd(*f);
                Matrix m(d+2,d+2);
                int i=0;
		for(;f!=e;++f,++fw,++i) {
			Point const& p=*f;
			m(i,0)=1;
			m(i,d+1)=-*fw;
			for(int j=0;j<d;++j){
				m(i,j+1)=c(p,j);
				m(i,d+1)+=CGAL_NTS square(m(i,j+1));
			}
		}
		for(std::vector<int>::const_iterator it = o.rest.begin(); it != o.rest.end() /* i<d+1 */; ++i, ++it) {
			m(i,0)=1;
			for(int j=0;j<d;++j){
				m(i,j+1)=0; // unneeded if the matrix is initialized to 0
			}
			if(*it != d) m(i,d+1)=m(i,1+*it)=1;
			else m(i,d+1)=0;
		}
		m(d+1,0)=1;
		m(d+1,d+1)=-w;
		for(int j=0;j<d;++j){
			m(d+1,j+1)=c(x,j);
			m(d+1,d+1)+=CGAL_NTS square(m(d+1,j+1));
		}

		result_type ret = -LA::sign_of_determinant(CGAL_MOVE(m));
		if(o.reverse) ret=-ret;
		return ret;
	}
};


}
CGAL_KD_DEFAULT_TYPE(Flat_orientation_tag,(CGAL::CartesianDKernelFunctors::Flat_orientation),(),());
CGAL_KD_DEFAULT_FUNCTOR(In_flat_orientation_tag,(CartesianDKernelFunctors::In_flat_orientation<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
CGAL_KD_DEFAULT_FUNCTOR(In_flat_side_of_oriented_sphere_tag,(CartesianDKernelFunctors::In_flat_side_of_oriented_sphere<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
CGAL_KD_DEFAULT_FUNCTOR(In_flat_power_side_of_power_sphere_raw_tag,(CartesianDKernelFunctors::In_flat_power_side_of_power_sphere_raw<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
CGAL_KD_DEFAULT_FUNCTOR(Construct_flat_orientation_tag,(CartesianDKernelFunctors::Construct_flat_orientation<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag,In_flat_orientation_tag));
CGAL_KD_DEFAULT_FUNCTOR(Contained_in_affine_hull_tag,(CartesianDKernelFunctors::Contained_in_affine_hull<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
}
#endif