/usr/include/CGAL/OpenNL/conjugate_gradient.h is in libcgal-dev 4.11-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | // Copyright (c) 2005-2008 Inria Loria (France).
/*
* author: Bruno Levy, INRIA, project ALICE
* website: http://www.loria.fr/~levy/software
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Scientific work that use this software can reference the website and
* the following publication:
*
* @INPROCEEDINGS {levy:NMDGP:05,
* AUTHOR = Bruno Levy,
* TITLE = Numerical Methods for Digital Geometry Processing,
* BOOKTITLE =Israel Korea Bi-National Conference,
* YEAR=November 2005,
* URL=http://www.loria.fr/~levy/php/article.php?pub=../publications/papers/2005/Numerics
* }
*
* Laurent Saboret 2005-2006: Changes for CGAL:
* - Added OpenNL namespace
* - solve() returns true on success
* - check divisions by zero
* - added comments
* - copied Conjugate Gradient algorithm WITH preconditioner from Graphite 1.9 code
*/
#ifndef __OPENNL_CONJUGATE_GRADIENT__
#define __OPENNL_CONJUGATE_GRADIENT__
#include <CGAL/OpenNL/blas.h>
#include <CGAL/assertions.h>
#include <cmath>
#include <cfloat>
#include <climits>
namespace OpenNL {
/**
* The Conjugate Gradient algorithm WITHOUT preconditioner:
* Ashby, Manteuffel, Saylor
* A taxononmy for conjugate gradient methods
* SIAM J Numer Anal 27, 1542-1568 (1990)
*
* This implementation is inspired by the lsolver library,
* by Christian Badura, available from:
* http://www.mathematik.uni-freiburg.de/IAM/Research/projectskr/lin_solver/
*
* @param A generic square matrix; a function
* mult(const MATRIX& M, const double* x, double* y)
* and a member function
* int dimension() const
* must to be defined.
* @param b right hand side of the system.
* @param x initial value.
* @param eps threshold for the residual.
* @param max_iter maximum number of iterations.
*/
template<class MATRIX, class VECTOR> class Solver_CG {
public:
typedef MATRIX Matrix ;
typedef VECTOR Vector ;
typedef typename Vector::CoeffType CoeffType ;
public:
Solver_CG() {
epsilon_ = 1e-6 ;
max_iter_ = 0 ;
}
// Default copy constructor, operator =() and destructor are fine
void set_epsilon(CoeffType eps) { epsilon_ = eps ; }
void set_max_iter(unsigned int max_iter) { max_iter_ = max_iter ; }
// Solve the sparse linear system "A*x = b" for A symmetric positive definite
// Return true on success
bool solve(const MATRIX &A, const VECTOR& b, VECTOR& x)
{
#ifdef DEBUG_TRACE
std::cerr << " Call Conjugate Gradient" << std::endl;
#endif
CGAL_assertion(A.dimension() > 0);
unsigned int n = A.dimension() ; // (Square) matrix dimension
unsigned int max_iter = max_iter_ ; // Max number of iterations
if(max_iter == 0) {
max_iter = 5 * n ;
}
Vector g(n) ;
Vector r(n) ;
Vector p(n) ;
unsigned int its=0; // Loop counter
CoeffType t, tau, sig, rho, gam;
CoeffType bnorm2 = BLAS<Vector>::dot(b,b) ;
CoeffType err=epsilon_*epsilon_*bnorm2 ; // Error to reach
// residue g=b-A*x
mult(A,x,g);
BLAS<Vector>::axpy(-1,b,g);
BLAS<Vector>::scal(-1,g);
// Initially, r=g=b-A*x
BLAS<Vector>::copy(g,r); // r = g
CoeffType gg=BLAS<Vector>::dot(g,g); // error gg = (g|g)
while ( gg>err && its < max_iter) {
mult(A,r,p);
rho=BLAS<Vector>::dot(p,p);
sig=BLAS<Vector>::dot(r,p);
tau=BLAS<Vector>::dot(g,r);
CGAL_assertion(sig != 0.0);
t=tau/sig;
BLAS<Vector>::axpy(t,r,x);
BLAS<Vector>::axpy(-t,p,g);
CGAL_assertion(tau != 0.0);
gam=(t*t*rho-tau)/tau;
BLAS<Vector>::scal(gam,r);
BLAS<Vector>::axpy(1,g,r);
gg=BLAS<Vector>::dot(g,g); // Update error gg = (g|g)
++its;
}
bool success = (gg <= err);
return success;
}
private:
CoeffType epsilon_ ;
unsigned int max_iter_ ;
} ;
/**
* The Conjugate Gradient algorithm WITH preconditioner:
* Ashby, Manteuffel, Saylor
* A taxononmy for conjugate gradient methods
* SIAM J Numer Anal 27, 1542-1568 (1990)
*
* This implementation is inspired by the lsolver library,
* by Christian Badura, available from:
* http://www.mathematik.uni-freiburg.de/IAM/Research/projectskr/lin_solver/
*
* @param A generic square matrix; a function
* mult(const MATRIX& M, const double* x, double* y)
* and a member function
* int dimension() const
* must to be defined.
* @param C preconditioner; a function
* mult(const PC_MATRIX& C, const double* x, double* y)
* needs to be defined.
* @param b right hand side of the system.
* @param x initial value.
* @param eps threshold for the residual.
* @param max_iter maximum number of iterations.
*/
template< class MATRIX, class PC_MATRIX, class VECTOR >
class Solver_preconditioned_CG
{
public:
typedef MATRIX Matrix ;
typedef PC_MATRIX Preconditioner ;
typedef VECTOR Vector ;
typedef typename Vector::CoeffType CoeffType ;
public:
Solver_preconditioned_CG() {
epsilon_ = 1e-6 ;
max_iter_ = 0 ;
}
// Default copy constructor, operator =() and destructor are fine
void set_epsilon(CoeffType eps) { epsilon_ = eps ; }
void set_max_iter(unsigned int max_iter) { max_iter_ = max_iter ; }
// Solve the sparse linear system "A*x = b" for A symmetric positive definite
// Return true on success
bool solve(const MATRIX &A, const PC_MATRIX &C, const VECTOR& b, VECTOR& x)
{
#ifdef DEBUG_TRACE
std::cerr << " Call Conjugate Gradient with preconditioner" << std::endl;
#endif
CGAL_assertion(A.dimension() > 0);
unsigned int n = A.dimension() ; // (Square) matrix dimension
unsigned int max_iter = max_iter_ ; // Max number of iterations
if(max_iter == 0) {
max_iter = 5 * n ;
}
Vector r(n) ; // residue r=Ax-b
Vector d(n) ;
Vector h(n) ;
Vector Ad = h ;
unsigned int its=0; // Loop counter
CoeffType rh, alpha, beta;
CoeffType bnorm2 = BLAS<Vector>::dot(b,b) ;
CoeffType err=epsilon_*epsilon_*bnorm2 ; // Error to reach
mult(A,x,r);
BLAS<Vector>::axpy(-1,b,r);
mult(C,r,d);
BLAS<Vector>::copy(d,h);
rh=BLAS<Vector>::dot(r,h);
CoeffType rr=BLAS<Vector>::dot(r,r); // error rr = (r|r)
while ( rr>err && its < max_iter) {
mult(A,d,Ad);
CGAL_assertion(BLAS<Vector>::dot(d,Ad) != 0.0);
alpha=rh/BLAS<Vector>::dot(d,Ad);
BLAS<Vector>::axpy(-alpha,d,x);
BLAS<Vector>::axpy(-alpha,Ad,r);
mult(C,r,h);
CGAL_assertion(rh != 0.0);
beta=1/rh; rh=BLAS<Vector>::dot(r,h); beta*=rh;
BLAS<Vector>::scal(beta,d);
BLAS<Vector>::axpy(1,h,d);
rr=BLAS<Vector>::dot(r,r); // Update error rr = (r|r)
++its;
}
bool success = (rr <= err);
return success;
}
private:
CoeffType epsilon_ ;
unsigned int max_iter_ ;
} ;
} // namespace OpenNL
#endif // __OPENNL_CONJUGATE_GRADIENT__
|