This file is indexed.

/usr/include/CGAL/Polynomial/bezout_matrix.h is in libcgal-dev 4.11-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany)
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Michael Hemmer
//
// ============================================================================

// TODO: The comments are all original EXACUS comments and aren't adapted. So
//         they may be wrong now.

#ifndef CGAL_POLYNOMIAL_BEZOUT_MATRIX_H
#define CGAL_POLYNOMIAL_BEZOUT_MATRIX_H

#include <algorithm>

#include <CGAL/basic.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial/determinant.h>
#include <CGAL/use.h>

#include <vector>

namespace CGAL {

namespace internal {

/*! \ingroup CGAL_resultant_matrix
 *  \brief construct hybrid Bezout matrix of two polynomials
 *
 *  If \c sub=0 ,  this function returns the hybrid Bezout matrix 
 *  of \c f and \c g.
 *  The hybrid Bezout matrix of two polynomials \e f and \e g
 *  (seen as polynomials in one variable) is a
 *  square matrix of size max(deg(<I>f</I>), deg(<I>g</I>)) whose entries
 *  are expressions in the polynomials' coefficients.
 *  Its determinant is the resultant of \e f and \e g, maybe up to sign.
 *  The function computes the same matrix as the Maple command 
 *  <I>BezoutMatrix</I>.
 *
 *  If \c sub>0 , this function returns the matrix obtained by chopping
 *  off the \c sub topmost rows and the \c sub rightmost columns.
 *  Its determinant is the <I>sub</I>-th (scalar) subresultant
 *  of \e f and \e g, maybe up to sign.
 *
 *  If specified, \c sub must be less than the degrees of both \e f and \e g.
 *
 *  See also \c CGAL::hybrid_bezout_subresultant() and \c CGAL::sylvester_matrix() .
 *
 *  A formal definition of the hybrid Bezout matrix and a proof for the
 *  subresultant property can be found in:
 *
 *  Gema M.Diaz-Toca, Laureano Gonzalez-Vega: Various New Expressions for
 *  Subresultants and Their Applications. AAECC 15, 233-266 (2004)
 *
 */
template <typename Polynomial_traits_d>
typename internal::Simple_matrix< typename Polynomial_traits_d::Coefficient_type >
hybrid_bezout_matrix(typename Polynomial_traits_d::Polynomial_d f, 
                     typename Polynomial_traits_d::Polynomial_d g, 
                     int sub = 0)
{

    typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
    typedef typename Polynomial_traits_d::Coefficient_type NT;
    typename Polynomial_traits_d::Degree degree;
    typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;
    typename Polynomial_traits_d::Get_coefficient coeff;

    typedef typename internal::Simple_matrix<NT> Matrix;

    int n = degree(f);
    int m = degree(g);
    CGAL_precondition((n >= 0) && !is_zero(f));
    CGAL_precondition((m >= 0) && !is_zero(g));
    CGAL_precondition(n > sub || sub == 0);
    CGAL_precondition(m > sub || sub == 0);

    int i, j, k, l;
    NT  s;

    if (m > n) {
        std::swap(f, g);
        std::swap(m, n);
    }

    Matrix B(n-sub);

    for (i = 1+sub; i <= m; i++) {
        for (j = 1; j <= n-sub; j++) {
            s = NT(0);
            for (k = 0; k <= i-1; k++) {
                l = n+i-j-k;
                if ((l <= n) and (l >= n-(m-i))) {
                    s += coeff(f,l) * coeff(g,k);
                }
            }
            for (k = 0; k <= n-(m-i+1); k++) {
                l = n+i-j-k;
                if ((l <= m) and (l >= i)) {
                    s -= coeff(f,k) * coeff(g,l);
                }
            }
            B[i-sub-1][j-1] = s;
        }
    }
    for (i = std::max(m+1, 1+sub); i <= n; i++) {
        for (j = i-m; j <= std::min(i, n-sub); j++) {
            B[i-sub-1][j-1] = coeff(g,i-j);
        }
    }

    return B; // g++ 3.1+ has NRVO, so this should not be too expensive
}

/*! \ingroup CGAL_resultant_matrix
 *  \brief construct the symmetric Bezout matrix of two polynomials
 *
 *  This function returns the (symmetric) Bezout matrix of \c f and \c g.
 *  The Bezout matrix of two polynomials \e f and \e g
 *  (seen as polynomials in one variable) is a
 *  square matrix of size max(deg(<I>f</I>), deg(<I>g</I>)) whose entries
 *  are expressions in the polynomials' coefficients.
 *  Its determinant is the resultant of \e f and \e g, maybe up to sign.
 *
 */
template <typename Polynomial_traits_d>
typename internal::Simple_matrix<typename Polynomial_traits_d::Coefficient_type>
symmetric_bezout_matrix
    (typename Polynomial_traits_d::Polynomial_d f, 
     typename Polynomial_traits_d::Polynomial_d g, 
     int sub = 0)
{

    

  // Note: The algorithm is taken from:
  // Chionh, Zhang, Goldman: Fast Computation of the Bezout and Dixon Resultant
  // Matrices. J.Symbolic Computation 33, 13-29 (2002)
    
    typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
    typedef typename Polynomial_traits_d::Coefficient_type NT;
    typename Polynomial_traits_d::Degree degree;
    CGAL_assertion_code(typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;)
    CGAL_USE_TYPE(Polynomial);
    typename Polynomial_traits_d::Get_coefficient coeff;

    typedef typename internal::Simple_matrix<NT> Matrix;

    int n = degree(f);
    int m = degree(g);
    CGAL_precondition((n >= 0) && !is_zero(f));
    CGAL_precondition((m >= 0) && !is_zero(g));

    int i,j,stop;

    NT sum1,sum2;

    if (m > n) {
        std::swap(f, g);
        std::swap(m, n);
    }

    CGAL_precondition((sub>=0) && sub < n);

    int d = n - sub;

    Matrix B(d);

    // 1st step: Initialisation
    for(i=0;i<d;i++) {
      for(j=i;j<d;j++) {
        sum1 = ((j+sub)+1>m) ? NT(0) : -coeff(f,i+sub)*coeff(g,(j+sub)+1);
	sum2 =  ((i+sub)>m)  ? NT(0) :  coeff(g,i+sub)*coeff(f,(j+sub)+1);
	B[i][j]=sum1+sum2;
      }
    }

    // 2nd Step: Recursion adding
    
    // First, set up the first line correctly
    for(i=0;i<d-1;i++) {
      stop = (sub<d-1-i) ? sub : d-i-1;
      for(j=1;j<=stop;j++) {
          sum1 = ((i+sub+j)+1>m) ? NT(0) 
                                 : -coeff(f,sub-j)*coeff(g,(i+sub+j)+1);
          sum2 =  ((sub-j)>m)    ? NT(0) 
                                 : coeff(g,sub-j)*coeff(f,(i+sub+j)+1);
	
	B[0][i]+=sum1+sum2;
      }
    }
    // Now, compute the rest
    for(i=1;i<d-1;i++) {
      for(j=i;j<d-1;j++) {
	B[i][j]+=B[i-1][j+1];
      }
    }

    
   //3rd Step: Exploit symmetry
    for(i=1;i<d;i++) {
      for(j=0;j<i;j++) {
	B[i][j]=B[j][i];
      }
    }
    
    return B;
}
    


/*! \ingroup CGAL_resultant_matrix
 *  \brief compute (sub)resultant as Bezout matrix determinant
 *
 *  This function returns the determinant of the matrix returned
 *  by <TT>hybrid_bezout_matrix(f, g, sub)</TT>  which is the
 *  resultant of \c f and \c g, maybe up to sign;
 *  or rather the <I>sub</I>-th (scalar) subresultant, if a non-zero third
 *  argument is given.
 *
 *  If specified, \c sub must be less than the degrees of both \e f and \e g.
 *
 *  This function might be faster than \c CGAL::Polynomial<..>::resultant() ,
 *  which computes the resultant from a subresultant remainder sequence.
 *  See also \c CGAL::sylvester_subresultant().
 */
template <class Polynomial_traits_d>
typename Polynomial_traits_d::Coefficient_type hybrid_bezout_subresultant(
        typename Polynomial_traits_d::Polynomial_d f, 
        typename Polynomial_traits_d::Polynomial_d g, 
        int sub = 0
) { 

    typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
    typedef typename Polynomial_traits_d::Coefficient_type NT;
    typename Polynomial_traits_d::Degree degree;
    typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;
    
    typedef internal::Simple_matrix<NT> Matrix;

    CGAL_precondition((degree(f) >= 0));
    CGAL_precondition((degree(g) >= 0));
    
    if (is_zero(f) || is_zero(g)) return NT(0);
    
    Matrix S = hybrid_bezout_matrix<Polynomial_traits_d>(f, g, sub);
    CGAL_assertion(S.row_dimension() == S.column_dimension());
    if (S.row_dimension() == 0) {
        return NT(1);
    } else {
        return internal::determinant(S);
    }
}

// Transforms the minors of the symmetric bezout matrix into the subresultant.
// Needs the appropriate power of the leading coedfficient of f and the
// degrees of f and g
template<class InputIterator,class OutputIterator,class NT>
void symmetric_minors_to_subresultants(InputIterator in,
                                       OutputIterator out,
                                       NT divisor,
                                       int n,
                                       int m,
                                       bool swapped) {
  
    typename CGAL::Algebraic_structure_traits<NT>::Integral_division idiv;
    
    for(int i=0;i<m;i++) {
      bool negate = ((n-m+i+1) & 2)>>1; // (n-m+i+1)==2 or 3 mod 4
      negate=negate ^ (swapped & ((n-m+i+1)*(i+1)));  
      //...XOR (swapped AND (n-m+i+1)* (i+1) is odd) 
      
      *out = idiv(*in,  negate ? -divisor : divisor);
      in++;
      out++;
    }
}


/*! \ingroup CGAL_resultant_matrix
 * \brief compute the principal subresultant coefficients as minors 
 * of the symmetric Bezout matrix.
 *
 * Returns the sequence sres<sub>0</sub>,..,sres<sub>m</sub>, where 
 * sres<sub>i</sub> denotes the ith principal subresultant coefficient
 *
 * The function uses an extension of the Berkowitz method to compute the
 * determinant
 * See also \c CGAL::minors_berkowitz
 */
template<class Polynomial_traits_d,class OutputIterator>
OutputIterator symmetric_bezout_subresultants(
	   typename Polynomial_traits_d::Polynomial_d f, 
           typename Polynomial_traits_d::Polynomial_d g,
           OutputIterator sres)
{

    typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
    typedef typename Polynomial_traits_d::Coefficient_type NT;
    typename Polynomial_traits_d::Degree degree;
    typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;
    typename Polynomial_traits_d::Leading_coefficient lcoeff;

    typedef typename internal::Simple_matrix<NT> Matrix;
    
    int n = degree(f);
    int m = degree(g);
    
    bool swapped=false;

    if(n < m) {
      std::swap(f,g);
      std::swap(n,m);
      swapped=true;
      
    }

    Matrix B = symmetric_bezout_matrix<Polynomial_traits_d>(f,g);
    
    // Compute a_0^{n-m}

    NT divisor=ipower(lcoeff(f),n-m);
    
    std::vector<NT> minors;
    minors_berkowitz(B,std::back_inserter(minors),n,m);
    CGAL::internal::symmetric_minors_to_subresultants(minors.begin(),sres,
                                                   divisor,n,m,swapped);
    
    return sres; 
  }

/* 
 * Return a modified version of the hybrid bezout matrix such that the minors
 * from the last k rows and columns give the subresultants
 */
template<class Polynomial_traits_d>
typename internal::Simple_matrix<typename Polynomial_traits_d::Coefficient_type>
modified_hybrid_bezout_matrix
    (typename Polynomial_traits_d::Polynomial_d f,
     typename Polynomial_traits_d::Polynomial_d g) {

    typedef typename Polynomial_traits_d::Coefficient_type NT;

    typedef typename internal::Simple_matrix<NT> Matrix;
    
    typename Polynomial_traits_d::Degree degree;

    int n = degree(f);
    int m = degree(g);
    
    int i,j;

    bool negate, swapped=false;

    if(n < m) {
      std::swap(f,g); //(*)
      std::swap(n,m);
      swapped=true;
    }
    
    Matrix B = CGAL::internal::hybrid_bezout_matrix<Polynomial_traits_d>(f,g);


    // swap columns
    i=0;
    while(i<n-i-1) {
      B.swap_columns(i,n-i-1); // (**)
      i++;
    }
    for(i=0;i<n;i++) { 
      negate=(n-i-1) & 1; // Negate every second column because of (**)
      negate=negate ^ (swapped & (n-m+1)); // XOR negate everything because of(*)
      if(negate) {
	for(j=0;j<n;j++) {
	  B[j][i] *= -1;
	}
      }
    }
    return B;
}

/*! \ingroup CGAL_resultant_matrix
 * \brief compute the principal subresultant coefficients as minors 
 * of the hybrid Bezout matrix.
 *
 * Returns the sequence sres<sub>0</sub>,...,sres<sub>m</sub>$, where 
 * sres<sub>i</sub> denotes the ith principal subresultant coefficient
 *
 * The function uses an extension of the Berkowitz method to compute the
 * determinant
 * See also \c CGAL::minors_berkowitz
 */
template<class Polynomial_traits_d,class OutputIterator>
OutputIterator hybrid_bezout_subresultants(
	   typename Polynomial_traits_d::Polynomial_d f, 
           typename Polynomial_traits_d::Polynomial_d g,
           OutputIterator sres) 
  {

    typedef typename Polynomial_traits_d::Coefficient_type NT;
    typename Polynomial_traits_d::Degree degree;

    typedef typename internal::Simple_matrix<NT> Matrix;
    
    int n = degree(f);
    int m = degree(g);

    Matrix B = CGAL::internal::modified_hybrid_bezout_matrix<Polynomial_traits_d>
        (f,g);

    if(n<m) {
      std::swap(n,m);
    }

    return minors_berkowitz(B,sres,n,m);
  }


  // Swap entry A_ij with A_(n-i)(n-j) for square matrix A of dimension n
  template<class NT>
    void swap_entries(typename internal::Simple_matrix<NT> & A) {
    CGAL_precondition(A.row_dimension()==A.column_dimension());
    int n = A.row_dimension();
    int i=0;
    while(i<n-i-1) {
        A.swap_rows(i,n-i-1); 
        A.swap_columns(i,n-i-1); 
        i++;
    }
  }
  
  // Produce S-matrix with the given matrix and integers.
  template<class NT,class InputIterator>
    typename internal::Simple_matrix<NT> s_matrix(
	      const typename internal::Simple_matrix<NT>& B,
	      InputIterator num,int size)
    {
      typename internal::Simple_matrix<NT> S(size);
      CGAL_precondition_code(int n = B.row_dimension();)
      CGAL_precondition(n==(int)B.column_dimension());
      int curr_num;
      bool negate;
      
      for(int i=0;i<size;i++) {
	curr_num=(*num);
	num++;
	negate = curr_num<0;
	if(curr_num<0) {
	  curr_num=-curr_num;
	}
	for(int j=0;j<size;j++) {
	  
	  S[j][i]=negate ? -B[j][curr_num-1] : B[j][curr_num-1];
	  
	}
      }
      return S;
    }
  
  // Produces the integer sequence for the S-matrix, where c is the first entry
  // of the sequence, s the number of desired diagonals and n the dimension 
  // of the base matrix
  template<class OutputIterator>
    OutputIterator s_matrix_integer_sequence(OutputIterator it,
					      int c,int s,int n) {
    CGAL_precondition(0<s);
    CGAL_precondition(s<=n);
    // c is interpreted modulo s wrt to the representants {1,..,s}
    c=c%s;
    if(c==0) {
      c=s;
    }
    
    int i, p=0, q=c;
    while(q<=n) {
      *it = q;
      it++;
      for(i=p+1;i<q;i++) {
	*it = -i;
	it++;
      }
      p = q;
      q = q+s;
    }
    return it;
  }

/*! \ingroup CGAL_resultant_matrix
 * \brief computes the coefficients of the polynomial subresultant sequence 
 *
 * Returns an upper triangular matrix <I>A</I> such that A<sub>i,j</sub> is
 * the coefficient of <I>x<sup>j-1</sup></I> in the <I>i</I>th polynomial
 * subresultant. In particular, the main diagonal contains the scalar
 * subresultants.
 * 
 * If \c d > 0 is specified, only the first \c d diagonals of <I>A</I> are 
 * computed. In particular, setting \c d to one yields exactly the same
 * result as applying \c hybrid_subresultants or \c symmetric_subresultants
 * (except the different output format). 
 *
 * These coefficients are computed as special minors of the hybrid Bezout matrix.
 * See also \c CGAL::minors_berkowitz
 */
template<typename Polynomial_traits_d>
typename internal::Simple_matrix<typename Polynomial_traits_d::Coefficient_type> 
polynomial_subresultant_matrix(typename Polynomial_traits_d::Polynomial_d f,
			       typename Polynomial_traits_d::Polynomial_d g,
                               int d=0) {

    typedef typename Polynomial_traits_d::Coefficient_type NT;
    typename Polynomial_traits_d::Degree degree;
    typename Polynomial_traits_d::Leading_coefficient lcoeff;

    int n = degree(f);
    int m = degree(g);

    CGAL_precondition(n>=0);
    CGAL_precondition(m>=0);
    CGAL_precondition(d>=0);

    typedef internal::Simple_matrix<NT> Matrix;
   
    bool swapped=false;

    if(n < m) {
      std::swap(f,g);
      std::swap(n,m);
      swapped=true;
    }

    if(d==0) {
      d=m;
    };


    Matrix B = CGAL::internal::symmetric_bezout_matrix<Polynomial_traits_d>(f,g);

    // For easier notation, we swap all entries:
    internal::swap_entries<NT>(B);
    
    // Compute the S-matrices and collect the minors
    std::vector<Matrix> s_mat(m);
    std::vector<std::vector<NT> > coeffs(d);
    for(int i = 1; i<=d;i++) {
      std::vector<int> intseq;
      internal::s_matrix_integer_sequence(std::back_inserter(intseq),i,d,n);

      Matrix S = internal::s_matrix<NT>(B,intseq.begin(),(int)intseq.size());
      internal::swap_entries<NT>(S);
      //std::cout << S << std::endl;
      int Sdim = S.row_dimension();
      int number_of_minors=(Sdim < m) ? Sdim : Sdim; 
      
      internal::minors_berkowitz(S,std::back_inserter(coeffs[i-1]),
			    Sdim,number_of_minors);

    }

    // Now, rearrange the minors in the matrix

    Matrix Ret(m,m,NT(0));

    for(int i = 0; i < d; i++) {
      for(int j = 0;j < m-i ; j++) {
	int s_index=(n-m+j+i+1)%d;
	if(s_index==0) {
	  s_index=d;
	}
	s_index--;
	Ret[j][j+i]=coeffs[s_index][n-m+j];
	
      }
    }

    typename CGAL::Algebraic_structure_traits<NT>::Integral_division idiv;

    NT divisor = ipower(lcoeff(f),n-m); 

    int bit_mask = swapped ? 1 : 0;
    // Divide through the divisor and set the correct sign
    for(int i=0;i<m;i++) {
      for(int j = i;j<m;j++) {
	int negate = ((n-m+i+1) & 2)>>1; // (n-m+i+1)==2 or 3 mod 4
	negate^=(bit_mask & ((n-m+i+1)*(i+1)));
	//...XOR (swapped AND (n-m+i+1)* (i+1) is odd) 
	Ret[i][j] = idiv(Ret[i][j],  negate>0 ? -divisor : divisor);
      }
    }

    return Ret;
}

}

} //namespace CGAL



#endif // CGAL_POLYNOMIAL_BEZOUT_MATRIX_H
// EOF