This file is indexed.

/usr/include/CGAL/Regular_triangulation.h is in libcgal-dev 4.11-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
// Copyright (c) 2014 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s)     : Clement Jamin

#ifndef CGAL_REGULAR_TRIANGULATION_H
#define CGAL_REGULAR_TRIANGULATION_H

#include <CGAL/license/Triangulation.h>

#include <CGAL/Triangulation.h>
#include <CGAL/Dimension.h>
#include <CGAL/Default.h>
#include <CGAL/spatial_sort.h>
#include <CGAL/Regular_triangulation_traits_adapter.h>

namespace CGAL {

template< typename Traits_, typename TDS_ = Default >
class Regular_triangulation
: public Triangulation<
    Regular_triangulation_traits_adapter<Traits_>,
    typename Default::Get<
      TDS_, 
      Triangulation_data_structure<
        typename Regular_triangulation_traits_adapter<Traits_>::Dimension,
        Triangulation_vertex<Regular_triangulation_traits_adapter<Traits_> >,
        Triangulation_full_cell<Regular_triangulation_traits_adapter<Traits_> >
      >
    >::type>
{
  typedef Regular_triangulation_traits_adapter<Traits_>  RTTraits;
  typedef typename RTTraits::Dimension            Maximal_dimension_;
  typedef typename Default::Get<
    TDS_,
    Triangulation_data_structure<
    Maximal_dimension_,
    Triangulation_vertex<RTTraits>,
    Triangulation_full_cell<RTTraits>
    > >::type                                     TDS;
  typedef Triangulation<RTTraits, TDS>            Base;
  typedef Regular_triangulation<Traits_, TDS_>    Self;

  typedef typename RTTraits::Orientation_d                 Orientation_d;
  typedef typename RTTraits::Power_side_of_power_sphere_d  Power_side_of_power_sphere_d;
  typedef typename RTTraits::In_flat_power_side_of_power_sphere_d          
                                                           In_flat_power_side_of_power_sphere_d;
  typedef typename RTTraits::Flat_orientation_d            Flat_orientation_d;
  typedef typename RTTraits::Construct_flat_orientation_d  Construct_flat_orientation_d;

public: // PUBLIC NESTED TYPES

  typedef RTTraits                                Geom_traits;
  typedef typename Base::Triangulation_ds         Triangulation_ds;

  typedef typename Base::Vertex                   Vertex;
  typedef typename Base::Full_cell                Full_cell;
  typedef typename Base::Facet                    Facet;
  typedef typename Base::Face                     Face;
  
  typedef Maximal_dimension_                      Maximal_dimension;

  typedef typename Base::Point_const_iterator     Point_const_iterator;
  typedef typename Base::Vertex_handle            Vertex_handle;
  typedef typename Base::Vertex_iterator          Vertex_iterator;
  typedef typename Base::Vertex_const_handle      Vertex_const_handle;
  typedef typename Base::Vertex_const_iterator    Vertex_const_iterator;

  typedef typename Base::Full_cell_handle         Full_cell_handle;
  typedef typename Base::Full_cell_iterator       Full_cell_iterator;
  typedef typename Base::Full_cell_const_handle   Full_cell_const_handle;
  typedef typename Base::Full_cell_const_iterator Full_cell_const_iterator;
  typedef typename Base::Finite_full_cell_const_iterator
                                                  Finite_full_cell_const_iterator;

  typedef typename Base::size_type                size_type;
  typedef typename Base::difference_type          difference_type;

  typedef typename Base::Locate_type              Locate_type;

  //Tag to distinguish Delaunay from Regular triangulations
  typedef Tag_true                                Weighted_tag;

protected: // DATA MEMBERS


public:

  typedef typename Base::Point Weighted_point;
  typedef typename Base::Rotor Rotor;
  using Base::maximal_dimension;
  using Base::are_incident_full_cells_valid;
  using Base::coaffine_orientation_predicate;
  using Base::reset_flat_orientation;
  using Base::current_dimension;
  using Base::geom_traits;
  using Base::index_of_covertex;
  //using Base::index_of_second_covertex;
  using Base::rotate_rotor;
  using Base::infinite_vertex;
  using Base::insert_in_hole;
  using Base::is_infinite;
  using Base::locate;
  using Base::points_begin;
  using Base::points_end;
  using Base::set_neighbors;
  using Base::new_full_cell;
  using Base::number_of_vertices;
  using Base::orientation;
  using Base::tds;
  using Base::reorient_full_cells;
  using Base::full_cell;
  using Base::full_cells_begin;
  using Base::full_cells_end;
  using Base::finite_full_cells_begin;
  using Base::finite_full_cells_end;
  using Base::vertices_begin;
  using Base::vertices_end;

private:

  // Wrapper
  struct Power_side_of_power_sphere_for_non_maximal_dim_d
  {
    boost::optional<Flat_orientation_d>* fop;
    Construct_flat_orientation_d cfo;
    In_flat_power_side_of_power_sphere_d ifpt;

    Power_side_of_power_sphere_for_non_maximal_dim_d(
      boost::optional<Flat_orientation_d>& x,
      Construct_flat_orientation_d const&y,
      In_flat_power_side_of_power_sphere_d const&z)
    : fop(&x), cfo(y), ifpt(z) {}

    template<class Iter>
    CGAL::Orientation operator()(Iter a, Iter b, const Weighted_point & p)const
    {
      if(!*fop)
        *fop=cfo(a,b);
      return ifpt(fop->get(),a,b,p);
    }
  };

public:

// - - - - - - - - - - - - - - - - - - - - - - - - - - CREATION / CONSTRUCTORS

  Regular_triangulation(int dim, const Geom_traits &k = Geom_traits())
  : Base(dim, k)
  {
  }

  // With this constructor,
  // the user can specify a Flat_orientation_d object to be used for
  // orienting simplices of a specific dimension
  // (= preset_flat_orientation_.first)
  // It it used by the dark triangulations created by DT::remove
  Regular_triangulation(
    int dim,
    const std::pair<int, const Flat_orientation_d *> &preset_flat_orientation,
    const Geom_traits &k = Geom_traits())
  : Base(dim, preset_flat_orientation, k)
  {
  }

  ~Regular_triangulation() {}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ACCESS

  // Not Documented
  Power_side_of_power_sphere_for_non_maximal_dim_d power_side_of_power_sphere_for_non_maximal_dim_predicate() const
  {
    return Power_side_of_power_sphere_for_non_maximal_dim_d (
      flat_orientation_,
      geom_traits().construct_flat_orientation_d_object(),
      geom_traits().in_flat_power_side_of_power_sphere_d_object()
    );
  }


  // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - REMOVALS

  // Warning: these functions are not correct since they do not restore hidden 
  // vertices

  Full_cell_handle remove(Vertex_handle);
  Full_cell_handle remove(const Weighted_point & p, Full_cell_handle hint = Full_cell_handle())
  {
    Locate_type lt;
    Face f(maximal_dimension());
    Facet ft;
    Full_cell_handle s = locate(p, lt, f, ft, hint);
    if( Base::ON_VERTEX == lt )
    {
      return remove(s->vertex(f.index(0)));
    }
    return Full_cell_handle();
  }

  template< typename ForwardIterator >
  void remove(ForwardIterator start, ForwardIterator end)
  {
    while( start != end )
      remove(*start++);
  }

  // Not documented
  void remove_decrease_dimension(Vertex_handle);

  // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INSERTIONS

  template< typename ForwardIterator >
  std::ptrdiff_t insert(ForwardIterator start, ForwardIterator end)
  {
    size_type n = number_of_vertices();
    typedef std::vector<Weighted_point> WP_vec;
    WP_vec points(start, end);

    spatial_sort(points.begin(), points.end(), geom_traits());

    Full_cell_handle hint;
    for(typename WP_vec::const_iterator p = points.begin(); p != points.end(); ++p )
    {
      Locate_type lt;
      Face f(maximal_dimension());
      Facet ft;
      Full_cell_handle c = locate (*p, lt, f, ft, hint);
      Vertex_handle v = insert (*p, lt, f, ft, c);
      
      hint = v == Vertex_handle() ? c : v->full_cell();
    }
    return number_of_vertices() - n;
  }

  Vertex_handle insert(const Weighted_point &,
                       Locate_type,
                       const Face &,
                       const Facet &,
                       Full_cell_handle);

  Vertex_handle insert(const Weighted_point & p,
                       Full_cell_handle start = Full_cell_handle())
  {
    Locate_type lt;
    Face f(maximal_dimension());
    Facet ft;
    Full_cell_handle s = locate(p, lt, f, ft, start);
    return insert(p, lt, f, ft, s);
  }

  Vertex_handle insert(const Weighted_point & p, Vertex_handle hint)
  {
    CGAL_assertion( Vertex_handle() != hint );
    return insert(p, hint->full_cell());
  }

  Vertex_handle insert_outside_affine_hull(const Weighted_point &);
  Vertex_handle insert_in_conflicting_cell(
    const Weighted_point &, Full_cell_handle,
    Vertex_handle only_if_this_vertex_is_in_the_cz = Vertex_handle());

  Vertex_handle insert_if_in_star(const Weighted_point &,
                                  Vertex_handle,
                                  Locate_type,
                                  const Face &,
                                  const Facet &,
                                  Full_cell_handle);

  Vertex_handle insert_if_in_star(
    const Weighted_point & p, Vertex_handle star_center,
    Full_cell_handle start = Full_cell_handle())
  {
    Locate_type lt;
    Face f(maximal_dimension());
    Facet ft;
    Full_cell_handle s = locate(p, lt, f, ft, start);
    return insert_if_in_star(p, star_center, lt, f, ft, s);
  }

  Vertex_handle insert_if_in_star(
    const Weighted_point & p, Vertex_handle star_center,
    Vertex_handle hint)
  {
    CGAL_assertion( Vertex_handle() != hint );
    return insert_if_in_star(p, star_center, hint->full_cell());
  }

// - - - - - - - - - - - - - - - - - - - - - - - - - GATHERING CONFLICTING SIMPLICES

  bool is_in_conflict(const Weighted_point &, Full_cell_const_handle) const;

  template< class OrientationPredicate >
  Oriented_side perturbed_power_side_of_power_sphere(const Weighted_point &,
      Full_cell_const_handle, const OrientationPredicate &) const;

  template< typename OutputIterator >
  Facet compute_conflict_zone(const Weighted_point &, Full_cell_handle, OutputIterator) const;

  template < typename OrientationPredicate, typename PowerTestPredicate >
  class Conflict_predicate
  {
    const Self & rt_;
    const Weighted_point & p_;
    OrientationPredicate ori_;
    PowerTestPredicate power_side_of_power_sphere_;
    int cur_dim_;
  public:
    Conflict_predicate(
      const Self & rt,
      const Weighted_point & p,
      const OrientationPredicate & ori,
      const PowerTestPredicate & power_side_of_power_sphere)
    : rt_(rt), p_(p), ori_(ori), power_side_of_power_sphere_(power_side_of_power_sphere), cur_dim_(rt.current_dimension()) {}

    inline
    bool operator()(Full_cell_const_handle s) const
    {
      bool ok;
      if( ! rt_.is_infinite(s) )
      {
        Oriented_side power_side_of_power_sphere = power_side_of_power_sphere_(rt_.points_begin(s), rt_.points_begin(s) + cur_dim_ + 1, p_);
        if( ON_POSITIVE_SIDE == power_side_of_power_sphere )
          ok = true;
        else if( ON_NEGATIVE_SIDE == power_side_of_power_sphere )
          ok = false;
        else
          ok = ON_POSITIVE_SIDE == rt_.perturbed_power_side_of_power_sphere<OrientationPredicate>(p_, s, ori_);
      }
      else
      {
        typedef typename Full_cell::Vertex_handle_const_iterator VHCI;
        typedef Substitute_point_in_vertex_iterator<VHCI> F;
        F spivi(rt_.infinite_vertex(), &p_);

        Orientation o =  ori_(
          boost::make_transform_iterator(s->vertices_begin(), spivi),
          boost::make_transform_iterator(s->vertices_begin() + cur_dim_ + 1,
                                         spivi));

        if( POSITIVE == o )
          ok = true;
        else if( o == NEGATIVE )
          ok = false;
        else
          ok = (*this)(s->neighbor( s->index( rt_.infinite_vertex() ) ));
      }
      return ok;
    }
  };

  template < typename ConflictPredicate >
  class Conflict_traversal_predicate
  {
    const Self & rt_;
    const ConflictPredicate & pred_;
  public:
    Conflict_traversal_predicate(const Self & rt, const ConflictPredicate & pred)
    : rt_(rt), pred_(pred)
    {}
    inline
    bool operator()(const Facet & f) const
    {
      return pred_(rt_.full_cell(f)->neighbor(rt_.index_of_covertex(f)));
    }
  };

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  VALIDITY

    bool is_valid(bool verbose = false, int level = 0) const;

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  MISC

    std::size_t number_of_hidden_vertices() const
    {
      return m_hidden_points.size();
    }

private:

  template<typename InputIterator>
  bool
  does_cell_range_contain_vertex(InputIterator cz_begin, InputIterator cz_end,
                                 Vertex_handle vh) const
  {
    // Check all vertices
    while(cz_begin != cz_end)
    {
      Full_cell_handle fch = *cz_begin;
      for (int i = 0 ; i <= current_dimension() ; ++i)
      {
        if (fch->vertex(i) == vh)
          return true;
      }
      ++cz_begin;
    }
    return false;
  }

  template<typename InputIterator, typename OutputIterator>
  void
  process_conflict_zone(InputIterator cz_begin, InputIterator cz_end,
                        OutputIterator vertices_out) const
  {
    // Get all vertices
    while(cz_begin != cz_end)
    {
      Full_cell_handle fch = *cz_begin;
      for (int i = 0 ; i <= current_dimension() ; ++i)
      {
        Vertex_handle vh = fch->vertex(i);
        if (vh->full_cell() != Full_cell_handle())
        {
          (*vertices_out++) = vh;
          vh->set_full_cell(Full_cell_handle());
        }
      }
      ++cz_begin;
    }
  }


  template<typename InputIterator>
  void
  process_cz_vertices_after_insertion(InputIterator vertices_begin,
                                      InputIterator vertices_end)
  {
    // Get all vertices
    while(vertices_begin != vertices_end)
    {
      Vertex_handle vh = *vertices_begin;
      if (vh->full_cell() == Full_cell_handle())
      {
        m_hidden_points.push_back(vh->point());
        tds().delete_vertex(vh);
      }
      ++vertices_begin;
    }
  }

private:
  // Some internal types to shorten notation
  typedef typename Base::Coaffine_orientation_d Coaffine_orientation_d;
  using Base::flat_orientation_;
  typedef Conflict_predicate<Coaffine_orientation_d, Power_side_of_power_sphere_for_non_maximal_dim_d>
      Conflict_pred_in_subspace;
  typedef Conflict_predicate<Orientation_d, Power_side_of_power_sphere_d>
      Conflict_pred_in_fullspace;
  typedef Conflict_traversal_predicate<Conflict_pred_in_subspace>
      Conflict_traversal_pred_in_subspace;
  typedef Conflict_traversal_predicate<Conflict_pred_in_fullspace>
      Conflict_traversal_pred_in_fullspace;

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  MEMBER VARIABLES
  std::vector<Weighted_point> m_hidden_points;

}; // class Regular_triangulation


// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
// FUNCTIONS THAT ARE MEMBER METHODS:

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - REMOVALS


// Warning: this function is not correct since it does not restore hidden 
// vertices
template< typename Traits, typename TDS >
typename Regular_triangulation<Traits, TDS>::Full_cell_handle
Regular_triangulation<Traits, TDS>
::remove( Vertex_handle v )
{
  CGAL_precondition( ! is_infinite(v) );
  CGAL_expensive_precondition( is_vertex(v) );

  // THE CASE cur_dim == 0
  if( 0 == current_dimension() )
  {
    remove_decrease_dimension(v);
    return Full_cell_handle();
  }
  else if( 1 == current_dimension() )
  {   // THE CASE cur_dim == 1
    if( 2 == number_of_vertices() )
    {
      remove_decrease_dimension(v);
      return Full_cell_handle();
    }
    Full_cell_handle left = v->full_cell();
    if( 0 == left->index(v) )
      left = left->neighbor(1);
    CGAL_assertion( 1 == left->index(v) );
    Full_cell_handle right = left->neighbor(0);
      tds().associate_vertex_with_full_cell(left, 1, right->vertex(1));
      set_neighbors(left, 0, right->neighbor(0), right->mirror_index(0));
    tds().delete_vertex(v);
    tds().delete_full_cell(right);
    return left;
  }

  // THE CASE cur_dim >= 2
  // Gather the finite vertices sharing an edge with |v|
  typedef typename Base::template Full_cell_set<Full_cell_handle> Simplices;
  Simplices simps;
  std::back_insert_iterator<Simplices> out(simps);
  tds().incident_full_cells(v, out);
  typedef std::set<Vertex_handle> Vertex_set;
  Vertex_set verts;
  Vertex_handle vh;
  for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
    for( int i = 0; i <= current_dimension(); ++i )
    {
      vh = (*it)->vertex(i);
      if( is_infinite(vh) )
        continue;
      if( vh == v )
        continue;
      verts.insert(vh);
    }

  // After gathering finite neighboring vertices, create their Dark Delaunay triangulation
  typedef Triangulation_vertex<Geom_traits, Vertex_handle> Dark_vertex_base;
  typedef Triangulation_full_cell<
    Geom_traits,
    internal::Triangulation::Dark_full_cell_data<TDS> >    Dark_full_cell_base;
  typedef Triangulation_data_structure<Maximal_dimension,
                                       Dark_vertex_base,
                                       Dark_full_cell_base
                                      >                    Dark_tds;
  typedef Regular_triangulation<Traits, Dark_tds>               Dark_triangulation;
  typedef typename Dark_triangulation::Face                Dark_face;
  typedef typename Dark_triangulation::Facet               Dark_facet;
  typedef typename Dark_triangulation::Vertex_handle       Dark_v_handle;
  typedef typename Dark_triangulation::Full_cell_handle    Dark_s_handle;

  // If flat_orientation_ is defined, we give it the Dark triangulation
  // so that the orientation it uses for "current_dimension()"-simplices is
  // coherent with the global triangulation
  Dark_triangulation dark_side(
    maximal_dimension(),
    flat_orientation_ ?
    std::pair<int, const Flat_orientation_d *>(current_dimension(), flat_orientation_.get_ptr())
    : std::pair<int, const Flat_orientation_d *>((std::numeric_limits<int>::max)(), NULL) );

  Dark_s_handle dark_s;
  Dark_v_handle dark_v;
  typedef std::map<Vertex_handle, Dark_v_handle> Vertex_map;
  Vertex_map light_to_dark;
  typename Vertex_set::iterator vit = verts.begin();
  while( vit != verts.end() )
  {
    dark_v = dark_side.insert((*vit)->point(), dark_s);
    dark_s = dark_v->full_cell();
    dark_v->data() = *vit;
    light_to_dark[*vit] = dark_v;
    ++vit;
  }

  if( dark_side.current_dimension() != current_dimension() )
  {
    CGAL_assertion( dark_side.current_dimension() + 1 == current_dimension() );
    // Here, the finite neighbors of |v| span a affine subspace of
    // dimension one less than the current dimension. Two cases are possible:
    if( (size_type)(verts.size() + 1) == number_of_vertices() )
    {
      remove_decrease_dimension(v);
      return Full_cell_handle();
    }
    else
    {   // |v| is strictly outside the convex hull of the rest of the points. This is an
      // easy case: first, modify the finite full_cells, then, delete the infinite ones.
      // We don't even need the Dark triangulation.
      Simplices infinite_simps;
      {
        Simplices finite_simps;
        for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
          if( is_infinite(*it) )
            infinite_simps.push_back(*it);
          else
            finite_simps.push_back(*it);
        simps.swap(finite_simps);
      } // now, simps only contains finite simplices
      // First, modify the finite full_cells:
      for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
      {
        int v_idx = (*it)->index(v);
        tds().associate_vertex_with_full_cell(*it, v_idx, infinite_vertex());
      }
      // Make the handles to infinite full cells searchable
      infinite_simps.make_searchable();
      // Then, modify the neighboring relation
      for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
      {
        for( int i = 0 ; i <= current_dimension(); ++i )
        {
          if (is_infinite((*it)->vertex(i)))
            continue;
          (*it)->vertex(i)->set_full_cell(*it);
          Full_cell_handle n = (*it)->neighbor(i);
          // Was |n| a finite full cell prior to removing |v| ?
          if( ! infinite_simps.contains(n) )
            continue;
          int n_idx = n->index(v);
          set_neighbors(*it, i, n->neighbor(n_idx), n->neighbor(n_idx)->index(n));
        }
      }
      Full_cell_handle ret_s;
      // Then, we delete the infinite full_cells
      for( typename Simplices::iterator it = infinite_simps.begin(); it != infinite_simps.end(); ++it )
        tds().delete_full_cell(*it);
      tds().delete_vertex(v);
      return simps.front();
    }
  }
  else //  From here on, dark_side.current_dimension() == current_dimension()
  {
    dark_side.infinite_vertex()->data() = infinite_vertex();
    light_to_dark[infinite_vertex()] = dark_side.infinite_vertex();
  }

  // Now, compute the conflict zone of v->point() in
  // the dark side. This is precisely the set of full_cells
  // that we have to glue back into the light side.
  Dark_face       dark_f(dark_side.maximal_dimension());
  Dark_facet      dark_ft;
  typename Dark_triangulation::Locate_type     lt;
  dark_s = dark_side.locate(v->point(), lt, dark_f, dark_ft);
  CGAL_assertion( lt != Dark_triangulation::ON_VERTEX
    && lt != Dark_triangulation::OUTSIDE_AFFINE_HULL );

  // |ret_s| is the full_cell that we return
  Dark_s_handle dark_ret_s = dark_s;
  Full_cell_handle ret_s;

  typedef typename Base::template Full_cell_set<Dark_s_handle> Dark_full_cells;
  Dark_full_cells conflict_zone;
  std::back_insert_iterator<Dark_full_cells> dark_out(conflict_zone);

  dark_ft = dark_side.compute_conflict_zone(v->point(), dark_s, dark_out);
  // Make the dark simplices in the conflict zone searchable
  conflict_zone.make_searchable();

  // THE FOLLOWING SHOULD MAYBE GO IN TDS.
  // Here is the plan:
  // 1. Pick any Facet from boundary of the light zone
  // 2. Find corresponding Facet on boundary of dark zone
  // 3. stitch.

  // 1. Build a facet on the boudary of the light zone:
  Full_cell_handle light_s = *simps.begin();
  Facet light_ft(light_s, light_s->index(v));

  // 2. Find corresponding Dark_facet on boundary of the dark zone
  Dark_full_cells dark_incident_s;
  for( int i = 0; i <= current_dimension(); ++i )
  {
    if( index_of_covertex(light_ft) == i )
      continue;
    Dark_v_handle dark_v = light_to_dark[full_cell(light_ft)->vertex(i)];
    dark_incident_s.clear();
    dark_out = std::back_inserter(dark_incident_s);
    dark_side.tds().incident_full_cells(dark_v, dark_out);
    for(typename Dark_full_cells::iterator it = dark_incident_s.begin();
        it != dark_incident_s.end();
        ++it)
    {
      (*it)->data().count_ += 1;
    }
  }

  for( typename Dark_full_cells::iterator it = dark_incident_s.begin(); it != dark_incident_s.end(); ++it )
  {
    if( current_dimension() != (*it)->data().count_ )
      continue;
    if( ! conflict_zone.contains(*it) )
      continue;
    // We found a full_cell incident to the dark facet corresponding to the light facet |light_ft|
    int ft_idx = 0;
    while( light_s->has_vertex( (*it)->vertex(ft_idx)->data() ) )
      ++ft_idx;
    dark_ft = Dark_facet(*it, ft_idx);
    break;
  }
  // Pre-3. Now, we are ready to traverse both boundary and do the stiching.

  // But first, we create the new full_cells in the light triangulation,
  // with as much adjacency information as possible.

  // Create new full_cells with vertices
  for( typename Dark_full_cells::iterator it = conflict_zone.begin(); it != conflict_zone.end(); ++it )
  {
    Full_cell_handle new_s = new_full_cell();
    (*it)->data().light_copy_ = new_s;
    for( int i = 0; i <= current_dimension(); ++i )
      tds().associate_vertex_with_full_cell(new_s, i, (*it)->vertex(i)->data());
    if( dark_ret_s == *it )
      ret_s = new_s;
  }

  // Setup adjacencies inside the hole
  for( typename Dark_full_cells::iterator it = conflict_zone.begin(); it != conflict_zone.end(); ++it )
  {
    Full_cell_handle new_s = (*it)->data().light_copy_;
    for( int i = 0; i <= current_dimension(); ++i )
      if( conflict_zone.contains((*it)->neighbor(i)) )
        tds().set_neighbors(new_s, i, (*it)->neighbor(i)->data().light_copy_, (*it)->mirror_index(i));
  }

  // 3. Stitch
  simps.make_searchable();
  typedef std::queue<std::pair<Facet, Dark_facet> > Queue;
  Queue q;
  q.push(std::make_pair(light_ft, dark_ft));
  dark_s = dark_side.full_cell(dark_ft);
  int dark_i = dark_side.index_of_covertex(dark_ft);
  // mark dark_ft as visited:
  // TODO try by marking with Dark_v_handle (vertex)
  dark_s->neighbor(dark_i)->set_neighbor(dark_s->mirror_index(dark_i), Dark_s_handle());
  while( ! q.empty() )
  {
    std::pair<Facet, Dark_facet> p = q.front();
    q.pop();
    light_ft = p.first;
    dark_ft = p.second;
    light_s = full_cell(light_ft);
    int light_i = index_of_covertex(light_ft);
    dark_s = dark_side.full_cell(dark_ft);
    int dark_i = dark_side.index_of_covertex(dark_ft);
    Full_cell_handle light_n = light_s->neighbor(light_i);
    set_neighbors(dark_s->data().light_copy_, dark_i, light_n, light_s->mirror_index(light_i));
    for( int di = 0; di <= current_dimension(); ++di )
    {
      if( di == dark_i )
        continue;
      int li = light_s->index(dark_s->vertex(di)->data());
      Rotor light_r(light_s, li, light_i);
      typename Dark_triangulation::Rotor dark_r(dark_s, di, dark_i);

      while( simps.contains(cpp11::get<0>(light_r)->neighbor(cpp11::get<1>(light_r))) )
        light_r = rotate_rotor(light_r);

      while( conflict_zone.contains(cpp11::get<0>(dark_r)->neighbor(cpp11::get<1>(dark_r))) )
        dark_r = dark_side.rotate_rotor(dark_r);

      Dark_s_handle dark_ns = cpp11::get<0>(dark_r);
      int dark_ni = cpp11::get<1>(dark_r);
      Full_cell_handle light_ns = cpp11::get<0>(light_r);
      int light_ni = cpp11::get<1>(light_r);
      // mark dark_r as visited:
      // TODO try by marking with Dark_v_handle (vertex)
      Dark_s_handle outside = dark_ns->neighbor(dark_ni);
      Dark_v_handle mirror = dark_ns->mirror_vertex(dark_ni, current_dimension());
      int dn = outside->index(mirror);
      if( Dark_s_handle() == outside->neighbor(dn) )
        continue;
      outside->set_neighbor(dn, Dark_s_handle());
      q.push(std::make_pair(Facet(light_ns, light_ni), Dark_facet(dark_ns, dark_ni)));
    }
  }
  tds().delete_full_cells(simps.begin(), simps.end());
  tds().delete_vertex(v);
  return ret_s;
}

template< typename Traits, typename TDS >
void
Regular_triangulation<Traits, TDS>
::remove_decrease_dimension(Vertex_handle v)
{
  CGAL_precondition( current_dimension() >= 0 );
  tds().remove_decrease_dimension(v, infinite_vertex());
  // reset the predicates:
  reset_flat_orientation();
  if( 1 <= current_dimension() )
  {
    Full_cell_handle inf_v_cell = infinite_vertex()->full_cell();
    int inf_v_index = inf_v_cell->index(infinite_vertex());
    Full_cell_handle s = inf_v_cell->neighbor(inf_v_index);
    Orientation o = orientation(s);
    CGAL_assertion( ZERO != o );
    if( NEGATIVE == o )
      reorient_full_cells();
  }
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INSERTIONS

template< typename Traits, typename TDS >
typename Regular_triangulation<Traits, TDS>::Vertex_handle
Regular_triangulation<Traits, TDS>
::insert(const Weighted_point & p, Locate_type lt, const Face & f, const Facet &, Full_cell_handle s)
{
  switch( lt )
  {
    case Base::OUTSIDE_AFFINE_HULL:
      return insert_outside_affine_hull(p);
      break;
    case Base::ON_VERTEX:
    {
      Vertex_handle v = s->vertex(f.index(0));
      typename RTTraits::Compute_weight_d pw =
        geom_traits().compute_weight_d_object();
      
      if (pw(p) == pw(v->point()))
        return v;
      // If dim == 0 and the new point has a bigger weight, 
      // we just replace the point, and the former point gets hidden
      else if (current_dimension() == 0)
      {
        if (pw(p) > pw(v->point()))
        {
          m_hidden_points.push_back(v->point());
          v->set_point(p);
          return v;
        }
        // Otherwise, the new point is hidden
        else
        {
          m_hidden_points.push_back(p);
          return Vertex_handle();
        }
      }
      // Otherwise, we apply the "normal" algorithm

      // !NO break here!
    }
    default:
      return insert_in_conflicting_cell(p, s);
  }
}

/*
Inserts the point `p` in the regular triangulation. Returns a handle to the
newly created vertex at that position.
\pre The point `p`
must lie outside the affine hull of the regular triangulation. This implies that
`rt`.`current_dimension()` must be smaller than `rt`.`maximal_dimension()`.
*/
template< typename Traits, typename TDS >
typename Regular_triangulation<Traits, TDS>::Vertex_handle
Regular_triangulation<Traits, TDS>
::insert_outside_affine_hull(const Weighted_point & p)
{
  // we don't use Base::insert_outside_affine_hull(...) because here, we
  // also need to reset the side_of_oriented_subsphere functor.
  CGAL_precondition( current_dimension() < maximal_dimension() );
  Vertex_handle v = tds().insert_increase_dimension(infinite_vertex());
  // reset the predicates:
  reset_flat_orientation();
  v->set_point(p);
  if( current_dimension() >= 1 )
  {
    Full_cell_handle inf_v_cell = infinite_vertex()->full_cell();
    int inf_v_index = inf_v_cell->index(infinite_vertex());
    Full_cell_handle s = inf_v_cell->neighbor(inf_v_index);
    Orientation o = orientation(s);
    CGAL_assertion( ZERO != o );
      if( NEGATIVE == o )
        reorient_full_cells();
      
    // We just inserted the second finite point and the right infinite
    // cell is like : (inf_v, v), but we want it to be (v, inf_v) to be
    // consistent with the rest of the cells
    if (current_dimension() == 1)
    {
      // Is "inf_v_cell" the right infinite cell? Then inf_v_index should be 1
      if (inf_v_cell->neighbor(inf_v_index)->index(inf_v_cell) == 0 
        && inf_v_index == 0)
      {
        inf_v_cell->swap_vertices(current_dimension() - 1, current_dimension());
      }
      else
      {
        inf_v_cell = inf_v_cell->neighbor((inf_v_index + 1) % 2);
        inf_v_index = inf_v_cell->index(infinite_vertex());
        // Is "inf_v_cell" the right infinite cell? Then inf_v_index should be 1
        if (inf_v_cell->neighbor(inf_v_index)->index(inf_v_cell) == 0 
          && inf_v_index == 0)
        {
          inf_v_cell->swap_vertices(current_dimension() - 1, current_dimension());
        }
      }
    }
  }
  return v;
}

template< typename Traits, typename TDS >
typename Regular_triangulation<Traits, TDS>::Vertex_handle
Regular_triangulation<Traits, TDS>
::insert_if_in_star(const Weighted_point & p,
                    Vertex_handle star_center,
                    Locate_type lt, 
                    const Face & f,
                    const Facet &,
                    Full_cell_handle s)
{
  switch( lt )
  {
    case Base::OUTSIDE_AFFINE_HULL:
      return insert_outside_affine_hull(p);
      break;
    case Base::ON_VERTEX:
    {
      Vertex_handle v = s->vertex(f.index(0));
      typename RTTraits::Compute_weight_d pw =
        geom_traits().compute_weight_d_object();
      if (pw(p) == pw(v->point()))
        return v;
      // If dim == 0 and the new point has a bigger weight, 
      // we replace the point
      else if (current_dimension() == 0)
      {
        if (pw(p) > pw(v->point()))
          v->set_point(p);
        else
          return v;
      }
      // Otherwise, we apply the "normal" algorithm

      // !NO break here!
      }
    default:
        return insert_in_conflicting_cell(p, s, star_center);
    }

  return Vertex_handle();
}

/*
[Undocumented function]

Inserts the point `p` in the regular triangulation. `p` must be
in conflict with the second parameter `c`, which is used as a
starting point for `compute_conflict_zone`.
The function is faster than the standard `insert` function since
it does not need to call `locate`.

If this insertion creates a vertex, this vertex is returned.

If `p` coincides with an existing vertex and has a greater weight,
then the existing weighted point becomes hidden and `p` replaces it as vertex
of the triangulation.

If `p` coincides with an already existing vertex (both point and
weights being equal), then this vertex is returned and the triangulation
remains unchanged.

Otherwise if `p` does not appear as a vertex of the triangulation,
then it is stored as a hidden point and this method returns the default
constructed handle.

\pre The point `p` must be in conflict with the full cell `c`.
*/

template< typename Traits, typename TDS >
typename Regular_triangulation<Traits, TDS>::Vertex_handle
Regular_triangulation<Traits, TDS>
::insert_in_conflicting_cell(const Weighted_point & p,
                             Full_cell_handle s,
                             Vertex_handle only_if_this_vertex_is_in_the_cz)
{
  typedef std::vector<Full_cell_handle> Full_cell_h_vector;

  bool in_conflict = is_in_conflict(p, s);

  // If p is not in conflict with s, then p is hidden
  // => we don't insert it
  if (!in_conflict)
  {
    m_hidden_points.push_back(p);
    return Vertex_handle();
  }
  else
  {
    Full_cell_h_vector cs; // for storing conflicting full_cells.
    cs.reserve(64);
    std::back_insert_iterator<Full_cell_h_vector> out(cs);
    Facet ft = compute_conflict_zone(p, s, out);

    // Check if the CZ contains "only_if_this_vertex_is_in_the_cz"
    if (only_if_this_vertex_is_in_the_cz != Vertex_handle()
     && !does_cell_range_contain_vertex(cs.begin(), cs.end(),
                                        only_if_this_vertex_is_in_the_cz))
    {
      return Vertex_handle();
    }

    // Otherwise, proceed with the insertion
    std::vector<Vertex_handle> cz_vertices;
    cz_vertices.reserve(64);
    process_conflict_zone(cs.begin(), cs.end(),
                          std::back_inserter(cz_vertices));

    Vertex_handle ret = insert_in_hole(p, cs.begin(), cs.end(), ft);

    process_cz_vertices_after_insertion(cz_vertices.begin(), cz_vertices.end());

    return ret;
  }
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GATHERING CONFLICTING SIMPLICES

// NOT DOCUMENTED
template< typename Traits, typename TDS >
template< typename OrientationPred >
Oriented_side
Regular_triangulation<Traits, TDS>
::perturbed_power_side_of_power_sphere(const Weighted_point & p, Full_cell_const_handle s,
    const OrientationPred & ori) const
{
  CGAL_precondition_msg( ! is_infinite(s), "full cell must be finite");
  CGAL_expensive_precondition( POSITIVE == orientation(s) );
  typedef std::vector<const Weighted_point *> Points;
  Points points(current_dimension() + 2);
  int i(0);
  for( ; i <= current_dimension(); ++i )
    points[i] = &(s->vertex(i)->point());
  points[i] = &p;
  std::sort(points.begin(), points.end(),
    internal::Triangulation::Compare_points_for_perturbation<Self>(*this));
  typename Points::const_reverse_iterator cut_pt = points.rbegin();
  Points test_points;
  while( cut_pt != points.rend() )
  {
    if( &p == *cut_pt )
      // because the full_cell "s" is assumed to be positively oriented
      return ON_NEGATIVE_SIDE; // we consider |p| to lie outside the sphere
    test_points.clear();
    Point_const_iterator spit = points_begin(s);
    int adjust_sign = -1;
    for( i = 0; i < current_dimension(); ++i )
    {
      if( &(*spit) == *cut_pt )
      {
        ++spit;
        adjust_sign = (((current_dimension() + i) % 2) == 0) ? -1 : +1;
      }
      test_points.push_back(&(*spit));
      ++spit;
    }
    test_points.push_back(&p);

    typedef typename CGAL::Iterator_project<
      typename Points::iterator,
      internal::Triangulation::Point_from_pointer<Self>,
      const Weighted_point &, const Weighted_point *
    > Point_pointer_iterator;

    Orientation ori_value = ori(
        Point_pointer_iterator(test_points.begin()),
        Point_pointer_iterator(test_points.end()));

    if( ZERO != ori_value )
      return Oriented_side( - adjust_sign * ori_value );

    ++cut_pt;
  }
  CGAL_assertion(false); // we should never reach here
  return ON_NEGATIVE_SIDE;
}

template< typename Traits, typename TDS >
bool
Regular_triangulation<Traits, TDS>
::is_in_conflict(const Weighted_point & p, Full_cell_const_handle s) const
{
  CGAL_precondition( 1 <= current_dimension() );
  if( current_dimension() < maximal_dimension() )
  {
    Conflict_pred_in_subspace c(
      *this, p,
      coaffine_orientation_predicate(),
      power_side_of_power_sphere_for_non_maximal_dim_predicate());
    return c(s);
  }
  else
  {
    Orientation_d ori = geom_traits().orientation_d_object();
    Power_side_of_power_sphere_d side = geom_traits().power_side_of_power_sphere_d_object();
    Conflict_pred_in_fullspace c(*this, p, ori, side);
    return c(s);
  }
}

template< typename Traits, typename TDS >
template< typename OutputIterator >
typename Regular_triangulation<Traits, TDS>::Facet
Regular_triangulation<Traits, TDS>
::compute_conflict_zone(const Weighted_point & p, Full_cell_handle s, OutputIterator out) const
{
  CGAL_precondition( 1 <= current_dimension() );
  if( current_dimension() < maximal_dimension() )
  {
    Conflict_pred_in_subspace c(
      *this, p,
      coaffine_orientation_predicate(),
      power_side_of_power_sphere_for_non_maximal_dim_predicate());
    Conflict_traversal_pred_in_subspace tp(*this, c);
    return tds().gather_full_cells(s, tp, out);
  }
  else
  {
    Orientation_d ori = geom_traits().orientation_d_object();
    Power_side_of_power_sphere_d side = geom_traits().power_side_of_power_sphere_d_object();
    Conflict_pred_in_fullspace c(*this, p, ori, side);
    Conflict_traversal_pred_in_fullspace tp(*this, c);
    return tds().gather_full_cells(s, tp, out);
  }
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - VALIDITY

template< typename Traits, typename TDS >
bool
Regular_triangulation<Traits, TDS>
::is_valid(bool verbose, int level) const
{
  if (!Base::is_valid(verbose, level))
    return false;

  int dim = current_dimension();
  if (dim == maximal_dimension())
  {
    for (Finite_full_cell_const_iterator cit = finite_full_cells_begin() ;
         cit != finite_full_cells_end() ; ++cit )
    {
      Full_cell_const_handle ch = cit.base();
      for(int i = 0; i < dim+1 ; ++i )
      {
        // If the i-th neighbor is not an infinite cell
        Vertex_handle opposite_vh =
          ch->neighbor(i)->vertex(ch->neighbor(i)->index(ch));
        if (!is_infinite(opposite_vh))
        {
          Power_side_of_power_sphere_d side = 
            geom_traits().power_side_of_power_sphere_d_object();
          if (side(points_begin(ch),
                   points_end(ch),
                   opposite_vh->point()) == ON_POSITIVE_SIDE)
          {
            if (verbose)
              CGAL_warning_msg(false, "Non-empty sphere");
            return false;
          }
        }
      }
    }
  }
  return true;
}

} //namespace CGAL

#endif //CGAL_REGULAR_TRIANGULATION_H