This file is indexed.

/usr/include/CGAL/Regular_triangulation_2.h is in libcgal-dev 4.11-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
// Copyright(c) 1997  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// Author(s)     : Frederic Fichel, Mariette Yvinec, Julia Floetotto

#ifndef CGAL_REGULAR_TRIANGULATION_2_H
#define CGAL_REGULAR_TRIANGULATION_2_H

#include <CGAL/license/Triangulation_2.h>

#include <CGAL/Triangulation_2.h>
#include <CGAL/Regular_triangulation_face_base_2.h>
#include <CGAL/Regular_triangulation_vertex_base_2.h>

#include <CGAL/utility.h>
#include <CGAL/Object.h>
#include <CGAL/internal/boost/function_property_map.hpp>
#include <CGAL/internal/Has_nested_type_Bare_point.h>

#include <boost/bind.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/utility/result_of.hpp>

#ifndef CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
#include <CGAL/Spatial_sort_traits_adapter_2.h>
#include <CGAL/internal/info_check.h>

#include <boost/iterator/zip_iterator.hpp>
#include <boost/mpl/and.hpp>

#endif //CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO

namespace CGAL {

template < class Gt,
           class Tds  = Triangulation_data_structure_2 <
                          Regular_triangulation_vertex_base_2<Gt>,
                          Regular_triangulation_face_base_2<Gt> > >
class Regular_triangulation_2
  : public Triangulation_2<Gt, Tds>
{
  typedef Regular_triangulation_2<Gt, Tds>     Self;
  typedef Triangulation_2<Gt, Tds>             Base;

public:
  typedef Self                                 Triangulation;
  typedef Tds                                  Triangulation_data_structure;
  typedef Gt                                   Geom_traits;

  // Traits are not supposed to define Bare_point, but leaving below
  // for backward compatibility
  typedef typename boost::mpl::eval_if_c<
      internal::Has_nested_type_Bare_point<Gt>::value,
      typename internal::Bare_point_type<Gt>,
      boost::mpl::identity<typename Gt::Point_2>
    >::type                                    Bare_point;
  typedef typename Gt::Weighted_point_2        Weighted_point;

  typedef typename Gt::FT                      Weight;
  typedef typename Gt::Construct_weighted_point_2 Construct_weighted_point_2;
  typedef typename Base::size_type             size_type;
  typedef typename Base::Face_handle           Face_handle;
  typedef typename Base::Vertex_handle         Vertex_handle;
  typedef typename Base::Vertex                Vertex;
  typedef typename Base::Edge                  Edge;
  typedef typename Base::Locate_type           Locate_type;
  typedef typename Base::Face_circulator       Face_circulator;
  typedef typename Base::Edge_circulator       Edge_circulator;
  typedef typename Base::Vertex_circulator     Vertex_circulator;
  typedef typename Base::Finite_edges_iterator Finite_edges_iterator;
  typedef typename Base::All_edges_iterator    All_edges_iterator;
  typedef typename Base::Finite_faces_iterator Finite_faces_iterator;
  typedef typename Base::All_faces_iterator    All_faces_iterator;
  typedef typename Base::Face::Vertex_list     Vertex_list;
  typedef typename Vertex_list::iterator       Vertex_list_iterator;

#ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2
  using Base::cw;
  using Base::ccw;
  using Base::dimension;
  using Base::geom_traits;
  using Base::infinite_vertex;
  using Base::create_face;
  using Base::number_of_faces;
  using Base::all_faces_begin;
  using Base::all_faces_end;
  using Base::all_edges_begin;
  using Base::all_edges_end;
  using Base::finite_faces_begin;
  using Base::finite_faces_end;
  using Base::finite_edges_begin;
  using Base::finite_edges_end;
  using Base::OUTSIDE_AFFINE_HULL;
  using Base::VERTEX;
  using Base::FACE;
  using Base::EDGE;
  using Base::OUTSIDE_CONVEX_HULL;
  using Base::orientation;
  using Base::locate;
  using Base::inexact_locate;
  using Base::incident_faces;
  using Base::is_infinite;
  using Base::degree;
  using Base::delete_vertex;
  using Base::incident_vertices;
  using Base::make_hole;
  using Base::mirror_index;
  using Base::show_vertex;
  using Base::test_dim_down;
  using Base::oriented_side;
#endif

private:
  typedef std::list<Face_handle>      Faces_around_stack;

  class Hidden_tester
  {
  public:
    bool operator()(const typename Base::All_vertices_iterator&  it){
      return it->is_hidden();
     }
    bool operator()(const typename Base::Finite_vertices_iterator&  it){
      return it->is_hidden();
    }
  };

  class Unhidden_tester
  {
  public:
    bool operator()(const typename Base::Finite_vertices_iterator&  it){
      return ! it->is_hidden();
    }
  };

  typedef typename Base::All_vertices_iterator     All_vib;
  typedef typename Base::Finite_vertices_iterator  Finite_vib;

public:
  // We derive in order to add a conversion to handle.
  class All_vertices_iterator :
    public Filter_iterator<All_vib, Hidden_tester>
  {
    typedef Filter_iterator<All_vib, Hidden_tester> Base;
    typedef All_vertices_iterator                     Self;
  public:
    All_vertices_iterator() : Base() {}
    All_vertices_iterator(const Base &b) : Base(b) {}
    Self & operator++() { Base::operator++(); return *this; }
    Self & operator--() { Base::operator--(); return *this; }
    Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
    Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
    operator Vertex_handle() const { return Base::base(); }
  };

  class Finite_vertices_iterator :
    public Filter_iterator<Finite_vib, Hidden_tester>
  {
    typedef Filter_iterator<Finite_vib, Hidden_tester> Base;
    typedef Finite_vertices_iterator                          Self;
  public:
    Finite_vertices_iterator() : Base() {}
    Finite_vertices_iterator(const Base &b) : Base(b) {}
    Self & operator++() { Base::operator++(); return *this; }
    Self & operator--() { Base::operator--(); return *this; }
    Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
    Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
    operator Vertex_handle() const { return Base::base(); }
 };

  class Hidden_vertices_iterator :
    public Filter_iterator<Finite_vib, Unhidden_tester>
  {
    typedef Filter_iterator<Finite_vib, Unhidden_tester> Base;
    typedef Hidden_vertices_iterator                     Self;
  public:
    Hidden_vertices_iterator() : Base() {}
    Hidden_vertices_iterator(const Base &b) : Base(b) {}
    Self & operator++() { Base::operator++(); return *this; }
    Self & operator--() { Base::operator--(); return *this; }
    Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
    Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
    operator Vertex_handle() const { return Base::base(); }
 };

 //for backward compatibility
  typedef Finite_faces_iterator                Face_iterator;
  typedef Finite_edges_iterator                Edge_iterator;
  typedef Finite_vertices_iterator             Vertex_iterator;

 //Tag to distinguish Delaunay from regular triangulations
  typedef Tag_true  Weighted_tag;

private:
  size_type _hidden_vertices;

public:
  Regular_triangulation_2()
    : Base(), _hidden_vertices(0) {}

  Regular_triangulation_2(const Gt& gt)
    : Base(gt), _hidden_vertices(0) {}

  Regular_triangulation_2(const Regular_triangulation_2 &rt);

  template < class InputIterator >
  Regular_triangulation_2(InputIterator first, InputIterator last,
                          const Gt& gt)
    : Base(gt), _hidden_vertices(0)
  {
    insert(first, last);
  }

  template < class InputIterator >
  Regular_triangulation_2(InputIterator first, InputIterator last)
    : Base(), _hidden_vertices(0)
  {
    insert(first, last);
  }

  Regular_triangulation_2 & operator=(const Regular_triangulation_2 &tr);

  size_type number_of_vertices() const {
    return Base::number_of_vertices() - _hidden_vertices;
  }

  size_type number_of_hidden_vertices() const {
    return _hidden_vertices;
  }

  // CHECK - QUERY

  Oriented_side power_test(const Weighted_point &p,
                           const Weighted_point &q,
                           const Weighted_point &r,
                           const Weighted_point &s, bool perturb) const;
  Oriented_side power_test(const Weighted_point &p,
                           const Weighted_point &q,
                           const Weighted_point &r) const;
  Oriented_side power_test(const Weighted_point &p,
                           const Weighted_point &r) const;
  Oriented_side power_test(const Face_handle &f,
                           const Weighted_point &p, bool perturb=false) const;
  Oriented_side power_test(const Face_handle& f, int i,
                           const Weighted_point &p) const;

  bool is_valid(bool verbose = false, int level = 0) const;
  bool test_conflict(const Weighted_point  &p, Face_handle fh) const;
  void show_face(Face_handle fh) const;
  void show_all() const;

//  // template member functions, declared and defined at the end
//  template <class OutputItFaces, class OutputItBoundaryEdges,
//            class OutputItHiddenVertices>
//  Triple<OutputItFaces,OutputItBoundaryEdges, OutputItHiddenVertices>
//  get_conflicts_and_boundary_and_hidden_vertices(const
//                                                 Weighted_point  &p,
//                                                 OutputItFaces fit,
//                                                 OutputItBoundaryEdges eit,
//                                                 OutputItHiddenVertices vit,
//                                                 Face_handle start = Face_handle()) const;

//  template <class OutputItFaces, class OutputItBoundaryEdges>
//  std::pair<OutputItFaces,OutputItBoundaryEdges>
//  get_conflicts_and_boundary(const Weighted_point  &p,
//                             OutputItFaces fit,
//                             OutputItBoundaryEdges eit,
//                             Face_handle start) const;

//  template <class OutputItFaces>
//  OutputItFaces
//  get_conflicts(const Weighted_point  &p,
//                OutputItFaces fit,
//                Face_handle start) const;

//  template <class OutputItBoundaryEdges>
//  OutputItBoundaryEdges
//  get_boundary_of_conflicts(const Weighted_point  &p,
//                            OutputItBoundaryEdges eit,
//                            Face_handle start) const;
//  template <class OutputItBoundaryEdges, class OutputItHiddenVertices>
//  std::pair<OutputItBoundaryEdges, OutputItHiddenVertices>
//  get_boundary_of_conflicts_and_hidden_vertices(const Weighted_point  &p,
//                                                OutputItBoundaryEdges eit,
//                                                OutputItHiddenVertices vit,
//                                                Face_handle start = Face_handle()) const;
//  template <class OutputItHiddenVertices>
//  OutputItHiddenVertices
//  get_hidden_vertices(const Weighted_point  &p,
//                      OutputItHiddenVertices vit,
//                      Face_handle start =  Face_handle()) const;

  // DUAL
  Bare_point dual(Face_handle f) const;
  Object dual(const Edge &e) const ;
  Object dual(const Edge_circulator& ec) const;
  Object dual(const Finite_edges_iterator& ei) const;
  Bare_point weighted_circumcenter(Face_handle f) const;
  Bare_point weighted_circumcenter(const Weighted_point& p0,
                                   const Weighted_point& p1,
                                   const Weighted_point& p2) const;

  // Insertion, Deletion and Flip
  Vertex_handle push_back(const Weighted_point &p);
  Vertex_handle insert(const Weighted_point &p,
                       Face_handle f = Face_handle());
  Vertex_handle insert(const Weighted_point &p,
                       Locate_type  lt,
                       Face_handle loc, int li);
  Vertex_handle insert_in_face(const Weighted_point &p, Face_handle f);
  Vertex_handle insert_in_edge(const Weighted_point &p, Face_handle f, int i);
  void flip(Face_handle f, int i);
  void remove_degree_3(Vertex_handle v,
                       Face_handle f = Face_handle());
  void remove(Vertex_handle v);

  All_vertices_iterator all_vertices_begin() const;
  All_vertices_iterator all_vertices_end() const;

  Finite_vertices_iterator finite_vertices_begin() const;
  Finite_vertices_iterator finite_vertices_end() const;
  Vertex_handle finite_vertex() const;

  Hidden_vertices_iterator hidden_vertices_begin() const;
  Hidden_vertices_iterator hidden_vertices_end() const;

//  Vertex_handle file_input(std::istream& is);
//  void file_output(std::ostream& os) const;

public:
  void clear();
  void copy_triangulation(const Self& tr);

private:
  void copy_triangulation_();
  Vertex_handle reinsert(Vertex_handle v, Face_handle start);
  void regularize(Vertex_handle v);
  void remove_hidden(Vertex_handle v);
  void remove_2D(Vertex_handle v);
  void fill_hole_regular(std::list<Edge> & hole);
  void set_face(Vertex_list& vl, const Face_handle& fh);
  void update_hidden_points_3_1(const Face_handle& f1, const Face_handle& f2,
                                const Face_handle& f3);
  void update_hidden_points_2_2(const Face_handle& f1, const Face_handle& f2);
  void update_hidden_points_1_3(const Face_handle& f1, const Face_handle& f2,
                                const Face_handle& f3);

  Vertex_handle hide_new_vertex(Face_handle f, const Weighted_point& p);
  void hide_remove_degree_3(Face_handle fh, Vertex_handle vh);
  void hide_vertex(Face_handle f, Vertex_handle v);
  void exchange_incidences(Vertex_handle va, Vertex_handle vb);
  void exchange_hidden(Vertex_handle va, Vertex_handle vb);

  void stack_flip(Vertex_handle v, Faces_around_stack &faces_around);
  void stack_flip_4_2(Face_handle f, int i, int j,
                      Faces_around_stack &faces_around);
  void stack_flip_3_1(Face_handle f, int i, int j,
                      Faces_around_stack &faces_around);
  void stack_flip_2_2(Face_handle f, int i,
                      Faces_around_stack &faces_around);
  void stack_flip_dim1(Face_handle f, int i,
                       Faces_around_stack &faces_around);
  bool is_valid_face(Face_handle fh) const;
  bool is_valid_vertex(Vertex_handle fh) const;

public:
#ifndef CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
  template < class InputIterator >
  std::ptrdiff_t
  insert(InputIterator first, InputIterator last,
          typename boost::enable_if<
              boost::is_convertible<
                  typename std::iterator_traits<InputIterator>::value_type,
                  Weighted_point
              >
          >::type* = NULL
)
#else
  template < class InputIterator >
  std::ptrdiff_t
  insert(InputIterator first, InputIterator last)
#endif //CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
  {
    size_type n = number_of_vertices();

    std::vector<Weighted_point> points(first, last);

    // spatial sorting must use bare points, so we need an adapter
    typedef typename Geom_traits::Construct_point_2 Construct_point_2;
    typedef typename boost::result_of<const Construct_point_2(const Weighted_point&)>::type Ret;
    typedef CGAL::internal::boost_::function_property_map<Construct_point_2, Weighted_point, Ret> fpmap;
    typedef CGAL::Spatial_sort_traits_adapter_2<Geom_traits, fpmap> Search_traits_2;

    spatial_sort(points.begin(), points.end(),
                 Search_traits_2(
                   CGAL::internal::boost_::make_function_property_map<Weighted_point, Ret, Construct_point_2>(
                     geom_traits().construct_point_2_object()), geom_traits()));

    Face_handle hint;
    for(typename std::vector<Weighted_point>::const_iterator p = points.begin(),
         end = points.end();
         p != end; ++p)
      hint = insert(*p, hint)->face();

    return number_of_vertices() - n;
  }

#ifndef CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
private:
  //top stands for tuple-or-pair
  template <class Info>
  const Weighted_point& top_get_first(const std::pair<Weighted_point,Info>& pair) const { return pair.first; }
  template <class Info>
  const Info& top_get_second(const std::pair<Weighted_point,Info>& pair) const { return pair.second; }
  template <class Info>
  const Weighted_point& top_get_first(const boost::tuple<Weighted_point,Info>& tuple) const { return boost::get<0>(tuple); }
  template <class Info>
  const Info& top_get_second(const boost::tuple<Weighted_point,Info>& tuple) const { return boost::get<1>(tuple); }

  // Functor to go from an index of a container of Weighted_point to
  // the corresponding Bare_point
  template<class Construct_bare_point, class Container>
  struct Index_to_Bare_point
  {
    const Bare_point& operator()(const std::size_t& i) const
    {
      return cp(c[i]);
    }

    Index_to_Bare_point(const Container& c, const Construct_bare_point& cp)
      : c(c), cp(cp) { }

    const Container& c;
    const Construct_bare_point cp;
  };

  template <class Tuple_or_pair,class InputIterator>
  std::ptrdiff_t insert_with_info(InputIterator first,InputIterator last)
  {
    size_type n = number_of_vertices();
    std::vector<std::size_t> indices;
    std::vector<Weighted_point> points;
    std::vector<typename Triangulation_data_structure::Vertex::Info> infos;
    std::size_t index=0;
    for(InputIterator it=first;it!=last;++it){
      Tuple_or_pair pair = *it;
      points.push_back(top_get_first(pair));
      infos.push_back(top_get_second(pair));
      indices.push_back(index++);
    }

    // We need to sort the points and their info at the same time through
    // the `indices` vector AND spatial sort can only handle Gt::Point_2.
    typedef typename Geom_traits::Construct_point_2 Construct_point_2;
    typedef Index_to_Bare_point<Construct_point_2,
                                std::vector<Weighted_point> > Access_bare_point;
    typedef typename boost::result_of<const Construct_point_2(const Weighted_point&)>::type Ret;
    typedef CGAL::internal::boost_::function_property_map<Access_bare_point, std::size_t, Ret> fpmap;
    typedef CGAL::Spatial_sort_traits_adapter_2<Gt, fpmap> Search_traits_2;

    Access_bare_point accessor(points, geom_traits().construct_point_2_object());
    spatial_sort(indices.begin(), indices.end(),
                 Search_traits_2(
                   CGAL::internal::boost_::make_function_property_map<
                     std::size_t, Ret, Access_bare_point>(accessor),
                   geom_traits()));

    Face_handle hint;
    Vertex_handle v_hint;
    for(typename std::vector<std::size_t>::const_iterator
      it = indices.begin(), end = indices.end();
      it != end; ++it)
    {
      v_hint = insert(points[*it], hint);

      if(v_hint!=Vertex_handle()){
        v_hint->info()=infos[*it];
        hint=v_hint->face();
      }
    }

    return number_of_vertices() - n;
  }

public:

  template < class InputIterator >
  std::ptrdiff_t
  insert(InputIterator first,
          InputIterator last,
          typename boost::enable_if<
              boost::is_convertible<
                typename std::iterator_traits<InputIterator>::value_type,
                std::pair<Weighted_point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type>
              >
          >::type* = NULL
)
  {return insert_with_info< std::pair<Weighted_point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type> >(first,last);}

  template <class  InputIterator_1,class InputIterator_2>
  std::ptrdiff_t
  insert(boost::zip_iterator< boost::tuple<InputIterator_1,InputIterator_2> > first,
          boost::zip_iterator< boost::tuple<InputIterator_1,InputIterator_2> > last,
          typename boost::enable_if<
            boost::mpl::and_<
              typename boost::is_convertible< typename std::iterator_traits<InputIterator_1>::value_type, Weighted_point >,
              typename boost::is_convertible< typename std::iterator_traits<InputIterator_2>::value_type, typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type >
            >
          >::type* =NULL
)
  {return insert_with_info< boost::tuple<Weighted_point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type> >(first,last);}
#endif //CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO

  template < class Stream>
  Stream& draw_dual(Stream & ps) const
  {
    Finite_edges_iterator eit = finite_edges_begin();
    for(; eit != finite_edges_end(); ++eit) {
      Object o = dual(eit);
      typename Geom_traits::Line_2  l;
      typename Geom_traits::Ray_2   r;
      typename Geom_traits::Segment_2 s;
      if(CGAL::assign(s,o)) ps << s;
      if(CGAL::assign(r,o)) ps << r;
      if(CGAL::assign(l,o)) ps << l;
    }
    return ps;
  }

  template <class OutputItFaces, class OutputItBoundaryEdges,
            class OutputItHiddenVertices>
  Triple<OutputItFaces,OutputItBoundaryEdges, OutputItHiddenVertices>
  get_conflicts_and_boundary_and_hidden_vertices(const Weighted_point  &p,
                                                 OutputItFaces fit,
                                                 OutputItBoundaryEdges eit,
                                                 OutputItHiddenVertices vit,
                                                 Face_handle start =
      Face_handle()) const
  {
    CGAL_triangulation_precondition(dimension() == 2);
    int li;
    Locate_type lt;
    Face_handle fh = locate(p,lt,li, start);
    switch(lt) {
      case OUTSIDE_AFFINE_HULL:
        return make_triple(fit, eit, vit);
      case VERTEX:
      case FACE:
      case EDGE:
      case OUTSIDE_CONVEX_HULL:
        //test whether p is not in conflict
        // with the first face:
        // this includes the cases that p is located
        // on a vertex and either equal or no conflict
        if(!test_conflict(p,fh))
          return make_triple(fit, eit, vit);

        // region includes all faces in conflict so far detected
        // stack includes the faces in the region whose neighbors
        // have not yet been looked at
        std::set<Face_handle> region;
        std::stack<Edge> st;

        //collection of all boundary_vertices:
        std::set< Vertex_handle> boundary_vertices;
        //collection of potential_intern_vertices = vertices incident
        // to an edge incident to two faces in conflict and met
        // twice during the "walk":
        std::set< Vertex_handle> potential_intern_vertices;

        *fit++ = fh; //put fh in OutputItFaces
        region.insert(fh);
        st.push(Edge(fh,2));
        st.push(Edge(fh,1));
        st.push(Edge(fh,0));

        while(! st.empty()){
          Edge e = st.top();
          st.pop();
          Face_handle fh = e.first;
          Face_handle fn = fh->neighbor(e.second);
          int i = fn->index(fh);
          if(region.find(fn) == region.end()){
            if(test_conflict(p,fn))
            {
              region.insert(fn);
              st.push(Edge(fn, cw(i)));
              st.push(Edge(fn,ccw(i)));
              *fit++ = fn;
            }
            else{
              e = Edge(fn,i);
              *eit++ = e;
              if(!is_infinite(fn->vertex(cw(i))))
                boundary_vertices.insert(fn->vertex(cw(i)));
              if(!is_infinite(fn->vertex(ccw(i))))
                boundary_vertices.insert(fn->vertex(ccw(i)));
            }
          }
          else {
            //insert the vertices of the last edge into the set of
            // potential intern vertices:
            potential_intern_vertices.insert(fn->vertex(ccw(i)));
            potential_intern_vertices.insert(fn->vertex(cw(i)));
          }
        }
        if(!potential_intern_vertices.empty()){
          //determine the hidden vertices:
          std::set_difference(potential_intern_vertices.begin(),
                              potential_intern_vertices.end(),
                              boundary_vertices.begin(),
                              boundary_vertices.end(),
                              vit);
        }
        return  make_triple(fit, eit, vit);
    }
    CGAL_triangulation_assertion(false);
    return make_triple(fit, eit, vit);
  }

  template <class OutputItFaces, class OutputItBoundaryEdges>
  std::pair<OutputItFaces,OutputItBoundaryEdges>
  get_conflicts_and_boundary(const Weighted_point &p,
                              OutputItFaces fit,
                              OutputItBoundaryEdges eit,
                              Face_handle start = Face_handle()) const
  {
    Triple<OutputItFaces, OutputItBoundaryEdges, Emptyset_iterator>
        pp = get_conflicts_and_boundary_and_hidden_vertices(p, fit, eit,
                                                            Emptyset_iterator(),
                                                            start);
    return std::make_pair(pp.first, pp.second);
  }
  template <class OutputItFaces, class OutputItHiddenVertices>
  std::pair<OutputItFaces, OutputItHiddenVertices>
  get_conflicts_and_hidden_vertices(const Weighted_point &p,
                                    OutputItFaces fit,
                                    OutputItHiddenVertices vit,
                                    Face_handle start = Face_handle()) const
  {
    Triple<OutputItFaces, Emptyset_iterator, OutputItHiddenVertices>
        pp = get_conflicts_and_boundary_and_hidden_vertices(p,fit,
                                                            Emptyset_iterator(),
                                                            vit,
                                                            start);
    return std::make_pair(pp.first,pp.third);
  }

  template <class OutputItBoundaryEdges, class OutputItHiddenVertices>
  std::pair<OutputItBoundaryEdges, OutputItHiddenVertices>
  get_boundary_of_conflicts_and_hidden_vertices(const Weighted_point &p,
                                                OutputItBoundaryEdges eit,
                                                OutputItHiddenVertices vit,
                                                Face_handle start =
      Face_handle()) const
  {
    Triple<Emptyset_iterator, OutputItBoundaryEdges, OutputItHiddenVertices>
        pp = get_conflicts_and_boundary_and_hidden_vertices(p,
                                                            Emptyset_iterator(),
                                                            eit,vit,
                                                            start);
    return std::make_pair(pp.second,pp.third);
  }

  template <class OutputItFaces>
  OutputItFaces
  get_conflicts(const Weighted_point  &p,
                OutputItFaces fit,
                Face_handle start= Face_handle()) const
  {
    Triple<OutputItFaces, Emptyset_iterator, Emptyset_iterator>
        pp =
        get_conflicts_and_boundary_and_hidden_vertices(p, fit,
                                                       Emptyset_iterator(),
                                                       Emptyset_iterator(),
                                                       start);
    return pp.first;
  }

  template <class OutputItBoundaryEdges>
  OutputItBoundaryEdges
  get_boundary_of_conflicts(const Weighted_point  &p,
                            OutputItBoundaryEdges eit,
                            Face_handle start= Face_handle()) const
  {
    Triple<Emptyset_iterator, OutputItBoundaryEdges, Emptyset_iterator>
        pp =
        get_conflicts_and_boundary_and_hidden_vertices(p,
                                                       Emptyset_iterator(),
                                                       eit,
                                                       Emptyset_iterator(),
                                                       start);
    return pp.second;
  }

  template <class OutputItHiddenVertices>
  OutputItHiddenVertices
  get_hidden_vertices(const Weighted_point  &p, OutputItHiddenVertices vit,
                      Face_handle start= Face_handle()) const
  {
    Triple<Emptyset_iterator, Emptyset_iterator, OutputItHiddenVertices>
        pp = get_conflicts_and_boundary_and_hidden_vertices(p, Emptyset_iterator(),
                                                            Emptyset_iterator(),
                                                            vit,
                                                            start);
    return pp.third;
  }

  // nearest power vertex query
  Vertex_handle nearest_power_vertex(const Bare_point& p) const;
};

template < class Gt, class Tds >
inline bool
Regular_triangulation_2<Gt,Tds>::
test_conflict(const Weighted_point  &p, Face_handle fh) const
{
  return(power_test(fh,p) == ON_POSITIVE_SIDE);
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
clear()
{
  Base::clear();
  _hidden_vertices = 0;
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
copy_triangulation_()
{
  // the list of vertices have been copied member for member and are
  // not good
  // clear them and next
  // scan the hidden vertices to retablish the list in faces
  typename Tds::Face_iterator baseit = this->_tds.face_iterator_base_begin();
  for(; baseit !=  this->_tds.face_iterator_base_end(); baseit++){
    baseit->vertex_list().clear();
  }

  Hidden_vertices_iterator hvit = hidden_vertices_begin();
  for(; hvit !=  hidden_vertices_end() ; ++hvit){
    hvit->face()->vertex_list().push_back(hvit);
  }
  CGAL_triangulation_postcondition(is_valid());
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
copy_triangulation(const Self &tr)
{
  Base::copy_triangulation(tr);
  _hidden_vertices = tr._hidden_vertices;
  copy_triangulation_();
}

template < class Gt, class Tds >
Regular_triangulation_2<Gt,Tds>::
Regular_triangulation_2(const Self &tr)
  : Base(tr), _hidden_vertices(tr._hidden_vertices)
{
  copy_triangulation_();
}

template <class Gt, class Tds >
Regular_triangulation_2<Gt,Tds> &
Regular_triangulation_2<Gt, Tds>::
operator=(const Self &tr)
{
  copy_triangulation(tr);
  return *this;
}

template < class Gt, class Tds >
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Face_handle &f, const Weighted_point &p, bool perturb) const
{
  // p is supposed to be a finite point
  // if f is a finite face,
  // return  ON_NEGATIVE_SIDE if p is above f
  //(p has to be hidden)
  if(dimension() == 1)
    return power_test(f->vertex(0)->point(), f->vertex(1)->point(), p);

  int i;
  if(! f->has_vertex(infinite_vertex(), i))
    return power_test(f->vertex(0)->point(),
                      f->vertex(1)->point(),
                      f->vertex(2)->point(), p, perturb);

  Orientation o = orientation(f->vertex(ccw(i))->point(),
                              f->vertex(cw(i))->point(),
                              p);
  if(o==COLLINEAR)
    return power_test(f->vertex(ccw(i))->point(),
                      f->vertex(cw(i))->point(),p);

  return o;
}

template < class Gt, class Tds >
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Face_handle& f, int i, const Weighted_point &p) const
{
  // f,i is supposed to be a finite edge
  // p is supposed to be on  edge(f,i)
  // return ON_NEGATIVE_SIDE if p is above(f,i)
  // (p has to be hidden)
  CGAL_triangulation_precondition(!is_infinite(f,i) &&
                                   orientation(f->vertex(ccw(i))->point(),
                                               f->vertex(cw(i))->point(),
                                               p) == COLLINEAR);
  return  power_test(f->vertex(ccw(i))->point(),
                     f->vertex(cw(i))->point(),
                     p);
}

template < class Gt, class Tds >
inline
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Weighted_point &p0,
           const Weighted_point &p1,
           const Weighted_point &p2,
           const Weighted_point &p,
           bool perturb) const
{
  CGAL_triangulation_precondition(orientation(p0, p1, p2) == POSITIVE);

  using namespace boost;

  Oriented_side os = geom_traits().power_side_of_oriented_power_circle_2_object()(p0, p1, p2, p);

  if((os != ON_ORIENTED_BOUNDARY) ||(! perturb))
    return os;

  // We are now in a degenerate case => we do a symbolic perturbation.

  // We sort the points lexicographically.
  const Weighted_point * points[4] = {&p0, &p1, &p2, &p};
  std::sort(points, points + 4, typename Base::Perturbation_order(this));
  // We successively look whether the leading monomial, then 2nd monomial
  // of the determinant has non null coefficient.
  // 2 iterations are enough(cf paper)
  for(int i=3; i>1; --i) {
    if(points[i] == &p)
      return ON_NEGATIVE_SIDE; // since p0 p1 p2 are non collinear
                               // and positively oriented
    Orientation o;
    if(points[i] == &p2 &&(o = orientation(p0,p1,p)) != COLLINEAR)
      return o;
    if(points[i] == &p1 &&(o = orientation(p0,p,p2)) != COLLINEAR)
      return o;
    if(points[i] == &p0 &&(o = orientation(p,p1,p2)) != COLLINEAR)
      return o;
  }

  CGAL_triangulation_assertion(false);
  return ON_NEGATIVE_SIDE;
}

template < class Gt, class Tds >
inline
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Weighted_point &p,
           const Weighted_point &q,
           const Weighted_point &r) const
{
  return geom_traits().power_side_of_oriented_power_circle_2_object()(p,q,r);
}

template < class Gt, class Tds >
inline
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Weighted_point &p,
           const Weighted_point &r) const
{
  return geom_traits().power_side_of_oriented_power_circle_2_object()(p,r);
}

template < class Gt, class Tds >
bool
Regular_triangulation_2<Gt,Tds>::
is_valid_face(Face_handle fh) const
{
  bool result = true;
  if(is_infinite(fh)) result = result && fh->vertex_list().empty();
  if(!result) { show_face(fh);}
  CGAL_triangulation_assertion(result);

  typename Vertex_list::iterator vlit = fh->vertex_list().begin(),
                                 vldone = fh->vertex_list().end();
  for(; vlit != vldone; vlit++) {
    result = result && power_test(fh,(*vlit)->point()) == ON_NEGATIVE_SIDE;
    result = result &&((*vlit)->face() == fh);
    if(!result)     show_face(fh);
    CGAL_triangulation_assertion(result);
  }
  return result;
}

template < class Gt, class Tds >
bool
Regular_triangulation_2<Gt,Tds>::
is_valid_vertex(Vertex_handle vh) const
{
  bool result = true;
  if(vh->is_hidden()) {
    Locate_type lt;
    int li;
    Face_handle loc = locate(vh->point(), lt, li, vh->face());
    if(dimension() == 0) {
      result = result && lt == Base::VERTEX;
      result = result && power_test(vh->face()->vertex(0)->point(), vh->point()) <= 0;
    } else {
      result = result && (!is_infinite(vh->face()));
      result = result && (loc == vh->face() ||
                         (lt == Base::VERTEX &&
                           vh->face()->has_vertex(loc->vertex(li))) ||
                         (lt == Base::EDGE && vh->face() ==
                           loc->neighbor(li)));

      result = result && power_test(vh->face(),vh->point()) == ON_NEGATIVE_SIDE;

//      if(!result) {
//        std::cerr << " from is_valid_vertex " << std::endl;
//        std::cerr << "sommet cache " << &*(vh)
//                  << "vh_point " <<vh->point() << " " << std::endl;
//        std::cerr << "vh_>face " << &*(vh->face())  << " " << std::endl;
//        std::cerr <<  "loc      " <<  &*(loc)
//                   << " lt " << lt  << " li " << li << std::endl;
//        show_face(vh->face());
//        show_face(loc);
//      }
    }
  }
  else { // normal vertex
    result = result && vh->face()->has_vertex(vh);
//    if(!result) {
//      std::cerr << " from is_valid_vertex " << std::endl;
//      std::cerr << "normal vertex " << &(*vh) << std::endl;
//      std::cerr << vh->point() << " " << std::endl;
//      std::cerr << "vh_>face " << &*(vh->face())  << " " << std::endl;
//      show_face(vh->face());
//    }
  }
  CGAL_triangulation_assertion(result);
  return result;
}

template < class Gt, class Tds >
bool
Regular_triangulation_2<Gt,Tds>::
is_valid(bool verbose, int /* level */) const
{
  // cannot call for is_valid() of Base Triangulation class
  // because 1) number of vertices of base class does not match
  // tds.is_valid calls is_valid for each vertex
  // and the test is not fullfilled by  hidden vertices ...
  // result = result && Triangulation_2<Gt,Tds>::is_valid(verbose, level);
  bool result = true;
  for(All_faces_iterator fit = all_faces_begin();
      fit != all_faces_end(); ++fit) {
    result = result && is_valid_face(fit);
  }

  for(All_vertices_iterator vit = all_vertices_begin();
                            vit != all_vertices_end(); ++vit) {
    result = result && is_valid_vertex(vit);
  }

  for(Hidden_vertices_iterator hvit = hidden_vertices_begin();
      hvit != hidden_vertices_end(); ++hvit) {
    result = result && is_valid_vertex(hvit);
  }

  switch(dimension()) {
    case 0 :
      break;
    case 1:
      if(number_of_vertices() > 2) {
        Finite_vertices_iterator it1 = finite_vertices_begin(),
            it2(it1), it3(it1);
        ++it2;
        ++it3; ++it3;
        while(it3 != finite_vertices_end()) {
          Orientation s = orientation(it1->point(),
                                      it2->point(),
                                      it3->point());
          result = result && s == COLLINEAR ;
          CGAL_triangulation_assertion(result);
          ++it1 ; ++it2; ++it3;
        }
      }
      break;
    case 2 :
      for(Finite_faces_iterator it=finite_faces_begin();
          it!=finite_faces_end(); it++) {
        CGAL_triangulation_assertion(! is_infinite(it));
        Orientation s = orientation(it->vertex(0)->point(),
                                    it->vertex(1)->point(),
                                    it->vertex(2)->point());
        CGAL_triangulation_assertion(s == LEFT_TURN);
        result = result && (s == LEFT_TURN);

        for(int i = 0 ; i < 3 ; i++) {
          if(!is_infinite(it->vertex(i)))
            result = result && ON_POSITIVE_SIDE !=
                power_test(it->neighbor(i), it->vertex(i)->point());
          CGAL_triangulation_assertion(result);
        }
      }

      Vertex_circulator start = incident_vertices(infinite_vertex());
      Vertex_circulator pc(start);
      Vertex_circulator qc(start); ++qc;
      Vertex_circulator rc(start); ++rc; ++rc;
      do{
        Orientation s = orientation(pc->point(),
                                    qc->point(),
                                    rc->point());
        CGAL_triangulation_assertion(s != LEFT_TURN);
        result = result && (s != LEFT_TURN);
        ++pc ; ++qc ; ++rc;
      } while(pc != start);

      // check number of faces. This cannot be done by the Tds
      // which does not know the number of components nor the genus
      result = result && (number_of_faces() == 2*(number_of_vertices()+1)
                          - 4
                          - degree(infinite_vertex()));
      CGAL_triangulation_assertion(result);
      break;
  }

  // in any dimension
  if(verbose) {
    std::cerr << " nombres de sommets " << number_of_vertices() << "\t"
              << "nombres de sommets  caches " << number_of_hidden_vertices()
              << std::endl;
  }
  result = result && (Base::number_of_vertices() ==
                       number_of_vertices() + number_of_hidden_vertices());
  CGAL_triangulation_assertion(result);
  return result;
}

template <class Gt, class Tds >
void
 Regular_triangulation_2<Gt, Tds>::
show_face(Face_handle fh) const
{
  Base::show_face(fh);

  typename Vertex_list::iterator current;
  std::cerr << "  +++++>>>    ";
  for(current= fh->vertex_list().begin();
       current!= fh->vertex_list().end() ; current++) {
        std::cerr <<"[ "<< ((*current)->point()) << " ] ,  ";
  }
  std::cerr <<std::endl;
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
show_all() const
{
  std::cerr << "PRINT THE FULL TRIANGULATION :" << std::endl;
  std::cerr << std::endl << "====> "<< this ;
  std::cerr << " dimension " <<  dimension() << std::endl;
  std::cerr << " nb of vertices " << number_of_vertices()
            << " nb of hidden vertices " << number_of_hidden_vertices()
            <<   std::endl;

  if(dimension() < 1) return;
  if(dimension() == 1) {
    std::cerr << " all edges " <<std::endl;
    All_edges_iterator aeit;
    for(aeit = all_edges_begin(); aeit != all_edges_end(); aeit++){
      show_face(aeit->first);
    }
  }

  else{ //dimension ==2
    std::cerr << " finite faces " << std::endl;
    Finite_faces_iterator fi;
    for(fi = finite_faces_begin(); fi != finite_faces_end(); fi++) {
      show_face(fi);
    }

    std::cerr << " infinite faces " << std::endl;
    All_faces_iterator afi;
    for(afi = all_faces_begin(); afi != all_faces_end(); afi++) {
      if(is_infinite(afi)) show_face(afi);
    }
  }

  if(number_of_vertices()>1) {
    std::cerr << "printing vertices of the regular triangulation" << std::endl;
    All_vertices_iterator vi;
    for(vi = all_vertices_begin(); vi != all_vertices_end(); vi++){
      show_vertex(vi);
      std::cerr << "  / associated face : "
                << &*(vi->face()) << std::endl;
    }
    std::cerr << std::endl;
  }

  std::cerr << "hidden vertices " << std::endl;
  Hidden_vertices_iterator hvi = hidden_vertices_begin();
  for(; hvi != hidden_vertices_end(); hvi++) {
    show_vertex(hvi);
    std::cerr << "  / associated face : "
              << &*(hvi->face()) << std::endl;
  }
  return;
}

//DUALITY
template < class Gt, class Tds >
inline
typename Regular_triangulation_2<Gt,Tds>::Bare_point
Regular_triangulation_2<Gt,Tds>::
dual(Face_handle f) const
{
  return weighted_circumcenter(f);
}

template < class Gt, class Tds >
inline
typename Regular_triangulation_2<Gt,Tds>::Bare_point
Regular_triangulation_2<Gt,Tds>::
weighted_circumcenter(Face_handle f) const
{
  CGAL_triangulation_precondition(dimension() == 2 || !is_infinite(f));
  return weighted_circumcenter(f->vertex(0)->point(),
                               f->vertex(1)->point(),
                               f->vertex(2)->point());
}

template<class Gt, class Tds>
inline
typename Regular_triangulation_2<Gt,Tds>::Bare_point
Regular_triangulation_2<Gt,Tds>::
weighted_circumcenter(const Weighted_point& p0,
                      const Weighted_point& p1,
                      const Weighted_point& p2) const
{
  return geom_traits().construct_weighted_circumcenter_2_object()(p0,p1,p2);
}

template < class Gt, class Tds >
inline
Object
Regular_triangulation_2<Gt,Tds>::
dual(const Edge &e) const
{
  typedef typename Geom_traits::Line_2        Line;
  typedef typename Geom_traits::Ray_2         Ray;
  typedef typename Geom_traits::Segment_2     Segment;

  CGAL_triangulation_precondition(! is_infinite(e));
  if(dimension() == 1){
    const Weighted_point& p = (e.first)->vertex(cw(e.second))->point();
    const Weighted_point& q = (e.first)->vertex(ccw(e.second))->point();
    Line l = geom_traits().construct_radical_axis_2_object()(p,q);
    return make_object(l);
  }

  // dimension==2
  if((! is_infinite(e.first)) &&
     (! is_infinite(e.first->neighbor(e.second)))) {
    Segment s = geom_traits().construct_segment_2_object()(
                  dual(e.first),dual(e.first->neighbor(e.second)));
    return make_object(s);
  }

  // one of the adjacent faces is infinite
  Face_handle f; int i;
  if(is_infinite(e.first)) {
    f = e.first->neighbor(e.second);
    i = f->index(e.first);
  }
  else {
    f = e.first;
    i = e.second;
  }
  const Weighted_point& p = f->vertex(cw(i))->point();
  const Weighted_point& q = f->vertex(ccw(i))->point();
  Line l  = geom_traits().construct_radical_axis_2_object()(p,q);
  Ray r = geom_traits().construct_ray_2_object()(dual(f), l);
  return make_object(r);
}

template < class Gt, class Tds >
inline
Object
Regular_triangulation_2<Gt,Tds>::
dual(const Edge_circulator& ec) const
{
  return dual(*ec);
}

template < class Gt, class Tds >
inline
Object
Regular_triangulation_2<Gt,Tds>::
dual(const Finite_edges_iterator& ei) const
{
  return dual(*ei);
}

//INSERTION-REMOVAL
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
push_back(const Weighted_point &p)
{
  return insert(p);
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert(const Weighted_point &p, Face_handle start)
{
  Locate_type lt;
  int li;
  Face_handle loc = locate(p, lt, li, start);
  return insert(p, lt, loc, li);
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert(const Weighted_point &p, Locate_type lt, Face_handle loc, int li)
{
  Vertex_handle v;
  switch(lt) {
    case Base::VERTEX:
    {
      CGAL_precondition(dimension() >= 0);
      if(dimension() == 0) {
        // in this case locate() oddly returns loc = NULL and li = 4,
        // so we work around it.
        loc = finite_vertex()->face();
        li = 0;
      }

      Vertex_handle vv = loc->vertex(li);
      CGAL::Oriented_side side = power_test(vv->point(), p);

      switch(side) {
        case ON_NEGATIVE_SIDE:
          return hide_new_vertex(loc, p);

        case ON_POSITIVE_SIDE:
          v = this->_tds.create_vertex();
          v->set_point(p);
          exchange_incidences(v,vv);
          hide_vertex(loc, vv);
          regularize(v);
          return v;

        default: // that is ON_ORIENTED_BOUNDARY:
          return vv;
      }
    }
    case Base::EDGE:
    {
      CGAL_precondition(dimension() >= 1);
      Oriented_side os = dimension() == 1 ? power_test(loc, li, p) :
                                            power_test(loc, p, true);

      if(os < 0) {
        if(is_infinite(loc)) loc = loc->neighbor(li);
        return hide_new_vertex(loc, p);
      }
      v = insert_in_edge(p, loc, li);
      break;
    }

    case Base::FACE:
    {
      CGAL_precondition(dimension() >= 2);
      if(power_test(loc, p, true) < 0) {
        return hide_new_vertex(loc,p);
      }
      v = insert_in_face(p, loc);
      break;
    }
    default:
      v = Base::insert(p, lt, loc, li);
  }

  if(lt == OUTSIDE_AFFINE_HULL) {
    //clear vertex list of infinite faces which have been copied
    for(All_faces_iterator afi = all_faces_begin();
          afi != all_faces_end(); afi++) {
      if(is_infinite(afi))
        afi->vertex_list().clear();
    }
  }

  regularize(v);
  return v;
}

/*
The reinsert function  insert a weighted point which was in a hidden
vertex.
The new and old vertices are then exchanged ; this is required
if the regular triangulation is used with a hierarchy because
the old vertex has its up and down pointers set and other vertices
pointing on him
*/
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
reinsert(Vertex_handle v, Face_handle start)
{
  CGAL_triangulation_assertion(v->is_hidden());
  v->set_hidden(false);
  _hidden_vertices--;

//  // to debug
//  std::cerr << "from reinsert " << std::endl;
//  show_vertex(v);
//  Locate_type lt;
//  int li;
//  Face_handle loc = locate(v->point(), lt, li, start);
//  std::cerr << "locate " << &(*loc) << "\t" << lt << "\t" << li << std::endl;
//  show_face(loc);
//  std::cerr << std::endl;

  Vertex_handle vh = insert(v->point(), start);
  if(vh->is_hidden())
    exchange_hidden(v,vh);
  else
    exchange_incidences(v,vh);

  this->_tds.delete_vertex(vh);
  return v;
}

// push va instead of vb in the list of the face fb hiding vb
// vb must be the last inserted vertex in the list of fb
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
exchange_hidden(Vertex_handle va, Vertex_handle vb)
{
  CGAL_triangulation_assertion(vb->is_hidden());
  CGAL_triangulation_assertion(vb == vb->face()->vertex_list().back());

//  //to debug
//  std::cerr << "from exchange hidden 1" << std::endl;
//  show_vertex(vb);
//  std::cerr << "  / associated face : "
//            << &*(vb->face()) << std::endl;

  vb->face()->vertex_list().pop_back();
  _hidden_vertices--;
  hide_vertex(vb->face(), va);

//  //to debug
//  std::cerr << "from exchange hidden 1" << std::endl;
//  show_vertex(va);
//  std::cerr << "  / associated face : "
//            << &*(va->face()) << std::endl << std::endl;
}

// set to va the incidences of vb
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
exchange_incidences(Vertex_handle va, Vertex_handle vb)
{
  CGAL_triangulation_assertion(!vb->is_hidden());
  std::list<Face_handle> faces;
  if(dimension() == 0) {
    faces.push_back(vb->face());
  } else if(dimension() == 1) {
    faces.push_back(vb->face());
    int i = vb->face()->index(vb);
    faces.push_back(vb->face()->neighbor(1-i));
  }
  else {
    CGAL_triangulation_assertion(dimension() == 2);
    Face_circulator fc = incident_faces(vb), done(fc);
    do {
      faces.push_back(fc);
      fc++;
    } while(fc != done);
  }

  va->set_face(*(faces.begin()));
  for(typename std::list<Face_handle>::iterator it = faces.begin();
      it != faces.end(); it++){
    Face_handle fh = *it;
    fh->set_vertex(fh->index(vb), va);
  }
  return;
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert_in_face(const Weighted_point &p, Face_handle f)
{
  Vertex_handle v = Base::insert_in_face(p,f);
  update_hidden_points_1_3(f,
         f->neighbor(ccw(f->index(v))),
         f->neighbor(cw(f->index(v))));
  return v;
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert_in_edge(const Weighted_point &p, Face_handle f, int i)
{
  Vertex_handle v;
  if(dimension() == 1) {
    v = Base::insert_in_edge(p,f,i);
    Face_handle g = f->neighbor(1 - f->index(v));
    update_hidden_points_2_2(f,g);
  }
  else { //dimension()==2
    // don't use update_hidden_points_2_2 any more to split
    // hidden vertices list because new affectation of f and n
    // around new vertex is unknown
    Face_handle n = f->neighbor(i);
    Vertex_list p_list;
    p_list.splice(p_list.begin(),f->vertex_list());
    p_list.splice(p_list.begin(),n->vertex_list());
    v = Base::insert_in_edge(p,f,i);
    Face_handle loc;
    while(! p_list.empty()){
      loc = locate(p_list.front()->point(), n);
      if(is_infinite(loc)) loc = loc->neighbor(loc->index(infinite_vertex()));
      hide_vertex(loc, p_list.front());
      p_list.pop_front();
    }
  }
  return v;
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
regularize(Vertex_handle v)
{
  CGAL_triangulation_precondition(v != infinite_vertex());
  Faces_around_stack faces_around;

  if(dimension() < 1) return;

  //initialise faces_around
  if(dimension() == 1) {
    faces_around.push_back(v->face());
    faces_around.push_back(v->face()->neighbor(1- v->face()->index(v)));
  }
  else{ //dimension==2
    Face_circulator fit = incident_faces(v), done(fit);
    do {
      faces_around.push_back(fit++);
    } while(fit != done);
  }

  while(! faces_around.empty())
    stack_flip(v, faces_around);
  return;
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
flip(Face_handle f, int i)
{
  Face_handle n = f->neighbor(i);
  Base::flip(f,i);
  update_hidden_points_2_2(f,n);
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove_degree_3(Vertex_handle v, Face_handle f)
{
  if(f == Face_handle())
    f=v->face();

  update_hidden_points_3_1(f,
                           f->neighbor(cw(f->index(v))),
                           f->neighbor(ccw(f->index(v))));
  Base::remove_degree_3(v,f);
  if(is_infinite(f)) { //the list of f is given to its finite neighbor
    Face_handle fn = f->neighbor(f->index(infinite_vertex()));
    set_face(f->vertex_list(),fn);
    fn->vertex_list().splice(fn->vertex_list().begin(), f->vertex_list());
  }
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove_hidden(Vertex_handle v)
{
  _hidden_vertices--;
  v->face()->vertex_list().remove(v);
  delete_vertex(v);
  return;
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove(Vertex_handle v)
{
  CGAL_triangulation_precondition(v != Vertex_handle());
  CGAL_triangulation_precondition(!is_infinite(v));

  if(v->is_hidden())
    return remove_hidden(v);

  Face_handle hint;
  int ihint = 0;

  Vertex_list to_reinsert;
  switch(dimension()) {
    case 0:
      to_reinsert.splice(to_reinsert.begin(), v->face()->vertex_list());
      break;
    case 1:
    {
      Face_handle f1 = v->face();
      ihint = f1->index(v);
      hint = f1->neighbor(ihint);
      Face_handle f2 = f1->neighbor(1 - ihint);
      ihint = mirror_index(f1, ihint);

      to_reinsert.splice(to_reinsert.begin(), f1->vertex_list());
      to_reinsert.splice(to_reinsert.begin(), f2->vertex_list());
      break;
    }
    case 2:
    {
      Face_circulator f = incident_faces(v), end = f;
      ihint = f->index(v);
      hint = f->neighbor(ihint);
      ihint = mirror_index(f, ihint);
      do to_reinsert.splice(to_reinsert.begin(), f->vertex_list());
      while(++f != end);
      break;
    }
  }

  if(number_of_vertices() <= 2) {
    this->_tds.remove_dim_down(v);
  } else if(dimension() < 2) {
    Base::remove(v);
  } else {
    remove_2D(v);
  }

  if(hint != Face_handle()) hint = hint->neighbor(ihint);

  for(typename Vertex_list::iterator i = to_reinsert.begin();
      i != to_reinsert.end(); ++i)
  {
    hint = reinsert(*i, hint)->face();
  }
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove_2D(Vertex_handle v)
{
  if(test_dim_down(v)) { this->_tds.remove_dim_down(v); }
  else {
    std::list<Edge> hole;
    make_hole(v, hole);
    fill_hole_regular(hole);
    delete_vertex(v);
  }
  return;
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
fill_hole_regular(std::list<Edge> & first_hole)
{
  typedef std::list<Edge> Hole;
  typedef std::list<Hole> Hole_list;

  Hole hole;
  Hole_list hole_list;
  Face_handle ff, fn;
  int i, ii, in;

  hole_list.push_front(first_hole);

  while(! hole_list.empty())
  {
    hole = hole_list.front();
    hole_list.pop_front();
    typename Hole::iterator hit = hole.begin();

    // if the hole has only three edges, create the triangle
    if(hole.size() == 3)
    {
      Face_handle  newf = create_face();
      hit = hole.begin();
      for(int j=0; j<3; j++)
      {
        ff = (*hit).first;
        ii = (*hit).second;
        hit++;
        ff->set_neighbor(ii,newf);
        newf->set_neighbor(j,ff);
        newf->set_vertex(newf->ccw(j),ff->vertex(ff->cw(ii)));
      }
      continue;
    }

    // else find an edge with two finite vertices
    // on the hole boundary
    // and the new triangle adjacent to that edge
    //  cut the hole and push it back

    // first, ensure that a neighboring face
    // whose vertices on the hole boundary are finite
    // is the first of the hole
    bool finite = false;
    while(!finite)
    {
      ff = hole.front().first;
      ii = hole.front().second;
      if(is_infinite(ff->vertex(cw(ii))) ||
           is_infinite(ff->vertex(ccw(ii))))
      {
        hole.push_back(hole.front());
        hole.pop_front();
      }
      else
        finite = true;
    }

    // take the first neighboring face and pop it;
    ff = hole.front().first;
    ii = hole.front().second;
    hole.pop_front();

    Vertex_handle  v0 = ff->vertex(ff->cw(ii));
    const Weighted_point& p0 = v0->point();
    Vertex_handle  v1 = ff->vertex(ff->ccw(ii));
    const Weighted_point& p1 = v1->point();
    Vertex_handle  v2 = infinite_vertex();
    Weighted_point p2;
    Vertex_handle  vv;
    Weighted_point p;

    typename Hole::iterator hdone = hole.end();
    hit = hole.begin();
    typename Hole::iterator cut_after(hit);

    // if tested vertex is c with respect to the vertex opposite
    // to NULL neighbor,
    // stop at the before last face;
    hdone--;
    while(hit != hdone)
    {
      fn = (*hit).first;
      in = (*hit).second;
      vv = fn->vertex(ccw(in));
      if(is_infinite(vv))
      {
        if(is_infinite(v2))
          cut_after = hit;
      }
      else
      { // vv is a finite vertex
        p = vv->point();
        if(orientation(p0,p1,p) == COUNTERCLOCKWISE)
        {
          if(is_infinite(v2))
          {
            v2=vv;
            p2=p;
            cut_after=hit;
          }
          else if(power_test(p0,p1,p2,p,true) == ON_POSITIVE_SIDE)
          {
            v2=vv;
            p2=p;
            cut_after=hit;
          }
        }
      }
      ++hit;
    }

    // create new triangle and update adjacency relations
    Face_handle newf = create_face(v0,v1,v2);
    newf->set_neighbor(2,ff);
    ff->set_neighbor(ii, newf);

    //update the hole and push back in the Hole_List stack
    // if v2 belongs to the neighbor following or preceding *f
    // the hole remain a single hole
    // otherwise it is split in two holes

    fn = hole.front().first;
    in = hole.front().second;
    if(fn->has_vertex(v2, i) && i == (int)fn->ccw(in))
    {
      newf->set_neighbor(0,fn);
      fn->set_neighbor(in,newf);
      hole.pop_front();
      hole.push_front(Edge(newf,1));
      hole_list.push_front(hole);
    }
    else
    {
      fn = hole.back().first;
      in = hole.back().second;
      if(fn->has_vertex(v2, i) && i == (int)fn->cw(in))
      {
        newf->set_neighbor(1,fn);
        fn->set_neighbor(in,newf);
        hole.pop_back();
        hole.push_back(Edge(newf,0));
        hole_list.push_front(hole);
      }
      else
      { // split the hole in two holes
        Hole new_hole;
        ++cut_after;
        while(hole.begin() != cut_after)
        {
          new_hole.push_back(hole.front());
          hole.pop_front();
        }

        hole.push_front(Edge(newf,1));
        new_hole.push_front(Edge(newf,0));
        hole_list.push_front(hole);
        hole_list.push_front(new_hole);
      }
    }
  }
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
set_face(Vertex_list& vl, const Face_handle& fh)
{
  for(typename Vertex_list::iterator it = vl.begin(); it != vl.end(); it++)
   (*it)->set_face(fh);
}

// add the vertex_list of f2 and f3 to the point list of f1
// for the 3-1 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_3_1(const Face_handle& f1, const Face_handle& f2,
       const Face_handle& f3)
{
  set_face(f2->vertex_list(), f1);
  set_face(f3->vertex_list(), f1);
 (f1->vertex_list()).splice(f1->vertex_list().begin(),f2->vertex_list());
 (f1->vertex_list()).splice(f1->vertex_list().begin(),f3->vertex_list());
  return;
}


// the points of the lists of 2 faces are sorted
// because of a 2-2 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_2_2(const Face_handle& f1, const Face_handle& f2)
{
  CGAL_triangulation_assertion(f1->has_neighbor(f2));

  Vertex_list p_list;
  p_list.splice(p_list.begin(), f1->vertex_list());
  p_list.splice(p_list.begin(), f2->vertex_list());

  // if one of the face is infinite,
  // the other face hide all the points
  if(is_infinite(f1)) {
    set_face(p_list, f2);
   (f2->vertex_list()).splice(f2->vertex_list().begin(), p_list);
    return;
  }
  if(is_infinite(f2)) {
    set_face(p_list, f1);
   (f1->vertex_list()).splice(f1->vertex_list().begin(), p_list);
    return;
  }

  if(dimension() == 1) {
    const Weighted_point& a1 = f1->vertex(f1->index(f2))->point();
    const Weighted_point& a  = f1->vertex(1-f1->index(f2))->point();
    while(! p_list.empty()) {
      if(this->compare_x(a, p_list.front()->point()) ==
           this->compare_x(a, a1)  &&
           this->compare_y(a, p_list.front()->point()) ==
           this->compare_y(a, a1))
      {
        hide_vertex(f1, p_list.front());
      } else {
        hide_vertex(f2, p_list.front());
      }
      p_list.pop_front();
    }
    return;
  }

  // from here f1 and f2 are finite 2-dimensional faces
  int idx2 = f1->index(f2);
  Vertex_handle v0=f1->vertex(ccw(idx2));
  Vertex_handle v1=f1->vertex(cw(idx2));
  CGAL_triangulation_assertion(!is_infinite(v0) && !is_infinite(v1));

  while(! p_list.empty())
  {
    if(orientation(v0->point(), v1->point(), p_list.front()->point()) ==
        COUNTERCLOCKWISE)
      hide_vertex(f1, p_list.front());
    else
      hide_vertex(f2, p_list.front());
    p_list.pop_front();
  }
}

// The point list of f1 is separated into 3 lists
// for a 1-3 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_1_3(const Face_handle& f1, const Face_handle& f2,
                         const Face_handle& f3)
{
  CGAL_triangulation_assertion(f1->has_neighbor(f2) &&
                               f2->has_neighbor(f3) &&
                               f3->has_neighbor(f1));


  Vertex_list p_list;
  p_list.splice(p_list.begin(),f1->vertex_list());
  if(p_list.empty())
    return;

  // the following does not work if
  // two of f1,f2 and f3 are twice neighbors
  // but this cannot appear taking the assertion into account;
  int idx2 = f1->index(f2),
      idx3 = f1->index(f3);
  Vertex_handle v2 = f1->vertex(idx2),
      v3 = f1->vertex(idx3),
      v0 = f1->vertex(3-(idx2+idx3)),
      v1 = f2->vertex(f2->index(f1));

  CGAL_triangulation_assertion(f2->has_vertex(v0) && f1->has_vertex(v0));
  CGAL_triangulation_assertion(f3->has_vertex(v1));
  CGAL_triangulation_assertion(! is_infinite(v0));

  // if two of f1, f2,and f3 are infinite
  // the list goes entirely to the third finite face
  // no orientation test necessary
  // because the point list of an infinite face
  // is only made of point projecting on its finite edge
  if(is_infinite(f1) && is_infinite(f2)) {
    set_face(p_list, f3);
    f3->vertex_list().splice(f3->vertex_list().begin(), p_list);
    return;
  }
  if(is_infinite(f1) && is_infinite(f3)) {
    set_face(p_list, f2);
    f2->vertex_list().splice(f2->vertex_list().begin(), p_list);
    return;
  }
  if(is_infinite(f2) && is_infinite(f3)){
    set_face(p_list, f1);
    f1->vertex_list().splice(f1->vertex_list().begin(), p_list);
    return;
  }

  // if here, v1,v2,v3 and v0 are finite vertices
  while(! p_list.empty())
  {
    Vertex_handle v(p_list.front());
//    if(orientation(v2->point(),v0->point(), v->point()) !=
//       orientation(v2->point(),v0->point(),v3->point()))
//    { // not in f1
//      if(orientation(v1->point(), v0->point(), v->point()) !=
//          orientation(v1->point(), v0->point(), v3->point()))
//        // not in f2
//        hide_vertex(f3, v);
//      else
//        hide_vertex(f2, v);
//    }
//    else
//      hide_vertex(f1, v);
    if(orientation(v2->point(),v0->point(), v->point()) ==
       orientation(v2->point(),v0->point(),v3->point())  &&
       orientation(v3->point(),v0->point(), v->point()) ==
       orientation(v3->point(),v0->point(), v2->point()))
      hide_vertex(f1, v);
    else if(orientation(v1->point(), v0->point(), v->point()) ==
             orientation(v1->point(), v0->point(), v3->point()))
      hide_vertex(f2,v);
    else
      hide_vertex(f3,v);
    p_list.pop_front();
  }
}

// the vertex is a degree three vertex which has to removed
// and hidden
// create first  a new hidden vertex and exchange with the vertex
// to be removed by the tds :
// this is required to keep up and down pointers right when using a hierarchy
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
hide_remove_degree_3(Face_handle fh, Vertex_handle vh)
{
 Vertex_handle vnew= this->_tds.create_vertex();
 exchange_incidences(vnew,vh);
 remove_degree_3(vnew, fh);
 hide_vertex(fh,vh);
}

// create a vertex and hide it
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
hide_new_vertex(Face_handle f, const Weighted_point& p)
{
  Vertex_handle v = this->_tds.create_vertex();
  v->set_point(p);
  hide_vertex(f, v);
  return v;
}

// insert the vertex to the hidden vertex list
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
hide_vertex(Face_handle f, Vertex_handle vh)
{
  // no hidden vertex in infinite face
  if(is_infinite(f) && dimension() > 0)
    f = f->neighbor(f->index(infinite_vertex()));

  if(! vh->is_hidden()) {
    vh->set_hidden(true);
    _hidden_vertices++;
  }
  vh->set_face(f);
  f->vertex_list().push_back(vh);
}

// template < class Gt, class Tds >
// void
// Regular_triangulation_2<Gt,Tds>::
// hide_vertex(Face_handle f, void* ptr)
// {
//   Vertex_handle v(static_cast<Vertex*>(ptr));
//   hide_vertex(f, v);
// }

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip(Vertex_handle v, Faces_around_stack &faces_around)
{
  Face_handle f=faces_around.front();
  faces_around.pop_front();
  int i = f->index(v);
  Face_handle n = f->neighbor(i);

  if(dimension() == 1) {
    if(is_infinite(f)  || is_infinite(n))
      return;

    if(power_test(v->point(),
                     n->vertex(n->index(f))->point(),
                     f->vertex(1-i)->point()) ==  ON_NEGATIVE_SIDE)
      stack_flip_dim1(f,i,faces_around);
    return;
  }

  // now dimension() == 2
  //test the regularity of edge(f,i)
  //if(power_test(n, v->point()) == ON_NEGATIVE_SIDE)
  if(power_test(n, v->point(), true) != ON_POSITIVE_SIDE)
    return;

  if(is_infinite(f,i))
  {
    int j = 3 - (i + f->index(infinite_vertex()));
    if(degree(f->vertex(j)) == 4)
      stack_flip_4_2(f,i,j,faces_around);
    return;
  }

  // now f and n are both finite faces
  int ni = n->index(f);
  Orientation occw = orientation(f->vertex(i)->point(),
                                 f->vertex(ccw(i))->point(),
                                 n->vertex(ni)->point());
  Orientation ocw  = orientation(f->vertex(i)->point(),
                                 f->vertex(cw(i))->point(),
                                 n->vertex(ni)->point());
  if(occw == LEFT_TURN && ocw == RIGHT_TURN) {
    // quadrilater(f,n) is convex
    stack_flip_2_2(f,i, faces_around);
    return;
  }
  if(occw == RIGHT_TURN && degree(f->vertex(ccw(i))) == 3) {
    stack_flip_3_1(f,i,ccw(i),faces_around);
    return;
  }
  if(ocw == LEFT_TURN && degree(f->vertex(cw(i))) == 3) {
    stack_flip_3_1(f,i,cw(i),faces_around);
    return;
  }
  if(occw == COLLINEAR && degree(f->vertex(ccw(i))) == 4) {
    stack_flip_4_2(f,i,ccw(i),faces_around);
    return;
  }
  if(ocw == COLLINEAR && degree(f->vertex(cw(i))) == 4)
    stack_flip_4_2(f,i,cw(i),faces_around);

  return;
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_4_2(Face_handle f, int i, int j, Faces_around_stack & faces_around)
{
  int k = 3-(i+j);
  Face_handle g=f->neighbor(k);
  if(!faces_around.empty())
  {
    if(faces_around.front() == g)
      faces_around.pop_front();
    else if(faces_around.back() == g)
      faces_around.pop_back();
  }

  //union f with  g and f->neihgbor(i) with g->f->neihgbor(i)
  Face_handle fn = f->neighbor(i);
  //Face_handle gn = g->neighbor(g->index(f->vertex(i)));
  Vertex_handle vq = f->vertex(j);

  this->_tds.flip(f, i); //not using flip because the vertex j is flat.
  update_hidden_points_2_2(f,fn);
  Face_handle h1 = (j == ccw(i) ? fn : f);
  //hide_vertex(h1, vq);
  hide_remove_degree_3(g,vq);
  if(j == ccw(i)) {
    faces_around.push_front(h1);
    faces_around.push_front(g);
  }
  else {
    faces_around.push_front(g);
    faces_around.push_front(h1);
  }
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_3_1(Face_handle f, int i, int j, Faces_around_stack & faces_around)
{
  int k = 3-(i+j);
  Face_handle g=f->neighbor(k);
  if(!faces_around.empty())
  {
    if(faces_around.front()== g)
      faces_around.pop_front();
    else if(faces_around.back() == g)
      faces_around.pop_back();
  }

  Vertex_handle vq= f->vertex(j);
  //hide_vertex(f,vq);
  hide_remove_degree_3(f,vq);
  faces_around.push_front(f);
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_2_2(Face_handle f, int i, Faces_around_stack & faces_around)
{
  Vertex_handle vq = f->vertex(ccw(i));
  flip(f,i);
  if(f->has_vertex(vq)) {
    faces_around.push_front(f->neighbor(ccw(i)));
    faces_around.push_front(f);
  }
  else {
    faces_around.push_front(f);
    faces_around.push_front(f->neighbor(cw(i)));
  }
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_dim1(Face_handle f, int i, Faces_around_stack &faces_around)
{
  Vertex_handle va = f->vertex(1-i);
  Face_handle n= f->neighbor(i);
  int in = n->index(f);
  Vertex_handle vb = n->vertex(in);
  f->set_vertex(1-i, n->vertex(in));
  vb->set_face(f);
  f->set_neighbor(i, n->neighbor(1-in));
  n->neighbor(1-in)->set_neighbor(n->neighbor(1-in)->index(n), f);
 (f->vertex_list()).splice(f->vertex_list().begin(),n->vertex_list());
  set_face(f->vertex_list(),f);
  this->delete_face(n);
  hide_vertex(f,va);
  faces_around.push_front(f);
  return;
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::All_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
all_vertices_begin() const
{
  return CGAL::filter_iterator(Base::all_vertices_end(),
                               Hidden_tester(),
                               Base::all_vertices_begin());
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::All_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
all_vertices_end() const
{
  return CGAL::filter_iterator(Base::all_vertices_end(),
                               Hidden_tester());
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Finite_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
finite_vertices_begin() const
{
  return CGAL::filter_iterator(Base::finite_vertices_end(),
                               Hidden_tester(),
                               Base::finite_vertices_begin());
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
finite_vertex() const
{
  CGAL_triangulation_precondition(number_of_vertices() >= 1);
  return(finite_vertices_begin());
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Finite_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
finite_vertices_end() const
{

  return CGAL::filter_iterator(Base::finite_vertices_end(),
                               Hidden_tester());
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Hidden_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
hidden_vertices_begin() const
{
  return CGAL::filter_iterator(Base::finite_vertices_end(),
                               Unhidden_tester(),
                               Base::finite_vertices_begin());
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Hidden_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
hidden_vertices_end() const
{
  return CGAL::filter_iterator(Base::finite_vertices_end(),
                               Unhidden_tester());
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
nearest_power_vertex(const Bare_point& p) const
{
  if(dimension() == -1) { return Vertex_handle(); }

  if(dimension() == 0) { return this->finite_vertex(); }

  typename Geom_traits::Compare_power_distance_2 cmp_power_distance =
      geom_traits().compare_power_distance_2_object();

  Vertex_handle vclosest;
  Vertex_handle v = this->finite_vertex();

  //  if(dimension() == 1) {
  //  }

  do {
    vclosest = v;
    Weighted_point wp = v->point();
    Vertex_circulator vc_start = incident_vertices(v);
    Vertex_circulator vc = vc_start;
    do {
      if(!is_infinite(vc)) {
        if(cmp_power_distance(p, vc->point(), wp) == SMALLER) {
          v = vc;
          break;
        }
      }
      ++vc;
    } while(vc != vc_start);
  } while(vclosest != v);

  return vclosest;
}

} //namespace CGAL

#endif // CGAL_REGULAR_TRIANGULATION_2_H