This file is indexed.

/usr/include/CGAL/Root_of_traits.h is in libcgal-dev 4.11-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// Copyright (c) 2005,2006  INRIA Sophia-Antipolis (France)
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Sylvain Pion, Monique Teillaud, Athanasios Kakargias, Michael Hemmer

#ifndef CGAL_ROOT_OF_TRAITS_H
#define CGAL_ROOT_OF_TRAITS_H

#include <CGAL/number_type_basic.h>
#include <CGAL/Get_arithmetic_kernel.h>
#include <CGAL/Sqrt_extension.h>
#include <CGAL/Quotient.h>
#include <boost/mpl/has_xxx.hpp>

namespace CGAL {

template < typename NT >
struct Root_of_traits;

template < class NT >
inline
typename Root_of_traits< NT >::Root_of_2
make_root_of_2(const NT &a, const NT &b, const NT &c)
{
    typename Root_of_traits<NT>::Make_root_of_2 make_root_of_2;
    return make_root_of_2(a,b,c);
}

template < class NT >
inline
typename Root_of_traits< NT >::Root_of_2
make_root_of_2(const NT &a, const NT &b, const NT &c,const bool smaller)
{
    typename Root_of_traits<NT>::Make_root_of_2 make_root_of_2;
    return make_root_of_2(a,b,c,smaller);
}

template < class NT >
inline 
typename Root_of_traits< NT >::Root_of_2
make_sqrt(const NT &a)
{
  typename Root_of_traits<NT>::Make_sqrt make_sqrt;
  return make_sqrt(a);
}

template < class NT , class OutputIterator>
inline 
OutputIterator
compute_roots_of_2(const NT &a_, const NT &b_, const NT &c_, OutputIterator oit)
{
  typedef typename Root_of_traits<NT>::Root_of_1 Root_of_1;
  typedef typename Root_of_traits<NT>::Root_of_2 Root_of_2;
  typename CGAL::Coercion_traits<Root_of_1,NT>::Cast cast; 
  Root_of_1 a(cast(a_)), b(cast(b_)), c(cast(c_));
    
  if ( a != 0 ) {
    Root_of_1 a0_  (-b/(2*a));
    Root_of_1 root_(CGAL_NTS square(a0_) - c/a);
    switch(CGAL::sign(root_)){
    case CGAL::NEGATIVE: return oit; 
    case CGAL::ZERO: *oit++ = Root_of_2(a0_);  return oit;
    default:
      // two roots 
      *oit++ = make_root_of_2(a0_,Root_of_1(-1),root_);
      *oit++ = make_root_of_2(a0_,Root_of_1( 1),root_);
      return oit; 
    }
  }
  else { 
    *oit++ = -c/b; return oit;   
  }
}


namespace internal {

BOOST_MPL_HAS_XXX_TRAIT_NAMED_DEF(Has_typedef_Arithmetic_kernel,Arithmetic_kernel,false)  

template <class NT,bool has_AK=Has_typedef_Arithmetic_kernel<Get_arithmetic_kernel<NT> >::value>
struct Get_rational_type{
  typedef Quotient<NT> type;
};

template <class NT>
struct Get_rational_type<NT,true>{
  typedef typename Get_arithmetic_kernel<NT>::Arithmetic_kernel::Rational type;
};

  
//Default or not a field.
//If no specialization of Get_arithmetic_kernel is available, a field type compatible with NT 
//is made using CGAL::Quotient
template < typename NT, class Algebraic_category>
struct Root_of_traits_helper{
//    typedef Quotient<NT> Root_of_1;
    typedef typename Get_rational_type<NT>::type Root_of_1;
    typedef CGAL::Sqrt_extension<Root_of_1,Root_of_1,::CGAL::Tag_true,::CGAL::Tag_true>             Root_of_2;
//    typedef CGAL::Root_of_2<NT> Root_of_2;
    struct Make_root_of_2{
        typedef Root_of_2 result_type;
        Root_of_2 operator()(const NT& a, const NT& b, const NT& c) const {
            return Root_of_2(a,b,c);
        }
        Root_of_2 operator()(const NT& a, const NT& b, const NT& c, bool s) const {
            return Root_of_2(a,b,c,s);
        }
        Root_of_2 operator()(const Root_of_1& a,
                             const Root_of_1& b,
                             const Root_of_1& c) const {
            return Root_of_2(a,b,c);
        }
        Root_of_2 operator()(const Root_of_1& a,
                             const Root_of_1& b,
                             const Root_of_1& c,
                             bool s) const {
            return Root_of_2(a,b,c,s);
        }
    };
  
private:
  typedef CGAL::Algebraic_structure_traits<Root_of_2> AST;
public:
  typedef typename AST::Square  Square; 
  typedef typename AST::Inverse Inverse;
  
  struct Make_sqrt {
    typedef Root_of_2 result_type;
    Root_of_2 operator()(const NT& x) const {
      return Root_of_2(x,true);
    }
  };
};

template < typename FT>
struct Root_of_traits_helper < FT, Field_tag >
{
    typedef FT               Root_of_1;
private:
    typedef Fraction_traits<FT> FrT;
    // Field must be a Type (Decomposable)
    // We have the typedef as VC10 fails with 
    // static_assert(FrT::Is_fraction::value)
    typedef typename FrT::Is_fraction ISF;
    CGAL_static_assertion((ISF::value));


    typedef typename FrT::Numerator_type      RT;
    typedef typename FrT::Decompose Decompose;
public:
    typedef CGAL::Sqrt_extension<Root_of_1,Root_of_1,::CGAL::Tag_true,::CGAL::Tag_true>             Root_of_2;

    struct Make_root_of_2{
        typedef Root_of_2 result_type;
        Root_of_2
        operator()(const FT& a, const FT& b, const FT& c) const {
            return Root_of_2(a,b,c);
        }
        Root_of_2
        operator()(const FT& a, const FT& b, const FT& c, bool smaller) const {
            Decompose decompose;
            RT a_num,b_num,c_num;
            RT a_den,b_den,c_den; // Denomiantor same as RT

            decompose(a,a_num,a_den);
            decompose(b,b_num,b_den);
            decompose(c,c_num,c_den);

            RT a_ = a_num * b_den * c_den;
            RT b_ = b_num * a_den * c_den;
            RT c_ = c_num * a_den * b_den;

            return make_root_of_2<RT>(a_,b_,c_,smaller);
        } 
    };

private:
  typedef CGAL::Algebraic_structure_traits<Root_of_2> AST;
public:
  typedef typename AST::Square  Square; 
  typedef typename AST::Inverse Inverse;
  
  struct Make_sqrt{
    typedef Root_of_2 result_type;
    Root_of_2 operator()(const FT& x) const {
      return Root_of_2( FT(0),FT(1),x);
    }
  };
};

template < typename NT >
struct Root_of_traits_helper < NT, Field_with_sqrt_tag >
{
    typedef NT  Root_of_1;
    typedef NT  Root_of_2;

    struct Make_root_of_2{
        typedef NT result_type;
        // just a copy, not sure about the semantic of smaller
        NT operator()(const NT& a, const NT& b, const NT& c, bool smaller) const {
            // former make_root_of_2_sqrt()
            CGAL_assertion( a != 0 );
            NT discriminant = CGAL_NTS square(b) - a*c*4;
            CGAL_assertion( discriminant >= 0 );
            NT d = CGAL_NTS sqrt(discriminant);
            if ((smaller && a>0) || (!smaller && a<0))
                d = -d;
            return (d-b)/(a*2);
        }
        // it's so easy
        NT operator()(const NT& a, const NT& b, const NT& c) const {
            return a + b * CGAL_NTS sqrt(c) ;
        }
    };

private:
  typedef CGAL::Algebraic_structure_traits<Root_of_2> AST;
public:
  typedef typename AST::Square  Square; 
  typedef typename AST::Inverse Inverse;
  
  struct Make_sqrt{
    typedef Root_of_2 result_type;
    Root_of_2 operator()(const NT& x) const {
      return CGAL::sqrt(x);
    }
  };
};

template < typename NT >
struct Root_of_traits_helper < NT, Field_with_kth_root_tag >
    :public Root_of_traits_helper < NT, Field_with_sqrt_tag>{};

template < typename NT >
struct Root_of_traits_helper < NT, Field_with_root_of_tag >
    :public Root_of_traits_helper < NT, Field_with_sqrt_tag>{};


} // namespace internal



// Default Traits class for NT types
template < typename NT >
struct Root_of_traits
    : public internal::Root_of_traits_helper<NT,
      typename Algebraic_structure_traits<NT>::Algebraic_category> {
    typedef internal::Root_of_traits_helper<NT,
      typename Algebraic_structure_traits<NT>::Algebraic_category> Base;
    typedef typename Base::Root_of_1 RootOf_1;
    typedef typename Base::Root_of_2 RootOf_2;
};

template <bool B>
struct Root_of_traits<Interval_nt<B> >{
  typedef Interval_nt<B> Root_of_1;
  typedef Interval_nt<B> Root_of_2;
  typedef Root_of_1 RootOf_1;
  typedef Root_of_2 RootOf_2;
  struct Make_root_of_2{
    typedef Interval_nt<B> result_type;
    // just a copy, not sure about the semantic of smaller
    Interval_nt<B> operator()(const Interval_nt<B>& a, const Interval_nt<B>& b, const Interval_nt<B>& c, bool smaller) const {
        // former make_root_of_2_sqrt()
        if (CGAL::possibly(a==0))
          return Interval_nt<B>::largest();
        Interval_nt<B> discriminant = CGAL_NTS square(b) - a*c*4;
        CGAL_assertion(discriminant >= 0);
        Interval_nt<B> d = CGAL_NTS sqrt(discriminant);
        if ((smaller && a>0) || (!smaller && a<0))
            d = -d;
        return (d-b)/(a*2);
    }
    // it's so easy
    Interval_nt<B> operator()(const Interval_nt<B>& a, const Interval_nt<B>& b, const Interval_nt<B>& c) const {
        return a + b * CGAL_NTS sqrt(c) ;
    }
  };
  
private:
  typedef CGAL::Algebraic_structure_traits<Interval_nt<B> > AST;
public:
  typedef typename AST::Square  Square; 
  typedef typename AST::Inverse Inverse;
  typedef typename AST::Sqrt    Make_sqrt;
  
};


} //namespace CGAL

#include <CGAL/Root_of_traits_specializations.h>

#endif // CGAL_ROOT_OF_TRAITS_H