This file is indexed.

/usr/include/CGAL/Stream_lines_2.h is in libcgal-dev 4.11-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
// Copyright (c) 2005  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Abdelkrim Mebarki <Abdelkrim.Mebarki@sophia.inria.fr>

#ifndef CGAL_STREAM_LINES_2_H_ 
#define CGAL_STREAM_LINES_2_H_

#include <CGAL/license/Stream_lines_2.h>


#include <CGAL/basic.h>
#include <CGAL/Delaunay_triangulation_2.h>

#include <queue>
#include <cmath>
#include <fstream>
#include <iostream>

#include <CGAL/squared_distance_2.h>

#include <CGAL/streamlines_assertions.h>

#include <boost/tuple/tuple.hpp>
#include <boost/random/uniform_real.hpp> // undocumented class
#include <boost/random/linear_congruential.hpp>
#include <boost/random/uniform_smallint.hpp>
#include <boost/shared_ptr.hpp>

namespace CGAL {

template <class VectorField_2, class Integrator_2>
class Stream_lines_2
{
public:
  typedef typename VectorField_2::Vector_field_2                                          Vector_field_2;
  typedef typename VectorField_2::Geom_traits                                             Geom_traits;
  typedef typename VectorField_2::FT                                                      FT;
  typedef typename VectorField_2::Point_2                                                 Point_2;
  typedef typename VectorField_2::Vector_2                                                Vector_2;
protected:
  typedef Geom_traits Kernel;
  typedef CGAL::Triangulation_vertex_base_2<Kernel>                                       Vb;
  typedef CGAL::Triangulation_face_base_2<Kernel>                                         Fb;
  typedef CGAL::Triangulation_data_structure_2<Vb,Fb>                                     TDS;
  typedef CGAL::Delaunay_triangulation_2<Kernel,TDS>                                      DT;
  typedef typename DT::Vertex_handle                                                      Vertex_handle;
  typedef typename DT::Face_handle                                                        Face_handle;
  typedef typename DT::Face_circulator                                                    Face_circulator;
  typedef typename DT::Edge_iterator                                                      Edge_iterator;
  typedef std::pair<Point_2,FT>                                                           Circle;
  typedef boost::tuple<Vertex_handle,Vertex_handle,Vertex_handle,Circle>                  Pq_element;
  Pq_element                                                                              Biggest_circle;
  FT distance(const Point_2 & p, const Point_2 & q)
    {
      return sqrt(squared_distance(p, q));
    }
  int          ir;
  int          il;
  Pq_element   Pq_element_max_r;
  Pq_element   Pq_previous_r,Pq_current_r,Pq_next_r;
  Pq_element   Pq_element_max_l;
  Pq_element   Pq_previous_l,Pq_current_l,Pq_next_l;
public:
  DT           m_DT;
  typedef std::list<Point_2>                                                              Point_container_2;
  typedef typename Point_container_2::iterator                                            Point_iterator_2;
  typedef std::list<std::pair<Point_iterator_2, Point_iterator_2> >                       Iterator_container_2;
  Iterator_container_2                                                                    iterator_container;
  typedef std::list<Vertex_handle>                                                        Vertex_container_2;
  typedef typename  Iterator_container_2::iterator                                        Stream_line_iterator_2;
  typedef std::list<Point_container_2>                                                    Stream_line_container_2;
protected:
  Stream_line_container_2                                        stl_container;
  class C
  {
  public:
    bool operator()(const Pq_element &a1, const Pq_element
        &a2)
      {
        return a1.template get<3>().second < a2.template get<3>().second ;
      }
  };
  std::priority_queue<Pq_element, std::vector<Pq_element>, C>    pq;
  int                                                            iOrder_insertion;
  FT                                                             fSepStl_seed;
  FT                                                             separating_distance;
  FT                                                             saturation_ratio;
  Point_2                                                        seed_point;
  int                                                            samp_step;
  unsigned int _number_of_lines;
  boost::shared_ptr<Vector_field_2> vf_2;
  boost::shared_ptr<Integrator_2> int_2;
public:
  void set_separating_distance(FT new_value){separating_distance = new_value;}
  void set_saturation_ratio(FT new_value){ saturation_ratio = new_value;}

  FT get_separating_distance() const
  {
    return separating_distance;
  } 

  FT get_saturation_ratio() const
  {
    return saturation_ratio;
  }

  void update()
    {
      ir = il = 0; // initialization
      fSepStl_seed = separating_distance*saturation_ratio;
      m_DT.clear();
      Point_2 pPoint;
      pPoint = Point_2(min_x-separating_distance,min_y-separating_distance);
      m_DT.insert(pPoint);
      pPoint = Point_2(min_x-separating_distance,max_y+separating_distance);
      m_DT.insert(pPoint);
      pPoint = Point_2(max_x+separating_distance,min_y-separating_distance);
      m_DT.insert(pPoint);
      pPoint = Point_2(max_x+separating_distance,max_y+separating_distance);
      m_DT.insert(pPoint);
      for (int i=(int) (min_x-separating_distance);i<max_x+(int)
       separating_distance;i=i+(int) (fSepStl_seed))
  {
    pPoint = Point_2((FT)i,(FT)max_y+separating_distance);
    m_DT.insert(pPoint);
    pPoint = Point_2((FT)max_x+separating_distance,(FT)i);
    m_DT.insert(pPoint);
    pPoint = Point_2((FT)i,min_y-separating_distance);
    m_DT.insert(pPoint);
    pPoint = Point_2(min_x-separating_distance,(FT)i);
    m_DT.insert(pPoint);
  }
      _number_of_lines = 0;
      place_stream_lines(*vf_2, *int_2,
       samp_step);     
    }
protected:
  void place_stream_lines(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator,
        const int & sampling_step, const bool & step_by_step = false);
  bool get_next_seed_point(FT & distanceg, Point_2 & seed_point_);
  FT find_smallest_circle(const Vertex_handle & pVertex_handle);
  Vertex_handle insert_point(const Point_2 & pPoint, FT& fDist,bool bDistanceCalculation);
  Vertex_handle insert_point(const Point_2 & pPoint, const Face_handle & m_Face_handle, FT& fDist,
           bool bDistanceCalculation);
  void integrate_streamline(const Vector_field_2 & vector_field_2,  const Integrator_2 & integrator,
          Point_container_2& stl, Point_2& seed_point_, Vertex_container_2& stl_vertices, const int & sampling_step);
  void integrate_forward(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator,
       Point_container_2& stl,Point_2&  seed_point,
       Vertex_container_2& stl_vertices, const int & sampling_step);
  void integrate_backward(const Vector_field_2 & vector_field_2,  const Integrator_2 & integrator, Point_container_2& 
        stl, Vertex_container_2& stl_vertices, const int & sampling_step);
  void insert_streamline(const Vector_field_2 & vector_field_2, Point_container_2 stl,
       Vertex_container_2 stl_vertices);
  void pq_elements(const Vector_field_2 & vector_field_2, Vertex_container_2 stl_vertices, int i,
       const Vertex_handle & m_Vertex_handle, int before_end);
  void make_iterator();
public:
  Stream_lines_2(const Vector_field_2 & m_vector_field_2, const Integrator_2 & m_integrator, const FT
     & m_separating_distance, const FT & m_saturation_ratio, const int & sampling_insertion = 0, const bool & 
     step_by_step = false);
  bool continue_next(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator, const int & sampling_step);
  Stream_line_iterator_2 begin();
  Stream_line_iterator_2 end();
  // for visualizing streamlines
  void print_stream_lines(std::ofstream & fw);
  void print_stream_lines_eps(std::ofstream & fw);
  std::list<Point_2> get_pq();
  unsigned int number_of_lines() { return _number_of_lines; }
  std::list< std::pair<Point_2, Point_2> > get_tr()
    {
      std::list< std::pair<Point_2, Point_2> > _list;
      Edge_iterator eit = m_DT.edges_begin();
      for (;eit != m_DT.edges_end();eit++)
  {
    Point_2 p1 = (*eit).first->vertex(m_DT.ccw((*eit).second))->point();
    Point_2 p2 = (*eit).first->vertex(m_DT.cw((*eit).second))->point();
    _list.push_front(std::pair<Point_2, Point_2>(p1, p2));
  }
      return _list;
    } 
  std::pair<Point_2, FT> get_biggest_circle()
    {
      Pq_element m_Pq = Biggest_circle;
      std::pair<Point_2, FT> circle(m_Pq.template get<3>().first, m_Pq.template get<3>().second);
      return circle;
    }
protected:
  FT max_x;
  FT min_x;
  FT max_y;
  FT min_y;
protected:
  Stream_line_iterator_2 begin_iterator;
  Stream_line_iterator_2 end_iterator;  
private:
  int number_of_points;
};

template <class VectorField_2, class Integrator_2>
Stream_lines_2<VectorField_2, Integrator_2>::Stream_lines_2(const Vector_field_2 &
vector_field_2, const Integrator_2 & m_integrator, const FT & m_separating_distance, const FT
& m_saturation_ratio, const int & sampling_step, const bool &
                  step_by_step)
{
  separating_distance = m_separating_distance;
  saturation_ratio = m_saturation_ratio;
  ir = il = 0; // initialization
  fSepStl_seed = separating_distance*saturation_ratio;
  max_x = vector_field_2.bbox().xmax();
  min_x = vector_field_2.bbox().xmin();
  max_y = vector_field_2.bbox().ymax();
  min_y = vector_field_2.bbox().ymin();
  m_DT.clear();
  Point_2 pPoint;
  pPoint = Point_2(min_x-separating_distance,min_y-separating_distance);
  m_DT.insert(pPoint);
  pPoint = Point_2(min_x-separating_distance,max_y+separating_distance);
  m_DT.insert(pPoint);
  pPoint = Point_2(max_x+separating_distance,min_y-separating_distance);
  m_DT.insert(pPoint);
  pPoint = Point_2(max_x+separating_distance,max_y+separating_distance);
  m_DT.insert(pPoint);
  for (int i=(int) (min_x-separating_distance);i<max_x+(int)
   separating_distance;i=i+(int) (fSepStl_seed))
    {
      pPoint = Point_2((FT)i,(FT)max_y+separating_distance);
      m_DT.insert(pPoint);
      pPoint = Point_2((FT)max_x+separating_distance,(FT)i);
      m_DT.insert(pPoint);
      pPoint = Point_2((FT)i,min_y-separating_distance);
      m_DT.insert(pPoint);
      pPoint = Point_2(min_x-separating_distance,(FT)i);
      m_DT.insert(pPoint);
    }
  _number_of_lines = 0;
  vf_2 = boost::shared_ptr<Vector_field_2>(new Vector_field_2(vector_field_2));
  int_2 = boost::shared_ptr<Integrator_2>(new Integrator_2(m_integrator));
  samp_step = sampling_step;
  stl_container.clear();
  place_stream_lines(vector_field_2, m_integrator,
         sampling_step, step_by_step);
}

template <class VectorField_2, class Integrator_2>
void Stream_lines_2<VectorField_2, Integrator_2>::place_stream_lines(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator, const int & sampling_step, const bool & step_by_step)
{
  seed_point = Point_2((max_x+min_x)/2.0,(max_y+min_y)/2.0);
  // the first chosen point can be not valid

  boost::rand48 rng;               

  boost::uniform_real<> ur_x(min_x, max_x);
  boost::uniform_real<> ur_y(min_y, max_y);
  boost::variate_generator<boost::rand48&, boost::uniform_real<> > die_x(rng, ur_x);
  boost::variate_generator<boost::rand48&, boost::uniform_real<> > die_y(rng, ur_y);
  
  while(!vector_field_2.is_in_domain(seed_point))
    {
      // std::cout << "searching valid seed point..\n";
      seed_point = Point_2(die_x(), die_y());
    }
  // std::cout << seed_point << " first seed point\n";
  // std::cout << "creating the placement..\n";
  FT distance = (FT) max_x * (1.0/2.0);
  bool b = (distance>fSepStl_seed);
  //  int i=0;
  if (!step_by_step)
    while(b)
      {
  Point_container_2 stl;
  Vertex_container_2 stl_vertices;
  integrate_streamline(vector_field_2, integrator, stl, seed_point, stl_vertices, sampling_step);
  insert_streamline(vector_field_2, stl, stl_vertices);
  _number_of_lines++;
  b = get_next_seed_point(distance,seed_point);
      }
  else
    {
      Point_container_2 stl;
      Vertex_container_2 stl_vertices;
      integrate_streamline(vector_field_2, integrator, stl, seed_point, stl_vertices, sampling_step);
      insert_streamline(vector_field_2, stl, stl_vertices);
      _number_of_lines++;
      b = get_next_seed_point(distance,seed_point);
    }
  make_iterator();
}
  
template <class VectorField_2, class Integrator_2>
bool Stream_lines_2<VectorField_2, Integrator_2>::continue_next(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator, const int & sampling_step)
{
  FT distance;
  Point_container_2 stl;
  Vertex_container_2 stl_vertices;
  integrate_streamline(vector_field_2, integrator, stl, seed_point, stl_vertices, sampling_step);
  insert_streamline(vector_field_2, stl, stl_vertices);
  _number_of_lines++;
  make_iterator();
  return get_next_seed_point(distance,seed_point);
}

// get the next seed point
template <class VectorField_2, class Integrator_2>
void 
Stream_lines_2<VectorField_2,Integrator_2>::integrate_streamline(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator, Point_container_2& stl, Point_2&
seed_point_, Vertex_container_2& stl_vertices, const int & sampling_step)
{
  integrate_forward(vector_field_2, integrator, stl, seed_point_, stl_vertices, sampling_step);
  integrate_backward(vector_field_2, integrator, stl, stl_vertices, sampling_step);
}

template <class VectorField_2, class Integrator_2>
inline
typename Stream_lines_2<VectorField_2, Integrator_2>::FT 
Stream_lines_2<VectorField_2, Integrator_2>::find_smallest_circle(const Vertex_handle & pVertex_handle)
{
  Face_circulator pFace_handle = m_DT.incident_faces(pVertex_handle);
  Face_circulator pEnd = pFace_handle;
  FT fMin = max_x;
  CGAL_For_all(pFace_handle,pEnd)
    {
      FT fDist =
  CGAL::squared_radius(
           pFace_handle->vertex(0)->point(),
           pFace_handle->vertex(1)->point(),
           pFace_handle->vertex(2)->point()) * 4.0;
      fDist = sqrt(fDist);
      if (fDist < fMin)
  {
    fMin = fDist;
  }
    }
  return fMin;
}

template <class VectorField_2, class Integrator_2>
inline 
typename Stream_lines_2<VectorField_2, Integrator_2>::Vertex_handle 
Stream_lines_2<VectorField_2, Integrator_2>::insert_point(const Point_2 & pPoint, FT& fDist,bool bDistanceCalculation)
{
  Vertex_handle pVertex_handle = m_DT.insert(pPoint);
  if (bDistanceCalculation)
    fDist = find_smallest_circle(pVertex_handle);
  else
    fDist = 0.0;
  return (pVertex_handle);
}

template <class VectorField_2, class Integrator_2>
inline
typename Stream_lines_2<VectorField_2, Integrator_2>::Vertex_handle
Stream_lines_2<VectorField_2,Integrator_2>::insert_point(const Point_2 & pPoint, const Face_handle & m_Face_handle, FT& fDist,bool bDistanceCalculation)
{
  Vertex_handle pVertex_handle = m_DT.insert(pPoint,m_Face_handle);
  if (bDistanceCalculation)
    fDist = find_smallest_circle(pVertex_handle);
  else
    fDist = 0.0;
  return (pVertex_handle);
}

template <class VectorField_2, class Integrator_2>
void
Stream_lines_2<VectorField_2, Integrator_2>::integrate_forward(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator, Point_container_2& stl, Point_2& seed_point_, Vertex_container_2& stl_vertices, const int & sampling_step)
{
  int sampling = 0; // sampling step;
  int insertion = 0; // insertion order;
  int insertion_step = 0;
  Point_container_2 list_of_point;
  Vertex_container_2 list_of_vertex;
  number_of_points = 0;
  Point_2 pPoint1;
  bool bEnd = false;
  FT dist;
  Point_2 new_point = Point_2 (seed_point_.x(), seed_point_.y());
  Vertex_handle m_Vertex_handle = insert_point(new_point, dist, true);
  stl_vertices.push_front(m_Vertex_handle);
  stl.push_front(new_point);
  number_of_points++;
  Point_2 old_point = seed_point_;
  insertion_step = (int) (((dist)-fSepStl_seed) / (std::max)((FT) sampling_step,vector_field_2.get_integration_step()));
  if (insertion_step < 0) insertion_step = 0;
  while (!bEnd)
    {
      Point_2 ex_old_point = old_point;
      old_point = new_point;
      CGAL_streamlines_precondition(vector_field_2.is_in_domain(old_point));
      new_point = integrator(old_point,vector_field_2,true);
      bEnd = !vector_field_2.is_in_domain(new_point);
      bEnd = bEnd || (new_point == old_point);/* to review */
      if(number_of_points > 30)
  bEnd = bEnd || ((distance(stl.front(), stl.back()))<vector_field_2.get_integration_step());
      FT dist_ = distance(ex_old_point,new_point);
      bEnd = bEnd || dist_ < 0.9*vector_field_2.get_integration_step();
      if (!bEnd)
  {
    if(sampling != sampling_step)
      {
        stl.push_front(new_point);
        number_of_points ++;
        sampling++;
      }
    else
      {
        if (insertion != insertion_step)
    {
      stl.push_front(new_point); 
      number_of_points++;
      insertion++;
      list_of_point.push_front(new_point);
    }
        else
    {
      stl.push_front(new_point);
      number_of_points++;
      list_of_point.push_front(new_point);
      list_of_point.pop_front();
      m_Vertex_handle = insert_point(new_point, stl_vertices.front()->face(), dist, true);
      while ((dist <= separating_distance)&&(!list_of_point.empty()))
        {
          m_DT.remove(m_Vertex_handle);
          for (int i=0;i<=sampling_step;i++){
      stl.pop_front();
      number_of_points--;}
          new_point = list_of_point.front();
          list_of_point.pop_front();
          m_Vertex_handle = insert_point(new_point, stl_vertices.front()->face(), dist,true);
        }
      // adaptive insertion order coefficient
      insertion_step = (int) (((dist)-fSepStl_seed) /
            (std::max)((FT) sampling_step,vector_field_2.get_integration_step()));
      if (insertion_step < 0) insertion_step = 0;
      list_of_vertex.push_front(m_Vertex_handle);
      (bEnd) = (((bEnd))||(dist<separating_distance));
      while (!list_of_point.empty())
        {
          Point_2 p = list_of_point.front();
          m_Vertex_handle = insert_point(p, stl_vertices.front()->face(), dist, false);
          list_of_vertex.push_front(m_Vertex_handle);
          list_of_point.pop_front();
        }
      while(!list_of_vertex.empty())
        {
          stl_vertices.push_front(list_of_vertex.front());
          list_of_vertex.pop_front();
        }
      insertion = 0;
    }
        sampling = 0;
      }
  }
      else
  {
    if (!list_of_point.empty())
      {
        new_point = list_of_point.front();
        list_of_point.pop_front();
        Vertex_handle m_Vertex_handle = insert_point(new_point, dist, true);
        while ((dist <= separating_distance)&&(!list_of_point.empty()))
    {
      m_DT.remove(m_Vertex_handle);
      for (int i=0;i<=sampling_step;i++)
        {
          stl.pop_front();
          number_of_points--;
        }
      new_point = list_of_point.front();
      list_of_point.pop_front();
      m_Vertex_handle = insert_point(new_point, stl_vertices.front()->face(), dist, true);
    }
        insertion_step =  (int) (((dist)-fSepStl_seed) / 
               (std::max)((FT) sampling_step,vector_field_2.get_integration_step()));
        if (insertion_step < 0) insertion_step = 0;
        (bEnd) = (((bEnd))||(dist<separating_distance));
      }
    while (!list_of_point.empty())
      {
        Point_2 p = list_of_point.front();
        m_Vertex_handle = insert_point(p, stl_vertices.front()->face(), dist, false);
        list_of_vertex.push_front(m_Vertex_handle);
        list_of_point.pop_front();
      }
    while(!list_of_vertex.empty())
      {
        stl_vertices.push_front(list_of_vertex.front());
        list_of_vertex.pop_front();
      }
  }
    }
}

template <class VectorField_2, class Integrator_2>
void Stream_lines_2<VectorField_2, Integrator_2>::integrate_backward(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator, Point_container_2& stl, Vertex_container_2& stl_vertices, const int & sampling_step)
{
  int sampling = 0; // sampling step;
  int insertion = 0; // insertion order;
  int insertion_step = 0;
  Point_container_2 list_of_point;
  Vertex_container_2 list_of_vertex;
  Point_2 pPoint1;
  bool bEnd = false;
  FT dist;
  Point_2 new_point = Point_2 (stl.back().x(),stl.back().y());
  // to not have duplicate points in the streamline
  stl.pop_back();
  Vertex_handle m_Vertex_handle = insert_point(new_point, stl_vertices.back()->face(), dist,true);
  stl_vertices.push_back(m_Vertex_handle);
  stl.push_back(new_point);
  number_of_points++;
  Point_2 old_point = new_point;
  while (!bEnd)
    {
      Point_2 ex_old_point = old_point;
      old_point = new_point;
      std::pair<Vector_2, FT> field_vector;
      CGAL_streamlines_precondition(vector_field_2.is_in_domain(old_point));
      new_point = integrator(old_point,vector_field_2,false);
      bEnd = !vector_field_2.is_in_domain(new_point);
      FT dist_ = distance(ex_old_point,new_point);
      bEnd = bEnd || dist_ < 0.9*vector_field_2.get_integration_step() || (new_point == old_point);/* to review */ 
      if(number_of_points > 30)
  bEnd = bEnd || ((distance(stl.front(), stl.back()))<vector_field_2.get_integration_step());
      //    bEnd = bEnd || (number_of_points > 3000);
      if (!bEnd)
  {
    if(sampling != sampling_step)
      {
        stl.push_back(new_point);
        number_of_points ++;
        sampling++;
      }
    else
      {
        if (insertion != insertion_step)
    {
      stl.push_back(new_point); 
      number_of_points++;
      insertion++;
      list_of_point.push_back(new_point);
    }
        else
    {
      stl.push_back(new_point);
      number_of_points++;
      list_of_point.push_back(new_point);
      list_of_point.pop_back();
      m_Vertex_handle = insert_point(new_point, stl_vertices.back()->face(), dist,true);
      while ((dist <= separating_distance)&&(!list_of_point.empty()))
        {
          m_DT.remove(m_Vertex_handle);
          for (int i=0;i<=sampling_step;i++)
      {
        stl.pop_back();
        number_of_points--;
      }
          new_point = list_of_point.back();
          list_of_point.pop_back();
          m_Vertex_handle = insert_point(new_point, stl_vertices.back()->face(), dist,true);
        }
      // adaptive insertion order coefficient
      insertion_step =  (int) (((dist)-fSepStl_seed) / 
                 (std::max)((FT) sampling_step,vector_field_2.get_integration_step()));
      if (insertion_step < 0) insertion_step = 0;
      list_of_vertex.push_back(m_Vertex_handle);
      (bEnd) = (((bEnd))||(dist<separating_distance));
      while (!list_of_point.empty())
        {
          Point_2 p = list_of_point.back();
          m_Vertex_handle = insert_point(p, stl_vertices.back()->face(), dist, false);
          list_of_vertex.push_front(m_Vertex_handle);
          list_of_point.pop_back();
        }
      while(!list_of_vertex.empty())
        {
          stl_vertices.push_back(list_of_vertex.back());
          list_of_vertex.pop_back();
        }
      insertion = 0;
    }
        sampling = 0;
      }
  }
      else
  {
    if (!list_of_point.empty())
      {
        new_point = list_of_point.back();
        list_of_point.pop_back();
        Vertex_handle m_Vertex_handle = insert_point(new_point, stl_vertices.back()->face(), dist, true);
        while ((dist <= separating_distance)&&(!list_of_point.empty()))
    {
      m_DT.remove(m_Vertex_handle);
      for (int i=0;i<=sampling_step;i++)
        {
          stl.pop_back();
          number_of_points--;
        }
      new_point = list_of_point.back();
      list_of_point.pop_back();
      m_Vertex_handle = insert_point(new_point, stl_vertices.back()->face(), dist, true);
    }
        // adaptive insertion order coefficient
        insertion_step =  (int) (((dist)-fSepStl_seed) / 
               (std::max)((FT) sampling_step,vector_field_2.get_integration_step()));
        if (insertion_step < 0) insertion_step = 0;
        //        list_of_vertex.push_front(m_Vertex_handle);
        (bEnd) = (((bEnd))||(dist<separating_distance));
      }
    while (!list_of_point.empty())
      {
        Point_2 p = list_of_point.back();
        m_Vertex_handle = insert_point(p, stl_vertices.back()->face(), dist, false);
        list_of_vertex.push_back(m_Vertex_handle);
        list_of_point.pop_back();
      }
    while(!list_of_vertex.empty())
      {
        stl_vertices.push_back(list_of_vertex.back());
        list_of_vertex.pop_back();
      }
  }
    }
}

template <class VectorField_2, class Integrator_2>
inline void
Stream_lines_2<VectorField_2, Integrator_2>::
insert_streamline(const Vector_field_2 & vector_field_2,
      Point_container_2 stl, Vertex_container_2
      stl_vertices)
{
  stl_container.push_back(stl);
  Vertex_handle m_Vertex_handle = NULL;
  int i = 1;
  unsigned int size_ = (int) (stl_vertices.size());
  ir = il = 0;
  while (!stl_vertices.empty())
    {
      pq_elements(vector_field_2, stl_vertices, i, m_Vertex_handle, size_);
      m_Vertex_handle = stl_vertices.front();
      stl_vertices.pop_front();
      i++;
    }
}

template <class VectorField_2, class Integrator_2>
void Stream_lines_2<VectorField_2, Integrator_2>::
pq_elements(const Vector_field_2 & vector_field_2, Vertex_container_2 stl_vertices, int i,
    const Vertex_handle & m_Vertex_handle, int size_)
{
  if ((i!=0) && (i!=(size_))){// && (std::div(i,10).rem!=0)){
    Vertex_handle pVertex_handle = stl_vertices.front();
    Face_handle pFace_handle;
    int iIndex;
    if
      (m_DT.is_edge(pVertex_handle,m_Vertex_handle,pFace_handle,iIndex))
      {
  Point_2 p0 = pVertex_handle->point();
  Point_2 c = m_DT.circumcenter(pFace_handle);
  FT fDist = distance(p0,c);
  bool b = vector_field_2.is_in_domain(c) && (fDist >= fSepStl_seed);
  if (b)
    {
      Circle pCircle(c,fDist);
      Pq_element m_Pq_element = Pq_element(
             pFace_handle->vertex(0),
             pFace_handle->vertex(1),
             pFace_handle->vertex(2),
             pCircle);
      if (ir == 0)
        {
    Pq_previous_r = m_Pq_element;
    Pq_element_max_r = m_Pq_element;
    ir++;
        }
      else if (ir == 1)
        {
    Pq_current_r =
      m_Pq_element;ir++;
        }
      else
        {
    Pq_next_r = m_Pq_element;
    if (Pq_element_max_r.template get<3>().second <= Pq_next_r.template get<3>().second)
      Pq_element_max_r = Pq_next_r;
    if ((Pq_current_r.template get<3>().second>=Pq_previous_r.template get<3>().second)
        &&(Pq_current_r.template get<3>().second>=Pq_next_r.template get<3>().second))
      {
        pq.push(Pq_current_r);
      }
    Pq_previous_r = Pq_current_r;
    Pq_current_r = Pq_next_r;
    ir++;
        }
    }
  p0 = pFace_handle->neighbor(iIndex)->vertex(0)->point();
  c = m_DT.circumcenter(pFace_handle->neighbor(iIndex));
  fDist = distance(p0,c);
  b = vector_field_2.is_in_domain(c) && (fDist >= fSepStl_seed);
  if (b)
    {
      Circle pCircle(c,fDist);
      Pq_element m_Pq_element = Pq_element(
             pFace_handle->neighbor(iIndex)->vertex(0),
             pFace_handle->neighbor(iIndex)->vertex(1),
             pFace_handle->neighbor(iIndex)->vertex(2),
             pCircle);
      if (il == 0)
        {
    Pq_previous_l = m_Pq_element;
    Pq_element_max_l = m_Pq_element;
    il++;
        }
      else if (il == 1)
        {
    Pq_current_l =
      m_Pq_element;il++;
        }
      else
        {
    Pq_next_l = m_Pq_element;
    if (Pq_element_max_l.template get<3>().second <= Pq_next_l.template get<3>().second) 
      Pq_element_max_l = Pq_next_l;
    if ((Pq_current_l.template get<3>().second>=Pq_previous_l.template get<3>().second)
        &&(Pq_current_l.template get<3>().second>=Pq_next_l.template get<3>().second))
      {
        pq.push(Pq_current_l);
      }
    Pq_previous_l = Pq_current_l;
    Pq_current_l = Pq_next_l;
    il++;
        }
    }
      }
    if ((ir+il == (int) size_-2)&&(size_>2))
      {
  pq.push(Pq_element_max_l);
  pq.push(Pq_element_max_r);
      }
  }
  else{
    Vertex_handle pVertex_handle = stl_vertices.front();
    Face_circulator pFace_handle = m_DT.incident_faces(pVertex_handle);
    Face_circulator pEnd = pFace_handle;
    CGAL_For_all(pFace_handle,pEnd)
      {
  Point_2 p0 = pFace_handle->vertex(0)->point();
  Point_2 c = m_DT.circumcenter(pFace_handle);
  bool b = vector_field_2.is_in_domain(c);
  if (b){
    FT fDist = distance(p0,c);
    if (fDist >= fSepStl_seed)
      {
        Circle pCircle(c,fDist);
        Pq_element m_Pq_element = Pq_element(
               pFace_handle->vertex(0),
               pFace_handle->vertex(1),
               pFace_handle->vertex(2),
               pCircle);
        pq.push(m_Pq_element);
      }
  }
      }
  }
}

// get the next seed point
template <class VectorField_2, class Integrator_2>
inline 
bool
Stream_lines_2<VectorField_2, Integrator_2>::get_next_seed_point(FT &
                 distance, Point_2 & seed_point_)
{
  Vertex_handle v0, v1, v2; 
  Face_handle fr;
  bool b0,b;
  Pq_element m_Pq_element;
  do{
    CGAL_assertion(!pq.empty());
    m_Pq_element = pq.top();
    v0 = m_Pq_element.template get<0>();
    v1 = m_Pq_element.template get<1>();
    v2 = m_Pq_element.template get<2>();
    distance = m_Pq_element.template get<3>().second;
    pq.pop();
    b0 = m_DT.is_face(v0,v1,v2,fr);
    if (b0){
      seed_point_ = m_Pq_element.template get<3>().first;}
    b = (!pq.empty());
  }while ((b)&&(!b0));
  Biggest_circle = m_Pq_element;
  return b;
}
  
template <class VectorField_2, class Integrator_2>
typename Stream_lines_2<VectorField_2, Integrator_2>::Stream_line_iterator_2
Stream_lines_2<VectorField_2, Integrator_2>::begin()
{
  return begin_iterator;
}

template <class VectorField_2, class Integrator_2>
typename Stream_lines_2<VectorField_2, Integrator_2>::Stream_line_iterator_2
Stream_lines_2<VectorField_2, Integrator_2>::end()
{
  return end_iterator;
}

template <class VectorField_2, class Integrator_2>
inline
void Stream_lines_2<VectorField_2, Integrator_2>::make_iterator()
{
  iterator_container.clear();
  for(typename Stream_line_container_2::iterator
  begin=stl_container.begin();
      begin!=stl_container.end();begin++)
    {
      std::pair<Point_iterator_2, Point_iterator_2>
  iterator_pair((*begin).begin(), (*begin).end());
      iterator_container.push_front(iterator_pair);
    }
  begin_iterator = iterator_container.begin();
  end_iterator = iterator_container.end();
}


// output an eps file
template <class VectorField_2, class Integrator_2>
void
Stream_lines_2<VectorField_2, Integrator_2>::print_stream_lines_eps(std::ofstream & fw)
{
  typename Stream_line_container_2::iterator it;
  Stream_line_container_2 stl_container_temp = stl_container;
  fw << "%!PS-Adobe-2.0 EPSF-2.0\n";
  fw << "%%BoundingBox: 0 0" << " " << max_x - min_x << " " << max_y - min_y << "\n";
  fw << "gsave\n";
  fw << "/L {moveto lineto stroke} bind def\n";
  fw << 0.5 << " setlinewidth\n";
  fw << 0.0 << " " << 0.0 << " " << 0.0 << " setrgbcolor\n";
  
  for(it=stl_container_temp.begin(); it!=stl_container_temp.end(); ++it)
    {
      typename Point_container_2::iterator begin_point_iterator = (*it).begin();
      typename Point_container_2::iterator end_point_iterator = (*it).end();
    
      FT i_prec = (*begin_point_iterator).x() - min_x;
      FT j_prec = (*begin_point_iterator).y() - min_y;
      begin_point_iterator++;

      FT i , j;
      for(;begin_point_iterator!=end_point_iterator;begin_point_iterator++)
  {
    Point_2 p = *begin_point_iterator;
    i = p.x() - min_x;
    j = p.y() - min_y;
    fw << i_prec << " " << j_prec << " " << i << " " << j << " L\n";
    i_prec = i;
    j_prec = j;
  }
    }
  fw << "grestore\n";
  fw << "showpage\n";
  fw.close();
}

// output an stl file
template <class VectorField_2, class Integrator_2>
void 
Stream_lines_2<VectorField_2, Integrator_2>::print_stream_lines(std::ofstream & fw)
{
  typename Stream_line_container_2::iterator it;
  Stream_line_container_2 stl_container_temp = stl_container;
  fw << max_x - min_x << " " << max_y - min_y << "\n";
  fw << stl_container.size() << "\n";
  for(it=stl_container_temp.begin(); it!=stl_container_temp.end(); ++it)
    {
      fw << (*it).size() << "\n";
      typename Point_container_2::iterator begin_point_iterator = (*it).begin();
      typename Point_container_2::iterator end_point_iterator = (*it).end();
      FT i , j;
      for(;begin_point_iterator!=end_point_iterator;begin_point_iterator++){
  Point_2 p = *begin_point_iterator;
  i = p.x() - min_x;
  j = p.y() - min_y;
  fw << i << " " << j << "\n";
      }
    }
  fw.close();
}

template <class VectorField_2, class Integrator_2>
std::list<typename Stream_lines_2<VectorField_2, Integrator_2>::Point_2> 
Stream_lines_2<VectorField_2, Integrator_2>::get_pq()
{
  std::list<Point_2> _list;
  std::priority_queue<Pq_element, std::vector<Pq_element>, C> pq_temp;
  pq_temp = pq;
  while (!pq_temp.empty())
    {
      Pq_element m_Pq_element = pq_temp.top();
      Vertex_handle v0 = m_Pq_element.template get<0>();
      Vertex_handle v1 = m_Pq_element.template get<1>();
      Vertex_handle v2 = m_Pq_element.template get<2>();
      pq_temp.pop();
      Face_handle fr;
      bool b0 = m_DT.is_face(v0,v1,v2,fr);
      Point_2 sdPoint = m_Pq_element.template get<3>().first;
      if (b0)
  _list.push_front(sdPoint);
    }
  return _list;
}

} //namespace CGAL

#endif