This file is indexed.

/usr/include/CGAL/remove_outliers.h is in libcgal-dev 4.11-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// Copyright (c) 2007-09  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Laurent Saboret and Nader Salman and Pierre Alliez

#ifndef CGAL_REMOVE_OUTLIERS_H
#define CGAL_REMOVE_OUTLIERS_H

#include <CGAL/license/Point_set_processing_3.h>


#include <CGAL/Search_traits_3.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <CGAL/property_map.h>
#include <CGAL/point_set_processing_assertions.h>

#include <iterator>
#include <algorithm>
#include <map>

namespace CGAL {


// ----------------------------------------------------------------------------
// Private section
// ----------------------------------------------------------------------------
/// \cond SKIP_IN_MANUAL
namespace internal {


/// Utility function for remove_outliers():
/// Computes average squared distance to the K nearest neighbors.
///
/// \pre `k >= 2`
///
/// @tparam Kernel Geometric traits class.
/// @tparam Tree KD-tree.
///
/// @return computed distance.
template < typename Kernel,
           typename Tree >
typename Kernel::FT
compute_avg_knn_sq_distance_3(
    const typename Kernel::Point_3& query, ///< 3D point to project
    Tree& tree,                            ///< KD-tree
    unsigned int k)                        ///< number of neighbors
{
    // geometric types
    typedef typename Kernel::FT FT;
    typedef typename Kernel::Point_3 Point;

    // types for K nearest neighbors search
    typedef typename CGAL::Search_traits_3<Kernel> Tree_traits;
    typedef typename CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
    typedef typename Neighbor_search::iterator Search_iterator;

    // Gather set of (k+1) neighboring points.
    // Perform k+1 queries (if in point set, the query point is
    // output first). Search may be aborted if k is greater
    // than number of input points.
    std::vector<Point> points; points.reserve(k+1);
    Neighbor_search search(tree,query,k+1);
    Search_iterator search_iterator = search.begin();
    unsigned int i;
    for(i=0;i<(k+1);i++)
    {
        if(search_iterator == search.end())
            break; // premature ending
        points.push_back(search_iterator->first);
        search_iterator++;
    }
    CGAL_point_set_processing_precondition(points.size() >= 1);

    // compute average squared distance
    typename Kernel::Compute_squared_distance_3 sqd;
    FT sq_distance = (FT)0.0;
    for(typename std::vector<Point>::iterator neighbor = points.begin(); neighbor != points.end(); neighbor++)
        sq_distance += sqd(*neighbor, query);
    sq_distance /= FT(points.size());
    return sq_distance;
}

} /* namespace internal */
/// \endcond


// ----------------------------------------------------------------------------
// Public section
// ----------------------------------------------------------------------------

/// \ingroup PkgPointSetProcessingAlgorithms
/// Removes outliers:
/// - computes average squared distance to the K nearest neighbors,
/// - and sorts the points in increasing order of average distance.
///
/// This method modifies the order of input points so as to pack all remaining points first,
/// and returns an iterator over the first point to remove (see erase-remove idiom).
/// For this reason it should not be called on sorted containers.
///
/// \pre `k >= 2`
///
/// @tparam InputIterator iterator over input points.
/// @tparam PointPMap is a model of `ReadablePropertyMap` with value type `Point_3<Kernel>`.
///        It can be omitted ifthe value type of `InputIterator` is convertible to `Point_3<Kernel>`.
/// @tparam Kernel Geometric traits class.
///        It can be omitted and deduced automatically from the value type of `PointPMap`.
///
/// @return iterator over the first point to remove.
///
/// @note There are two thresholds that can be used:
/// `threshold_percent` and `threshold_distance`. This function
/// returns the smallest number of outliers such that at least one of
/// these threshold is fullfilled. This means that if
/// `threshold_percent=100`, only `threshold_distance` is taken into
/// account; if `threshold_distance=0` only `threshold_percent` is
/// taken into account.

// This variant requires all parameters.
template <typename InputIterator,
          typename PointPMap,
          typename Kernel
>
InputIterator
remove_outliers(
  InputIterator first,  ///< iterator over the first input point.
  InputIterator beyond, ///< past-the-end iterator over the input points.
  PointPMap point_pmap, ///< property map: value_type of InputIterator -> Point_3
  unsigned int k, ///< number of neighbors.
  double threshold_percent, ///< maximum percentage of points to remove.
  double threshold_distance, ///< minimum distance for a point to be
                             ///< considered as outlier (distance here is the square root of the average
                             ///< squared distance to K nearest
                             ///< neighbors)
  const Kernel& /*kernel*/) ///< geometric traits.
{
  // geometric types
  typedef typename Kernel::FT FT;
  
  // basic geometric types
  typedef typename Kernel::Point_3 Point;

  // actual type of input points
  typedef typename std::iterator_traits<InputIterator>::value_type Enriched_point;

  // types for K nearest neighbors search structure
  typedef typename CGAL::Search_traits_3<Kernel> Tree_traits;
  typedef typename CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
  typedef typename Neighbor_search::Tree Tree;

  // precondition: at least one element in the container.
  // to fix: should have at least three distinct points
  // but this is costly to check
  CGAL_point_set_processing_precondition(first != beyond);

  // precondition: at least 2 nearest neighbors
  CGAL_point_set_processing_precondition(k >= 2);

  CGAL_point_set_processing_precondition(threshold_percent >= 0 && threshold_percent <= 100);

  InputIterator it;

  // Instanciate a KD-tree search.
  // Note: We have to convert each input iterator to Point_3.
  std::vector<Point> kd_tree_points; 
  for(it = first; it != beyond; it++)
    kd_tree_points.push_back( get(point_pmap, *it) );
  Tree tree(kd_tree_points.begin(), kd_tree_points.end());

  // iterate over input points and add them to multimap sorted by distance to k
  std::multimap<FT,Enriched_point> sorted_points;
  for(it = first; it != beyond; it++)
  {
    FT sq_distance = internal::compute_avg_knn_sq_distance_3<Kernel>(
      get(point_pmap,*it),
      tree, k);
    sorted_points.insert( std::make_pair(sq_distance, *it) );
  }

  // Replaces [first, beyond) range by the multimap content.
  // Returns the iterator after the (100-threshold_percent) % best points.
  InputIterator first_point_to_remove = first;
  InputIterator dst = first;
  int first_index_to_remove = int(double(sorted_points.size()) * ((100.0-threshold_percent)/100.0));
  typename std::multimap<FT,Enriched_point>::iterator src;
  int index;
  for (src = sorted_points.begin(), index = 0;
       src != sorted_points.end();
       ++src, ++index)
  {
    *dst++ = src->second;
    if (index <= first_index_to_remove ||
        src->first < threshold_distance * threshold_distance)
      first_point_to_remove = dst;
  }

  return first_point_to_remove;
}

/// @cond SKIP_IN_MANUAL
// This variant deduces the kernel from the iterator type.
template <typename InputIterator,
          typename PointPMap
>
InputIterator
remove_outliers(
  InputIterator first, ///< iterator over the first input point
  InputIterator beyond, ///< past-the-end iterator
  PointPMap point_pmap, ///< property map: value_type of InputIterator -> Point_3
  unsigned int k, ///< number of neighbors.
  double threshold_percent, ///< percentage of points to remove
  double threshold_distance = 0.0)  ///< minimum average squared distance to K nearest neighbors
                             ///< for a point to be removed.
{
  typedef typename boost::property_traits<PointPMap>::value_type Point;
  typedef typename Kernel_traits<Point>::Kernel Kernel;
  return remove_outliers(
    first,beyond,
    point_pmap,
    k, threshold_percent, threshold_distance,
    Kernel());
}
/// @endcond

/// @cond SKIP_IN_MANUAL
// This variant creates a default point property map = Identity_property_map.
template <typename InputIterator
>
InputIterator
remove_outliers(
  InputIterator first, ///< iterator over the first input point
  InputIterator beyond, ///< past-the-end iterator
  unsigned int k, ///< number of neighbors.
  double threshold_percent, ///< percentage of points to remove
  double threshold_distance = 0.0)  ///< minimum average squared distance to K nearest neighbors
                             ///< for a point to be removed.
{
  return remove_outliers(
    first,beyond,
    make_identity_property_map(
    typename std::iterator_traits<InputIterator>::value_type()),
    k, threshold_percent, threshold_distance);
}
/// @endcond


} //namespace CGAL

#endif // CGAL_REMOVE_OUTLIERS_H