/usr/include/CGAL/structure_point_set.h is in libcgal-dev 4.11-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 | // Copyright (c) 2015 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Florent Lafarge, Simon Giraudot
//
#ifndef CGAL_STRUCTURE_POINT_SET_3_H
#define CGAL_STRUCTURE_POINT_SET_3_H
#include <CGAL/license/Point_set_processing_3.h>
#include <CGAL/property_map.h>
#include <CGAL/point_set_processing_assertions.h>
#include <CGAL/assertions.h>
#include <CGAL/intersections.h>
#include <CGAL/centroid.h>
#include <CGAL/Kd_tree.h>
#include <CGAL/Fuzzy_sphere.h>
#include <CGAL/Fuzzy_iso_box.h>
#include <CGAL/Search_traits_d.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <iterator>
#include <list>
#include <limits>
namespace CGAL {
/*!
\ingroup PkgPointSetProcessingAlgorithms
\brief A 3D point set with structure information based on a set of
detected planes.
Given a point set in 3D space along with a set of fitted planes, this
class stores a simplified and structured version of the point
set. Each output point is assigned to one, two or more primitives
(depending wether it belongs to a planar section, an edge or a if it
is a vertex). The implementation follow \cgalCite{cgal:la-srpss-13}.
\tparam Traits a model of `EfficientRANSACTraits` that must provide in
addition a function `Intersect_3 intersection_3_object() const` and a
functor `Intersect_3` with:
- `boost::optional< boost::variant< Traits::Plane_3, Traits::Line_3 > > operator()(typename Traits::Plane_3, typename Traits::Plane_3)`
- `boost::optional< boost::variant< Traits::Line_3, Traits::Point_3 > > operator()(typename Traits::Line_3, typename Traits::Plane_3)`
*/
template <typename Traits>
class Point_set_with_structure
{
typedef Point_set_with_structure<Traits> Self;
typedef typename Traits::FT FT;
typedef typename Traits::Segment_3 Segment;
typedef typename Traits::Line_3 Line;
typedef typename Traits::Plane_3 Plane;
typedef typename Traits::Point_2 Point_2;
typedef Shape_detection_3::Shape_base<Traits> Shape;
enum Point_status { POINT, RESIDUS, PLANE, EDGE, CORNER, SKIPPED };
public:
typedef typename Traits::Point_3 Point;
typedef typename Traits::Vector_3 Vector;
typedef typename Traits::Point_map Point_map;
typedef typename Traits::Normal_map Normal_map;
typedef typename Traits::Input_range Input_range;
typedef typename Input_range::iterator Input_iterator;
typedef Shape_detection_3::Plane<Traits> Plane_shape;
/// Tag classifying the coherence of a triplet of points with
/// respect to an inferred surface
enum Coherence_type
{
INCOHERENT = -1, ///< Incoherent (facet violates the underlying structure)
FREEFORM = 0, ///< Free-form coherent (facet is between 3 free-form points)
VERTEX = 1, ///< Structure coherent, facet adjacent to a vertex
CREASE = 2, ///< Structure coherent, facet adjacent to an edge
PLANAR = 3 ///< Structure coherent, facet inside a planar section
};
private:
class My_point_property_map{
const std::vector<Point>& points;
public:
typedef Point value_type;
typedef const value_type& reference;
typedef std::size_t key_type;
typedef boost::lvalue_property_map_tag category;
My_point_property_map (const std::vector<Point>& pts) : points (pts) {}
reference operator[] (key_type k) const { return points[k]; }
friend inline reference get (const My_point_property_map& ppmap, key_type i)
{ return ppmap[i]; }
};
struct Edge
{
CGAL::cpp11::array<std::size_t, 2> planes;
std::vector<std::size_t> indices; // Points belonging to intersection
Line support;
bool active;
Edge (std::size_t a, std::size_t b)
{ planes[0] = a; planes[1] = b; active = true; }
};
struct Corner
{
std::vector<std::size_t> planes;
std::vector<std::size_t> edges;
std::vector<Vector> directions;
Point support;
bool active;
Corner (std::size_t p1, std::size_t p2, std::size_t p3,
std::size_t e1, std::size_t e2, std::size_t e3)
{
planes.resize (3); planes[0] = p1; planes[1] = p2; planes[2] = p3;
edges.resize (3); edges[0] = e1; edges[1] = e2; edges[2] = e3;
active = true;
}
};
Traits m_traits;
std::vector<Point> m_points;
std::vector<Vector> m_normals;
std::vector<std::size_t> m_indices;
std::vector<Point_status> m_status;
Point_map m_point_map;
Normal_map m_normal_map;
std::vector<boost::shared_ptr<Plane_shape> > m_planes;
std::vector<Edge> m_edges;
std::vector<Corner> m_corners;
public:
/*!
Constructs a structured point set based on the input points and the
associated shape detection object.
\note Both property maps can be omitted if the default constructors of these property maps can be safely used.
*/
Point_set_with_structure (Input_iterator begin, ///< iterator over the first input point.
Input_iterator end, ///< past-the-end iterator over the input points.
Point_map point_map, ///< property map: value_type of InputIterator -> Point_3.
Normal_map normal_map, ///< property map: value_type of InputIterator -> Vector_3.
const Shape_detection_3::Efficient_RANSAC<Traits>&
shape_detection, ///< shape detection object
double epsilon, ///< size parameter
double attraction_factor = 3.) ///< attraction factor
: m_traits (shape_detection.traits()),
m_point_map(point_map), m_normal_map (normal_map)
{
constructor (begin, end, shape_detection, epsilon, attraction_factor);
}
/// \cond SKIP_IN_MANUAL
Point_set_with_structure (Input_iterator begin, ///< iterator over the first input point.
Input_iterator end, ///< past-the-end iterator over the input points.
const Shape_detection_3::Efficient_RANSAC<Traits>&
shape_detection, ///< shape detection object
double epsilon, ///< size parameter
double attraction_factor = 3.) ///< attraction factor
: m_traits (shape_detection.traits())
{
constructor (begin, end, shape_detection, epsilon, attraction_factor);
}
void constructor(Input_iterator begin, ///< iterator over the first input point.
Input_iterator end, ///< past-the-end iterator over the input points.
const Shape_detection_3::Efficient_RANSAC<Traits>&
shape_detection, ///< shape detection object
double epsilon, ///< size parameter
double attraction_factor = 3.) ///< attraction factor
{
m_points.reserve(end - begin);
m_normals.reserve(end - begin);
for (Input_iterator it = begin; it != end; ++ it)
{
m_points.push_back (get(m_point_map, *it));
m_normals.push_back (get(m_normal_map, *it));
}
m_indices.resize (m_points.size (), (std::numeric_limits<std::size_t>::max)());
m_status.resize (m_points.size (), POINT);
BOOST_FOREACH (boost::shared_ptr<Shape> shape, shape_detection.shapes())
{
boost::shared_ptr<Plane_shape> pshape
= boost::dynamic_pointer_cast<Plane_shape>(shape);
// Ignore all shapes other than plane
if (pshape == boost::shared_ptr<Plane_shape>())
continue;
m_planes.push_back (pshape);
for (std::size_t i = 0; i < pshape->indices_of_assigned_points().size (); ++ i)
{
m_indices[pshape->indices_of_assigned_points()[i]] = m_planes.size () - 1;
m_status[pshape->indices_of_assigned_points()[i]] = PLANE;
}
}
run (epsilon, attraction_factor);
clean ();
}
/// \endcond
std::size_t size () const { return m_points.size (); }
std::pair<Point, Vector> operator[] (std::size_t i) const
{ return std::make_pair (m_points[i], m_normals[i]); }
const Point& point (std::size_t i) const { return m_points[i]; }
const Vector& normal (std::size_t i) const { return m_normals[i]; }
/*!
Returns all `Plane_shape` objects that are adjacent to the point
with index `i`.
\note Points not adjacent to any plane are free-form points,
points adjacent to 1 plane are planar points, points adjacent to 2
planes are edge points and points adjacent to 3 or more planes are
vertices.
*/
std::vector<boost::shared_ptr<Plane_shape> > adjacency (std::size_t i) const
{
std::vector<boost::shared_ptr<Plane_shape> > out;
if (m_status[i] == PLANE || m_status[i] == RESIDUS)
out.push_back (m_planes[m_indices[i]]);
else if (m_status[i] == EDGE)
{
out.push_back (m_planes[m_edges[m_indices[i]].planes[0]]);
out.push_back (m_planes[m_edges[m_indices[i]].planes[1]]);
}
else if (m_status[i] == CORNER)
{
for (std::size_t j = 0; j < m_corners[m_indices[i]].planes.size(); ++ j)
out.push_back (m_planes[m_corners[m_indices[i]].planes[j]]);
}
return out;
}
/*!
Computes the coherence of a facet between the 3 points indexed by
`f` with respect to the underlying structure.
*/
Coherence_type facet_coherence (const CGAL::cpp11::array<std::size_t, 3>& f) const
{
// O- FREEFORM CASE
if (m_status[f[0]] == POINT &&
m_status[f[1]] == POINT &&
m_status[f[2]] == POINT)
return FREEFORM;
// 1- PLANAR CASE
if (m_status[f[0]] == PLANE &&
m_status[f[1]] == PLANE &&
m_status[f[2]] == PLANE)
{
if (m_indices[f[0]] == m_indices[f[1]] &&
m_indices[f[0]] == m_indices[f[2]])
return PLANAR;
else
return INCOHERENT;
}
for (std::size_t i = 0; i < 3; ++ i)
{
Point_status sa = m_status[f[(i+1)%3]];
Point_status sb = m_status[f[(i+2)%3]];
Point_status sc = m_status[f[(i+3)%3]];
std::size_t a = m_indices[f[(i+1)%3]];
std::size_t b = m_indices[f[(i+2)%3]];
std::size_t c = m_indices[f[(i+3)%3]];
// O- FREEFORM CASE
if (sa == POINT && sb == POINT && sc == PLANE)
return FREEFORM;
if (sa == POINT && sb == PLANE && sc == PLANE)
{
if (b == c)
return FREEFORM;
else
return INCOHERENT;
}
// 2- CREASE CASES
if (sa == EDGE && sb == EDGE && sc == PLANE)
{
if ((c == m_edges[a].planes[0] ||
c == m_edges[a].planes[1]) &&
(c == m_edges[b].planes[0] ||
c == m_edges[b].planes[1]))
return CREASE;
else
return INCOHERENT;
}
if (sa == EDGE && sb == PLANE && sc == PLANE)
{
if (b == c &&
(b == m_edges[a].planes[0] ||
b == m_edges[a].planes[1]))
return CREASE;
else
return INCOHERENT;
}
// 3- CORNER CASES
if (sc == CORNER)
{
if (sa == EDGE && sb == EDGE)
{
bool a0 = false, a1 = false, b0 = false, b1 = false;
if ((m_edges[a].planes[0] != m_edges[b].planes[0] &&
m_edges[a].planes[0] != m_edges[b].planes[1] &&
m_edges[a].planes[1] != m_edges[b].planes[0] &&
m_edges[a].planes[1] != m_edges[b].planes[1]))
return INCOHERENT;
for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j)
{
if (m_corners[c].planes[j] == m_edges[a].planes[0])
a0 = true;
else if (m_corners[c].planes[j] == m_edges[a].planes[1])
a1 = true;
if (m_corners[c].planes[j] == m_edges[b].planes[0])
b0 = true;
else if (m_corners[c].planes[j] == m_edges[b].planes[1])
b1 = true;
}
if (a0 && a1 && b0 && b1)
return VERTEX;
else
return INCOHERENT;
}
else if (sa == PLANE && sb == PLANE)
{
if (a != b)
return INCOHERENT;
for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j)
if (m_corners[c].planes[j] == a)
return VERTEX;
return INCOHERENT;
}
else if (sa == PLANE && sb == EDGE)
{
bool pa = false, b0 = false, b1 = false;
if (a != m_edges[b].planes[0] && a != m_edges[b].planes[1])
return INCOHERENT;
for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j)
{
if (m_corners[c].planes[j] == a)
pa = true;
if (m_corners[c].planes[j] == m_edges[b].planes[0])
b0 = true;
else if (m_corners[c].planes[j] == m_edges[b].planes[1])
b1 = true;
}
if (pa && b0 && b1)
return VERTEX;
else
return INCOHERENT;
}
else if (sa == EDGE && sb == PLANE)
{
bool a0 = false, a1 = false, pb = false;
if (b != m_edges[a].planes[0] && b != m_edges[a].planes[1])
return INCOHERENT;
for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j)
{
if (m_corners[c].planes[j] == b)
pb = true;
if (m_corners[c].planes[j] == m_edges[a].planes[0])
a0 = true;
else if (m_corners[c].planes[j] == m_edges[a].planes[1])
a1 = true;
}
if (a0 && a1 && pb)
return VERTEX;
else
return INCOHERENT;
}
else
return INCOHERENT;
}
}
return INCOHERENT;
}
/// \cond SKIP_IN_MANUAL
private:
void clean ()
{
std::vector<Point> points;
std::vector<Vector> normals;
std::vector<std::size_t> indices;
std::vector<Point_status> status;
for (std::size_t i = 0; i < m_points.size (); ++ i)
if (m_status[i] != SKIPPED)
{
points.push_back (m_points[i]);
normals.push_back (m_normals[i]);
status.push_back (m_status[i]);
if (m_status[i] == RESIDUS)
status.back () = PLANE;
indices.push_back (m_indices[i]);
}
m_points.swap (points);
m_normals.swap (normals);
m_indices.swap (indices);
m_status.swap (status);
}
void run (double epsilon, double attraction_factor = 3.)
{
if (m_planes.empty ())
return;
double radius = epsilon * attraction_factor;
#ifdef CGAL_PSP3_VERBOSE
std::cerr << "Computing planar points... " << std::endl;
#endif
project_inliers ();
resample_planes (epsilon);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> Done" << std::endl;
std::cerr << "Finding adjacent primitives... " << std::endl;
#endif
find_pairs_of_adjacent_primitives (radius);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> Found " << m_edges.size () << " pair(s) of adjacent primitives." << std::endl;
std::cerr << "Computing edges... " << std::endl;
#endif
compute_edges (epsilon);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> Done" << std::endl;
std::cerr << "Creating edge-anchor points... " << std::endl;
{
std::size_t size_before = m_points.size ();
#endif
create_edge_anchor_points (radius, epsilon);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> " << m_points.size () - size_before << " anchor point(s) created." << std::endl;
}
std::cerr << "Computating first set of corners... " << std::endl;
#endif
compute_corners (radius);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> Found " << m_corners.size () << " triple(s) of adjacent primitives/edges." << std::endl;
std::cerr << "Merging corners... " << std::endl;
{
std::size_t size_before = m_points.size ();
#endif
merge_corners (radius);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> " << m_points.size () - size_before << " corner point(s) created." << std::endl;
}
std::cerr << "Computing corner directions... " << std::endl;
#endif
compute_corner_directions (epsilon);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> Done" << std::endl;
std::cerr << "Refining sampling... " << std::endl;
#endif
refine_sampling (epsilon);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> Done" << std::endl;
std::cerr << "Cleaning data set... " << std::endl;
#endif
clean ();
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> Done" << std::endl;
#endif
}
void project_inliers ()
{
for(std::size_t i = 0; i < m_planes.size (); ++ i)
for (std::size_t j = 0; j < m_planes[i]->indices_of_assigned_points ().size(); ++ j)
{
std::size_t ind = m_planes[i]->indices_of_assigned_points ()[j];
m_points[ind] = static_cast<Plane> (*(m_planes[i])).projection (m_points[ind]);
}
}
void resample_planes (double epsilon)
{
double grid_length = epsilon * (std::sqrt(2.) - 1e-3);
for (std::size_t c = 0; c < m_planes.size (); ++ c)
{
//plane attributes and 2D projection vectors
Plane plane = static_cast<Plane> (*(m_planes[c]));
Vector vortho = plane.orthogonal_vector();
Vector b1 = plane.base1();
Vector b2 = plane.base2();
b1 = b1 / std::sqrt (b1 * b1);
b2 = b2 / std::sqrt (b2 * b2);
std::vector<Point_2> points_2d;
//storage of the 2D points in "pt_2d"
for (std::size_t j = 0; j < m_planes[c]->indices_of_assigned_points ().size(); ++ j)
{
std::size_t ind = m_planes[c]->indices_of_assigned_points ()[j];
const Point& pt = m_points[ind];
points_2d.push_back (Point_2 (b1.x() * pt.x() + b1.y() * pt.y() + b1.z() * pt.z(),
b2.x() * pt.x() + b2.y() * pt.y() + b2.z() * pt.z()));
}
//creation of a 2D-grid with cell width = grid_length, and image structures
CGAL::Bbox_2 box_2d = CGAL::bbox_2 (points_2d.begin(), points_2d.end());
std::size_t Nx = static_cast<std::size_t>((box_2d.xmax() - box_2d.xmin()) / grid_length) + 1;
std::size_t Ny = static_cast<std::size_t>((box_2d.ymax() - box_2d.ymin()) / grid_length) + 1;
std::vector<std::vector<bool> > Mask (Nx, std::vector<bool> (Ny, false));
std::vector<std::vector<bool> > Mask_border (Nx, std::vector<bool> (Ny, false));
std::vector<std::vector<std::vector<std::size_t> > >
point_map (Nx, std::vector<std::vector<std::size_t> > (Ny, std::vector<std::size_t>()));
//storage of the points in the 2D-grid "point_map"
for (std::size_t i = 0; i < points_2d.size(); ++ i)
{
std::size_t ind_x = static_cast<std::size_t>((points_2d[i].x() - box_2d.xmin()) / grid_length);
std::size_t ind_y = static_cast<std::size_t>((points_2d[i].y() - box_2d.ymin()) / grid_length);
Mask[ind_x][ind_y] = true;
point_map[ind_x][ind_y].push_back (m_planes[c]->indices_of_assigned_points ()[i]);
}
//hole filing in Mask in 4-connexity
for (std::size_t j = 1; j < Ny - 1; ++ j)
for (std::size_t i = 1; i < Nx - 1; ++ i)
if( !Mask[i][j]
&& Mask[i-1][j] && Mask[i][j-1]
&& Mask[i][j+1] && Mask[i+1][j] )
Mask[i][j]=true;
//finding mask border in 8-connexity
for (std::size_t j = 1; j < Ny - 1; ++ j)
for (std::size_t i = 1; i < Nx - 1; ++ i)
if( Mask[i][j] &&
( !Mask[i-1][j-1] || !Mask[i-1][j] ||
!Mask[i-1][j+1] || !Mask[i][j-1] ||
!Mask[i][j+1] || !Mask[i+1][j-1] ||
!Mask[i+1][j]|| !Mask[i+1][j+1] ) )
Mask_border[i][j]=true;
for (std::size_t j = 0; j < Ny; ++ j)
{
if (Mask[0][j])
Mask_border[0][j]=true;
if (Mask[Nx-1][j])
Mask_border[Nx-1][j]=true;
}
for (std::size_t i = 0; i < Nx; ++ i)
{
if(Mask[i][0])
Mask_border[i][0]=true;
if(Mask[i][Ny-1])
Mask_border[i][Ny-1]=true;
}
//saving of points to keep
for (std::size_t j = 0; j < Ny; ++ j)
for (std::size_t i = 0; i < Nx; ++ i)
if( point_map[i][j].size()>0)
{
//inside: recenter (cell center) the first point of the cell and desactivate the others points
if (!Mask_border[i][j] && Mask[i][j])
{
double x2pt = (i+0.5) * grid_length + box_2d.xmin();
double y2pt = (j+0.4) * grid_length + box_2d.ymin();
if (i%2 == 1)
{
x2pt = (i+0.5) * grid_length + box_2d.xmin();
y2pt = (j+0.6) * grid_length + box_2d.ymin();
}
FT X1 = x2pt * b1.x() + y2pt * b2.x() - plane.d() * vortho.x();
FT X2 = x2pt * b1.y() + y2pt * b2.y() - plane.d() * vortho.y();
FT X3 = x2pt * b1.z() + y2pt * b2.z() - plane.d() * vortho.z();
std::size_t index_pt = point_map[i][j][0];
m_points[index_pt] = Point (X1, X2, X3);
m_normals[index_pt] = m_planes[c]->plane_normal();
m_status[index_pt] = PLANE;
for (std::size_t np = 1; np < point_map[i][j].size(); ++ np)
m_status[point_map[i][j][np]] = SKIPPED;
}
//border: recenter (barycenter) the first point of the cell and desactivate the others points
else if (Mask_border[i][j] && Mask[i][j])
{
std::vector<Point> pts;
for (std::size_t np = 0; np < point_map[i][j].size(); ++ np)
pts.push_back (m_points[point_map[i][j][np]]);
m_points[point_map[i][j][0]] = CGAL::centroid (pts.begin (), pts.end ());
m_status[point_map[i][j][0]] = PLANE;
for (std::size_t np = 1; np < point_map[i][j].size(); ++ np)
m_status[point_map[i][j][np]] = SKIPPED;
}
}
// point use to filling 4-connexity holes are store in HPS_residus
else if (point_map[i][j].size()==0 && !Mask_border[i][j] && Mask[i][j])
{
double x2pt = (i+0.5) * grid_length + box_2d.xmin();
double y2pt = (j+0.49) * grid_length + box_2d.ymin();
if(i%2==1)
{
x2pt = (i+0.5) * grid_length + box_2d.xmin();
y2pt = (j+0.51) * grid_length + box_2d.ymin();
}
FT X1 = x2pt * b1.x() + y2pt * b2.x() - plane.d() * vortho.x();
FT X2 = x2pt * b1.y() + y2pt * b2.y() - plane.d() * vortho.y();
FT X3 = x2pt * b1.z() + y2pt * b2.z() - plane.d() * vortho.z();
m_points.push_back (Point (X1, X2, X3));
m_normals.push_back (m_planes[c]->plane_normal());
m_indices.push_back (c);
m_status.push_back (RESIDUS);
}
}
}
void find_pairs_of_adjacent_primitives (double radius)
{
typedef typename Traits::Search_traits Search_traits_base;
typedef Search_traits_adapter <std::size_t, typename Pointer_property_map<Point>::type, Search_traits_base> Search_traits;
typedef CGAL::Kd_tree<Search_traits> Tree;
typedef CGAL::Fuzzy_sphere<Search_traits> Fuzzy_sphere;
typename Pointer_property_map<Point>::type pmap = make_property_map(m_points);
Tree tree (boost::counting_iterator<std::size_t, boost::use_default, std::ptrdiff_t> (0),
boost::counting_iterator<std::size_t, boost::use_default, std::ptrdiff_t> (m_points.size()),
typename Tree::Splitter(),
Search_traits (pmap));
std::vector<std::vector<bool> > adjacency_table (m_planes.size (),
std::vector<bool> (m_planes.size (), false));
//compute a basic adjacency relation (two primitives are neighbors
//if at least one point of the primitive 1 is a k-nearest neighbor
//of a point of the primitive 2 and vice versa)
for (std::size_t i = 0; i < m_points.size (); ++ i)
{
std::size_t ind_i = m_indices[i];
if (ind_i == (std::numeric_limits<std::size_t>::max)())
continue;
Fuzzy_sphere query (i, radius, 0., tree.traits());
std::vector<std::size_t> neighbors;
tree.search (std::back_inserter (neighbors), query);
for (std::size_t k = 0; k < neighbors.size(); ++ k)
{
std::size_t ind_k = m_indices[neighbors[k]];
if (ind_k != (std::numeric_limits<std::size_t>::max)() && ind_k != ind_i)
adjacency_table[ind_i][ind_k] = true;
}
}
//verify the symmetry and store the pairs of primitives in
//m_edges
for (std::size_t i = 0; i < adjacency_table.size() - 1; ++ i)
for (std::size_t j = i + 1; j < adjacency_table[i].size(); ++ j)
if ((adjacency_table[i][j]) && (adjacency_table[j][i]))
m_edges.push_back (Edge (i, j));
}
void compute_edges (double epsilon)
{
for (std::size_t i = 0; i < m_edges.size(); ++ i)
{
boost::shared_ptr<Plane_shape> plane1 = m_planes[m_edges[i].planes[0]];
boost::shared_ptr<Plane_shape> plane2 = m_planes[m_edges[i].planes[1]];
double angle_A = std::acos (CGAL::abs (plane1->plane_normal() * plane2->plane_normal()));
double angle_B = CGAL_PI - angle_A;
typename cpp11::result_of<typename Traits::Intersect_3(Plane, Plane)>::type
result = CGAL::intersection(static_cast<Plane>(*plane1),
static_cast<Plane>(*plane2));
if (!result)
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr << "Warning: bad plane/plane intersection" << std::endl;
#endif
continue;
}
if (const Line* l = boost::get<Line>(&*result))
m_edges[i].support = *l;
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr << "Warning: bad plane/plane intersection" << std::endl;
#endif
continue;
}
Vector direction_p1 (0., 0., 0.);
for (std::size_t k = 0; k < plane1->indices_of_assigned_points ().size(); ++ k)
{
std::size_t index_point = plane1->indices_of_assigned_points ()[k];
const Point& point = m_points[index_point];
Point projected = m_edges[i].support.projection (point);
if (std::sqrt (CGAL::squared_distance (point, projected))
< 2 * (std::min) (4., 1 / std::sin (angle_A)) * epsilon
&& m_status[index_point] != SKIPPED)
direction_p1 = direction_p1 + Vector (projected, point);
}
if (direction_p1.squared_length() > 0)
direction_p1 = direction_p1 / std::sqrt (direction_p1 * direction_p1);
Vector direction_p2 (0., 0., 0.);
for (std::size_t k = 0; k < plane2->indices_of_assigned_points ().size(); ++ k)
{
std::size_t index_point = plane2->indices_of_assigned_points ()[k];
const Point& point = m_points[index_point];
Point projected = m_edges[i].support.projection (point);
if (std::sqrt (CGAL::squared_distance (point, projected))
< 2 * (std::min) (4., 1 / std::sin (angle_A)) * epsilon
&& m_status[index_point] != SKIPPED)
direction_p2 = direction_p2 + Vector (projected, point);
}
if (direction_p2.squared_length() > 0)
direction_p2 = direction_p2 / std::sqrt (direction_p2 * direction_p2);
double angle = std::acos (direction_p1 * direction_p2);
if (direction_p1.squared_length() == 0
|| direction_p2.squared_length() == 0
|| (CGAL::abs (angle - angle_A) > 1e-2
&& CGAL::abs (angle - angle_B) > 1e-2 ))
{
m_edges[i].active = false;
}
}
}
void create_edge_anchor_points (double radius, double epsilon)
{
double d_DeltaEdge = std::sqrt (2.) * epsilon;
double r_edge = d_DeltaEdge / 2.;
for (std::size_t i = 0; i < m_edges.size(); ++ i)
{
boost::shared_ptr<Plane_shape> plane1 = m_planes[m_edges[i].planes[0]];
boost::shared_ptr<Plane_shape> plane2 = m_planes[m_edges[i].planes[1]];
const Line& line = m_edges[i].support;
if (!(m_edges[i].active))
{
continue;
}
Vector normal = 0.5 * plane1->plane_normal () + 0.5 * plane2->plane_normal();
//find set of points close (<attraction_radius) to the edge and store in intersection_points
std::vector<std::size_t> intersection_points;
for (std::size_t k = 0; k < plane1->indices_of_assigned_points().size(); ++ k)
{
std::size_t index_point = plane1->indices_of_assigned_points()[k];
const Point& point = m_points[index_point];
Point projected = line.projection (point);
if (CGAL::squared_distance (point, projected) < radius * radius)
intersection_points.push_back (index_point);
}
for (std::size_t k = 0; k < plane2->indices_of_assigned_points().size(); ++ k)
{
std::size_t index_point = plane2->indices_of_assigned_points()[k];
const Point& point = m_points[index_point];
Point projected = line.projection (point);
if (CGAL::squared_distance (point, projected) < radius * radius)
intersection_points.push_back (index_point);
}
if (intersection_points.empty ())
{
continue;
}
const Point& t0 = m_points[intersection_points[0]];
Point t0p = line.projection (t0);
double dmin = 0.;
double dmax = 0.;
Point Pmin = t0p;
Point Pmax = t0p;
Vector dir = line.to_vector ();
//compute the segment of the edge
for (std::size_t k = 0; k < intersection_points.size(); ++ k)
{
std::size_t ind = intersection_points[k];
const Point& point = m_points[ind];
Point projected = line.projection (point);
double d = Vector (t0p, projected) * dir;
if (d < dmin)
{
dmin = d;
Pmin = projected;
}
else if (d > dmax)
{
dmax = d;
Pmax = projected;
}
}
// make a partition in a 1D image by voting if at the same
// time at least one point of plane1 and one of point2 fall in
// the same cell (same step as for planes)
Segment seg (Pmin,Pmax);
std::size_t number_of_division = static_cast<std::size_t>(std::sqrt (seg.squared_length ()) / d_DeltaEdge) + 1;
std::vector<std::vector<std::size_t> > division_tab (number_of_division);
for (std::size_t k = 0; k < intersection_points.size(); ++ k)
{
std::size_t ind = intersection_points[k];
const Point& point = m_points[ind];
Point projected = line.projection (point);
std::size_t tab_index = static_cast<std::size_t>(std::sqrt (CGAL::squared_distance (seg[0], projected))
/ d_DeltaEdge);
division_tab[tab_index].push_back (ind);
}
//C1-CREATE the EDGE
std::vector<int> index_of_edge_points;
for (std::size_t j = 0; j < division_tab.size(); ++ j)
{
bool p1found = false, p2found = false;
for (std::size_t k = 0; k < division_tab[j].size () && !(p1found && p2found); ++ k)
{
if (m_indices[division_tab[j][k]] == m_edges[i].planes[0])
p1found = true;
if (m_indices[division_tab[j][k]] == m_edges[i].planes[1])
p2found = true;
}
if (!(p1found && p2found))
{
division_tab[j].clear();
continue;
}
Point perfect (seg[0].x() + (seg[1].x() - seg[0].x()) * (j + 0.5) / double(number_of_division),
seg[0].y() + (seg[1].y() - seg[0].y()) * (j + 0.5) / double(number_of_division),
seg[0].z() + (seg[1].z() - seg[0].z()) * (j + 0.5) / double(number_of_division));
// keep closest point, replace it by perfect one and skip the others
double dist_min = (std::numeric_limits<double>::max)();
std::size_t index_best = 0;
for (std::size_t k = 0; k < division_tab[j].size(); ++ k)
{
std::size_t inde = division_tab[j][k];
if (CGAL::squared_distance (line, m_points[inde]) < d_DeltaEdge * d_DeltaEdge)
m_status[inde] = SKIPPED; // Deactive points too close (except best, see below)
double distance = CGAL::squared_distance (perfect, m_points[inde]);
if (distance < dist_min)
{
dist_min = distance;
index_best = inde;
}
}
m_points[index_best] = perfect;
m_normals[index_best] = normal;
m_status[index_best] = EDGE;
m_indices[index_best] = i;
m_edges[i].indices.push_back (index_best);
}
//C2-CREATE the ANCHOR
Vector direction_p1(0,0,0);
Vector direction_p2(0,0,0);
for (std::size_t j = 0; j < division_tab.size() - 1; ++ j)
{
if (division_tab[j].empty () || division_tab[j+1].empty ())
continue;
Point anchor (seg[0].x() + (seg[1].x() - seg[0].x()) * (j + 1) / double(number_of_division),
seg[0].y() + (seg[1].y() - seg[0].y()) * (j + 1) / double(number_of_division),
seg[0].z() + (seg[1].z() - seg[0].z()) * (j + 1) / double(number_of_division));
Plane ortho = seg.supporting_line().perpendicular_plane(anchor);
std::vector<Point> pts1, pts2;
//Computation of the permanent angle and directions
for (std::size_t k = 0; k < division_tab[j].size(); ++ k)
{
std::size_t inde = division_tab[j][k];
std::size_t plane = m_indices[inde];
if (plane == m_edges[i].planes[0])
pts1.push_back (m_points[inde]);
else if (plane == m_edges[i].planes[1])
pts2.push_back (m_points[inde]);
}
typename cpp11::result_of<typename Traits::Intersect_3(Plane, Plane)>::type
result = CGAL::intersection (static_cast<Plane> (*plane1), ortho);
if (result)
{
if (const Line* l = boost::get<Line>(&*result))
{
if (!(pts1.empty()))
{
Vector vecp1 = l->to_vector();
vecp1 = vecp1/ std::sqrt (vecp1 * vecp1);
Vector vtest1 (anchor, CGAL::centroid (pts1.begin (), pts1.end ()));
if (vtest1 * vecp1<0)
vecp1 = -vecp1;
direction_p1 = direction_p1+vecp1;
Point anchor1 = anchor + vecp1 * r_edge;
m_points.push_back (anchor1);
m_normals.push_back (m_planes[m_edges[i].planes[0]]->plane_normal());
m_indices.push_back (m_edges[i].planes[0]);
m_status.push_back (PLANE);
}
}
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr<<"Warning: bad plane/plane intersection"<<std::endl;
#endif
}
}
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr<<"Warning: bad plane/plane intersection"<<std::endl;
#endif
}
result = CGAL::intersection (static_cast<Plane> (*plane2),ortho);
if (result)
{
if (const Line* l = boost::get<Line>(&*result))
{
if (!(pts2.empty()))
{
Vector vecp2 = l->to_vector();
vecp2 = vecp2 / std::sqrt (vecp2 * vecp2);
Vector vtest2 (anchor, CGAL::centroid (pts2.begin (), pts2.end ()));
if (vtest2 * vecp2 < 0)
vecp2 =- vecp2;
direction_p2 = direction_p2+vecp2;
Point anchor2 = anchor + vecp2 * r_edge;
m_points.push_back (anchor2);
m_normals.push_back (m_planes[m_edges[i].planes[1]]->plane_normal());
m_indices.push_back (m_edges[i].planes[1]);
m_status.push_back (PLANE);
}
}
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr<<"Warning: bad plane/plane intersection"<<std::endl;
#endif
}
}
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr<<"Warning: bad plane/plane intersection"<<std::endl;
#endif
}
}
//if not information enough (not enough edges to create
//anchor) we unactivate the edge, else we update the angle
//and directions
if ( !(direction_p1.squared_length()>0 || direction_p2.squared_length()>0) )
{
m_edges[i].active = false;
for (std::size_t j = 0; j < m_edges[i].indices.size (); ++ j)
m_status[m_edges[i].indices[j]] = SKIPPED;
}
}
}
void compute_corners (double radius)
{
if (m_edges.size () < 3)
return;
std::vector<std::vector<std::size_t> > plane_edge_adj (m_planes.size());
for (std::size_t i = 0; i < m_edges.size (); ++ i)
if (m_edges[i].active)
{
plane_edge_adj[m_edges[i].planes[0]].push_back (i);
plane_edge_adj[m_edges[i].planes[1]].push_back (i);
}
std::vector<std::set<std::size_t> > edge_adj (m_edges.size ());
for (std::size_t i = 0; i < plane_edge_adj.size (); ++ i)
{
if (plane_edge_adj[i].size () < 2)
continue;
for (std::size_t j = 0; j < plane_edge_adj[i].size ()- 1; ++ j)
for (std::size_t k = j + 1; k < plane_edge_adj[i].size (); ++ k)
{
edge_adj[plane_edge_adj[i][j]].insert (plane_edge_adj[i][k]);
edge_adj[plane_edge_adj[i][k]].insert (plane_edge_adj[i][j]);
}
}
for (std::size_t i = 0; i < edge_adj.size (); ++ i)
{
if (edge_adj[i].size () < 2)
continue;
std::set<std::size_t>::iterator end = edge_adj[i].end();
end --;
for (std::set<std::size_t>::iterator jit = edge_adj[i].begin ();
jit != end; ++ jit)
{
std::size_t j = *jit;
if (j < i)
continue;
std::set<std::size_t>::iterator begin = jit;
begin ++;
for (std::set<std::size_t>::iterator kit = begin;
kit != edge_adj[i].end (); ++ kit)
{
std::size_t k = *kit;
if (k < j)
continue;
std::set<std::size_t> planes;
planes.insert (m_edges[i].planes[0]);
planes.insert (m_edges[i].planes[1]);
planes.insert (m_edges[j].planes[0]);
planes.insert (m_edges[j].planes[1]);
planes.insert (m_edges[k].planes[0]);
planes.insert (m_edges[k].planes[1]);
if (planes.size () == 3) // Triple found
{
std::vector<std::size_t> vecplanes (planes.begin (), planes.end ());
m_corners.push_back (Corner (vecplanes[0], vecplanes[1], vecplanes[2],
i, j, k));
}
}
}
}
for (std::size_t i = 0; i < m_corners.size (); ++ i)
{
//calcul pt d'intersection des 3 plans
Plane plane1 = static_cast<Plane> (*(m_planes[m_corners[i].planes[0]]));
Plane plane2 = static_cast<Plane> (*(m_planes[m_corners[i].planes[1]]));
Plane plane3 = static_cast<Plane> (*(m_planes[m_corners[i].planes[2]]));
typename cpp11::result_of<typename Traits::Intersect_3(Plane, Plane)>::type
result = CGAL::intersection(plane1, plane2);
if (result)
{
if (const Line* l = boost::get<Line>(&*result))
{
typename cpp11::result_of<typename Traits::Intersect_3(Line, Plane)>::type
result2 = CGAL::intersection(*l, plane3);
if (result2)
{
if (const Point* p = boost::get<Point>(&*result2))
m_corners[i].support = *p;
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr << "Warning: bad plane/line intersection" << std::endl;
#endif
m_corners[i].active = false;
continue;
}
}
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr << "Warning: bad plane/line intersection" << std::endl;
#endif
m_corners[i].active = false;
continue;
}
}
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr << "Warning: bad plane/plane intersection" << std::endl;
#endif
m_corners[i].active = false;
continue;
}
}
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr << "Warning: bad plane/plane intersection" << std::endl;
#endif
m_corners[i].active = false;
continue;
}
// test if point is in bbox + delta
CGAL::Bbox_3 bbox = CGAL::bbox_3 (m_points.begin (), m_points.end ());
double margin_x = 0.1 * (bbox.xmax() - bbox.xmin());
double X_min = bbox.xmin() - margin_x;
double X_max = bbox.xmax() + margin_x;
double margin_y = 0.1 * (bbox.ymax() - bbox.ymin());
double Y_min = bbox.ymin() - margin_y;
double Y_max = bbox.ymax() + margin_y;
double margin_z = 0.1* (bbox.zmax() - bbox.zmin());
double Z_min = bbox.zmin() - margin_z;
double Z_max = bbox.zmax() + margin_z;
if ((m_corners[i].support.x() < X_min) || (m_corners[i].support.x() > X_max)
|| (m_corners[i].support.y() < Y_min) || (m_corners[i].support.y() > Y_max)
|| (m_corners[i].support.z() < Z_min) || (m_corners[i].support.z() > Z_max))
{
m_corners[i].active = false;
continue;
}
// test if corner is in neighborhood of at least one point each of the 3 planes
std::vector<bool> neighborhood (3, false);
for (std::size_t k = 0; k < 3; ++ k)
{
for (std::size_t j = 0; j < m_edges[m_corners[i].edges[k]].indices.size(); ++ j)
{
const Point& p = m_points[m_edges[m_corners[i].edges[k]].indices[j]];
if (CGAL::squared_distance (m_corners[i].support, p) < radius * radius)
{
neighborhood[k] = true;
break;
}
}
}
if ( !(neighborhood[0] && neighborhood[1] && neighborhood[2]) )
m_corners[i].active = false;
}
}
void merge_corners (double radius)
{
for (std::size_t k = 0; k < m_corners.size(); ++ k)
{
if (!(m_corners[k].active))
continue;
int count_plane_number=3;
for (std::size_t kb = k + 1; kb < m_corners.size(); ++ kb)
{
if (!(m_corners[kb].active))
continue;
int count_new_plane = 0;
if (CGAL::squared_distance (m_corners[kb].support, m_corners[k].support) >= radius * radius)
continue;
for (std::size_t i = 0; i < m_corners[kb].planes.size (); ++ i)
{
bool testtt = true;
for (std::size_t l = 0; l < m_corners[k].planes.size(); ++ l)
if (m_corners[kb].planes[i] == m_corners[k].planes[l])
{
testtt = false;
break;
}
if (!testtt)
continue;
m_corners[k].planes.push_back (m_corners[kb].planes[i]);
++ count_new_plane;
m_corners[kb].active = false;
std::vector<bool> is_edge_in (3, false);
for (std::size_t l = 0; l < m_corners[k].edges.size(); ++ l)
{
for (std::size_t j = 0; j < 3; ++ j)
if (m_corners[k].edges[l] == m_corners[kb].edges[j])
is_edge_in[j] = true;
}
for (std::size_t j = 0; j < 3; ++ j)
if (!(is_edge_in[j]))
m_corners[k].edges.push_back (m_corners[kb].edges[j]);
}
//update barycenter
m_corners[k].support = CGAL::barycenter (m_corners[k].support, count_plane_number,
m_corners[kb].support, count_new_plane);
count_plane_number += count_new_plane;
}
// Compute normal vector
Vector normal (0., 0., 0.);
for (std::size_t i = 0; i < m_corners[k].planes.size(); ++ i)
normal = normal + (1. / (double)(m_corners[k].planes.size()))
* m_planes[m_corners[k].planes[i]]->plane_normal();
m_points.push_back (m_corners[k].support);
m_normals.push_back (normal);
m_indices.push_back (k);
m_status.push_back (CORNER);
}
}
void compute_corner_directions (double epsilon)
{
for (std::size_t k = 0; k < m_corners.size(); ++ k)
{
for (std::size_t ed = 0; ed < m_corners[k].edges.size(); ++ ed)
{
if (m_corners[k].edges[ed] < m_edges.size())
{
const Edge& edge = m_edges[m_corners[k].edges[ed]];
Vector direction (0., 0., 0.);
for (std::size_t i = 0; i < edge.indices.size(); ++ i)
{
std::size_t index_pt = edge.indices[i];
if (std::sqrt (CGAL::squared_distance (m_corners[k].support,
m_points[index_pt])) < 5 * epsilon)
direction = direction + Vector (m_corners[k].support, m_points[index_pt]);
}
if (direction.squared_length() > 1e-5)
m_corners[k].directions.push_back (direction / std::sqrt (direction * direction));
else
m_corners[k].directions.push_back (Vector (0., 0., 0.));
}
else
m_corners[k].directions.push_back (Vector (0., 0., 0.));
}
}
}
void refine_sampling (double epsilon)
{
double d_DeltaEdge = std::sqrt (2.) * epsilon;
for (std::size_t k = 0; k < m_corners.size(); ++ k)
{
if (!(m_corners[k].active))
continue;
for (std::size_t ed = 0; ed < m_corners[k].edges.size(); ++ ed)
{
const Edge& edge = m_edges[m_corners[k].edges[ed]];
for (std::size_t i = 0; i < edge.indices.size(); ++ i)
{
//if too close from a corner, ->remove
if (CGAL::squared_distance (m_corners[k].support, m_points[edge.indices[i]])
< d_DeltaEdge * d_DeltaEdge)
m_status[edge.indices[i]] = SKIPPED;
//if too close from a corner (non dominant side), ->remove
if (m_corners[k].directions[ed].squared_length() > 0
&& (m_corners[k].directions[ed]
* Vector (m_corners[k].support, m_points[edge.indices[i]]) < 0)
&& (CGAL::squared_distance (m_corners[k].support, m_points[edge.indices[i]])
< 4 * d_DeltaEdge * d_DeltaEdge))
m_status[edge.indices[i]] = SKIPPED;
}
}
}
for (std::size_t k = 0; k < m_corners.size(); ++ k)
{
if (!(m_corners[k].active))
continue;
for (std::size_t ed = 0; ed < m_corners[k].edges.size(); ++ ed)
{
if (m_corners[k].directions[ed].squared_length() <= 0.)
continue;
Edge& edge = m_edges[m_corners[k].edges[ed]];
//rajouter un edge a epsilon du cote dominant si pas de point entre SS_edge/2 et 3/2*SS_edge
bool is_in_interval = false;
for (std::size_t i = 0; i < edge.indices.size(); ++ i)
{
std::size_t index_pt = edge.indices[i];
double dist = CGAL::squared_distance (m_corners[k].support,
m_points[index_pt]);
if (m_status[index_pt] != SKIPPED
&& dist < 1.5 * d_DeltaEdge && dist > d_DeltaEdge / 2)
{
Vector move (m_corners[k].support,
m_points[index_pt]);
if (move * m_corners[k].directions[ed] > 0.)
{
is_in_interval = true;
break;
}
}
}
//rajouter un edge a 1 epsilon du cote dominant si pas de point entre SS_edge/2 et 3/2*SS_edge
if (!is_in_interval)
{
Point new_edge = m_corners[k].support + m_corners[k].directions[ed] * d_DeltaEdge;
m_points.push_back (new_edge);
m_normals.push_back (0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[0]]->plane_normal()
+ 0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[1]]->plane_normal());
m_status.push_back (EDGE);
m_indices.push_back (m_corners[k].edges[ed]);
edge.indices.push_back (m_points.size() - 1);
}
//rajouter un edge a 1/3 epsilon du cote dominant
Point new_edge = m_corners[k].support + m_corners[k].directions[ed] * d_DeltaEdge / 3;
m_points.push_back (new_edge);
m_normals.push_back (0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[0]]->plane_normal()
+ 0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[1]]->plane_normal());
m_status.push_back (EDGE);
m_indices.push_back (m_corners[k].edges[ed]);
edge.indices.push_back (m_points.size() - 1);
}
}
}
/// \endcond
};
// ----------------------------------------------------------------------------
// Public section
// ----------------------------------------------------------------------------
/// \ingroup PkgPointSetProcessingAlgorithms
/// This is an implementation of the Point Set Structuring algorithm. This
/// algorithm takes advantage of a set of detected planes: it detects adjacency
/// relationships between planes and resamples the detected planes, edges and
/// corners to produce a structured point set.
///
/// The size parameter `epsilon` is used both for detecting adjacencies and for
/// setting the sampling density of the structured point set.
///
/// For more details, please refer to \cgalCite{cgal:la-srpss-13}.
///
/// @tparam Traits a model of `EfficientRANSACTraits` that must provide in
/// addition a function `Intersect_3 intersection_3_object() const` and a
/// functor `Intersect_3` with:
/// - `boost::optional< boost::variant< Traits::Plane_3, Traits::Line_3 > > operator()(typename Traits::Plane_3, typename Traits::Plane_3)`
/// - `boost::optional< boost::variant< Traits::Line_3, Traits::Point_3 > > operator()(typename Traits::Line_3, typename Traits::Plane_3)`
///
/// @tparam OutputIterator Type of the output iterator. The type of the objects
/// put in it is `std::pair<Traits::Point_3, Traits::Vector_3>`. Note that the
/// user may use a <A HREF="http://www.boost.org/libs/iterator/doc/function_output_iterator.html">function_output_iterator</A>
/// to match specific needs.
///
/// @note If no plane is found in the shape detection object, the
/// algorithm does nothing and the output points are the unaltered
/// input points.
///
/// @note Both property maps can be omitted if the default constructors of these property maps can be safely used.
template <typename Traits,
typename OutputIterator
>
OutputIterator
structure_point_set (typename Traits::Input_range::iterator first, ///< iterator over the first input point.
typename Traits::Input_range::iterator beyond, ///< past-the-end iterator over the input points.
typename Traits::Point_map point_map, ///< property map: value_type of InputIterator -> Point_3.
typename Traits::Normal_map normal_map, ///< property map: value_type of InputIterator -> Vector_3.
OutputIterator output, ///< output iterator where output points are written
Shape_detection_3::Efficient_RANSAC<Traits>&
shape_detection, ///< shape detection object
double epsilon, ///< size parameter
double attraction_factor = 3.) ///< attraction factor
{
Point_set_with_structure<Traits> pss (first, beyond, point_map, normal_map,
shape_detection, epsilon, attraction_factor);
for (std::size_t i = 0; i < pss.size(); ++ i)
*(output ++) = pss[i];
return output;
}
/// \cond SKIP_IN_MANUAL
template <typename Traits,
typename OutputIterator
>
OutputIterator
structure_point_set (typename Traits::Input_range::iterator first, ///< iterator over the first input point.
typename Traits::Input_range::iterator beyond, ///< past-the-end iterator over the input points.
OutputIterator output, ///< output iterator where output points are written
Shape_detection_3::Efficient_RANSAC<Traits>&
shape_detection, ///< shape detection object
double epsilon, ///< size parameter
double attraction_factor = 3.) ///< attraction factor
{
return structure_point_set (first, beyond,
typename Traits::Point_map(),
typename Traits::Normal_map(),
output,
shape_detection,
epsilon,
attraction_factor);
}
/// \endcond
} //namespace CGAL
#endif // CGAL_STRUCTURE_POINT_SET_3_H
|