This file is indexed.

/usr/include/CiftiLib/Common/MatrixFunctions.h is in libcifti-dev 1.5.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
#ifndef __MATRIX_UTILITIES_H__
#define __MATRIX_UTILITIES_H__

/*LICENSE_START*/ 
/*
 *  Copyright (c) 2014, Washington University School of Medicine
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without modification,
 *  are permitted provided that the following conditions are met:
 *
 *  1. Redistributions of source code must retain the above copyright notice,
 *  this list of conditions and the following disclaimer.
 *
 *  2. Redistributions in binary form must reproduce the above copyright notice,
 *  this list of conditions and the following disclaimer in the documentation
 *  and/or other materials provided with the distribution.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 *  THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 *  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 *  EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <vector>
#include <cmath>
#include "stdint.h"

using namespace std;

//NOTE: this is not intended to be used outside of FloatMatrix.cxx, error condition is a 0x0 matrix result
//NOTE: if a matrix has a row shorter than the first row, expect problems.  Calling checkDim will look for this, but it is not used internally, as FloatMatrix maintains this invariant

namespace cifti {

   class MatrixFunctions
   {
      typedef int64_t msize_t;//NOTE: must be signed due to using -1 as a sentinel
      
      public:
      ///
      /// matrix multiplication
      ///
      template <typename T1, typename T2, typename T3, typename A>
      static void multiply(const vector<vector<T1> > &left, const vector<vector<T2> > &right, vector<vector<T3> > &result);

      ///
      /// scalar multiplication
      ///
      template <typename T1, typename T2, typename T3>
      static void multiply(const vector<vector<T1> > &left, const T2 right, vector<vector<T3> > &result);

      ///
      /// reduced row echelon form
      ///
      template <typename T>
      static void rref(vector<vector<T> > &inout);
      
      ///
      /// matrix inversion - wrapper to rref for now
      ///
      template <typename T>
      static void inverse(const vector<vector<T> > &in, vector<vector<T> > &result);
      
      ///
      /// matrix addition - for simple code
      ///
      template <typename T1, typename T2, typename T3>
      static void add(const vector<vector<T1> > &left, const vector<vector<T2> > &right, vector<vector<T3> > &result);
      
      ///
      /// scalar addition - for simple code
      ///
      template <typename T1, typename T2, typename T3>
      static void add(const vector<vector<T1> > &left, const T2 right, vector<vector<T3> > &result);
      
      ///
      /// matrix subtraction - for simple code
      ///
      template <typename T1, typename T2, typename T3>
      static void subtract(const vector<vector<T1> > &left, const vector<vector<T2> > &right, vector<vector<T3> > &result);
      
      ///
      /// transpose - for simple code
      ///
      template <typename T>
      static void transpose(const vector<vector<T> > &in, vector<vector<T> > &result);
      
      ///
      /// debugging - verify matrix is rectangular and show its dimensions - returns true if rectangular
      ///
      template <typename T>
      static bool checkDim(const vector<vector<T> > &in);
      
      ///
      /// allocate a matrix, don't initialize
      ///
      template <typename T>
      static void resize(const msize_t rows, const msize_t columns, vector<vector<T> > &result, bool destructive = false);
      
      ///
      /// allocate a matrix of specified size
      ///
      template <typename T>
      static void zeros(const msize_t rows, const msize_t columns, vector<vector<T> > &result);
      
      ///
      /// allocate a matrix of specified size
      ///
      template <typename T>
      static void ones(const msize_t rows, const msize_t columns, vector<vector<T> > &result);
      
      ///
      /// make an identity matrix
      ///
      template <typename T>
      static void identity(const msize_t size, vector<vector<T> > &result);
      
      ///
      /// horizontally concatenate matrices
      ///
      template <typename T1, typename T2, typename T3>
      static void horizCat(const vector<vector<T1> > &left, const vector<vector<T2> > &right, vector<vector<T3> > &result);
      
      ///
      /// vertically concatenate matrices
      ///
      template <typename T1, typename T2, typename T3>
      static void vertCat(const vector<vector<T1> > &top, const vector<vector<T2> > &bottom, vector<vector<T3> > &result);
      
      ///
      /// grab a piece of a matrix
      ///
      template <typename T>
      static void getChunk(const msize_t firstrow, const msize_t lastrow, const msize_t firstcol, const msize_t lastcol, const vector<vector<T> > &in, vector<vector<T> > &result);
      
   private:
      ///
      /// reduced row echelon form that is faster on larger matrices, is called by rref() if the matrix is big enough
      ///
      template <typename T>
      static void rref_big(vector<vector<T> > &inout);
   };

   template <typename T1, typename T2, typename T3, typename A>
   void MatrixFunctions::multiply(const vector<vector<T1> >& left, const vector<vector<T2> >& right, vector<vector<T3> >& result)
   {//the stupid multiply O(n^3) - the O(n^2.78) version might not be that hard to implement with the other functions here, but not as stable
      msize_t leftrows = (msize_t)left.size(), rightrows = (msize_t)right.size(), leftcols, rightcols;
      vector<vector<T3> > tempstorage, *tresult = &result;//pointer because you can't change a reference
      bool copyout = false;
      if (&left == &result || &right == &result)
      {
         copyout = true;
         tresult = &tempstorage;
      }
      if (leftrows && rightrows)
      {
         leftcols = (msize_t)left[0].size();
         rightcols = (msize_t)right[0].size();
         if (leftcols && rightcols && (rightrows == leftcols))
         {
            resize(leftrows, rightcols, (*tresult), true);//could use zeros(), but common index last lets us zero at the same time
            msize_t i, j, k;
            for (i = 0; i < leftrows; ++i)
            {
               for (j = 0; j < rightcols; ++j)
               {
                  A accum = 0;
                  for (k = 0; k < leftcols; ++k)
                  {
                     accum += left[i][k] * right[k][j];
                  }
                  (*tresult)[i][j] = accum;
               }
            }
         } else {
            result.resize(0);
            return;
         }
      } else {
         result.resize(0);
         return;
      }
      if (copyout)
      {
         result = tempstorage;
      }
   }

   template <typename T1, typename T2, typename T3>
   void MatrixFunctions::multiply(const vector<vector<T1> > &left, const T2 right, vector<vector<T3> > &result)
   {
      msize_t leftrows = (msize_t)left.size(), leftcols;
      bool doresize = true;
      if (&left == &result)
      {
         doresize = false;//don't resize if an input is an output
      }
      if (leftrows)
      {
         leftcols = (msize_t)left[0].size();
         if (leftcols)
         {
            if (doresize) resize(leftrows, leftcols, result, true);
            msize_t i, j;
            for (i = 0; i < leftrows; ++i)
            {
               for (j = 0; j < leftcols; ++j)
               {
                  result[i][j] = left[i][j] * right;
               }
            }
         } else {
            result.resize(0);
            return;
         }
      } else {
         result.resize(0);
         return;
      }
   }

   template<typename T>
   void MatrixFunctions::rref_big(vector<vector<T> > &inout)
   {
      msize_t rows = (msize_t)inout.size(), cols;
      if (rows > 0)
      {
         cols = (msize_t)inout[0].size();
         if (cols > 0)
         {
            vector<msize_t> pivots(rows, -1), missingPivots;
            msize_t i, j, k, myrow = 0;
            msize_t pivotrow;
            T tempval;
            for (i = 0; i < cols; ++i)
            {
               if (myrow >= rows) break;//no pivots left
               tempval = 0;
               pivotrow = -1;
               for (j = myrow; j < rows; ++j)
               {//only search below for new pivot
                  if (abs(inout[j][i]) > tempval)
                  {
                     pivotrow = (msize_t)j;
                     tempval = abs(inout[j][i]);
                  }
               }
               if (pivotrow == -1)
               {//naively expect linearly dependence to show as an exact zero
                  missingPivots.push_back(i);//record the missing pivot
                  continue;//move to the next column
               }
               inout[pivotrow].swap(inout[myrow]);//STL swap via pointers for constant time row swap
               pivots[myrow] = i;//save the pivot location for back substitution
               tempval = inout[myrow][i];
               inout[myrow][i] = (T)1;
               for (j = i + 1; j < cols; ++j)
               {
                  inout[myrow][j] /= tempval;//divide row by pivot
               }
               for (j = myrow + 1; j < rows; ++j)
               {//zero ONLY below pivot for now
                  tempval = inout[j][i];
                  inout[j][i] = (T)0;
                  for (k = i + 1; k < cols; ++k)
                  {
                     inout[j][k] -= tempval * inout[myrow][k];
                  }
               }
               ++myrow;//increment row on successful pivot
            }
            msize_t numMissing = (msize_t)missingPivots.size();
            if (myrow > 1)//if there is only 1 pivot, there is no back substitution to do
            {
                msize_t lastPivotCol = pivots[myrow - 1];
                for (i = myrow - 1; i > 0; --i)//loop through pivots, can't zero above the top pivot so exclude it
                {
                    msize_t pivotCol = pivots[i];
                    for (j = i - 1; j >= 0; --j)//loop through rows above pivot
                    {
                        tempval = inout[j][pivotCol];
                        inout[j][pivotCol] = (T)0;//flat zero the entry above the pivot
                        for (k = numMissing - 1; k >= 0; --k)//back substitute within pivot range where pivots are missing
                        {
                            msize_t missingCol = missingPivots[k];
                            if (missingCol <= pivotCol) break;//equals will never trip, but whatever
                            inout[j][missingCol] -= tempval * inout[i][missingCol];
                        }
                        for (k = lastPivotCol + 1; k < cols; ++k)//loop through elements that are outside the pivot area
                        {
                            inout[j][k] -= tempval * inout[i][k];
                        }
                    }
                }
            }
         } else {
            inout.resize(0);
            return;
         }
      } else {
         inout.resize(0);
         return;
      }
   }

   template<typename T>
   void MatrixFunctions::rref(vector<vector<T> > &inout)
   {
      msize_t rows = (msize_t)inout.size(), cols;
      if (rows)
      {
         cols = (msize_t)inout[0].size();
         if (cols)
         {
            if (rows > 7 || cols > 7)//when the matrix has this many rows/columns, it is faster to allocate storage for tracking pivots, and back substitute
            {
                rref_big(inout);
                return;
            }
            msize_t i, j, k, myrow = 0;
            msize_t pivotrow;
            T tempval;
            for (i = 0; i < cols; ++i)
            {
               if (myrow >= rows) break;//no pivots left
               tempval = 0;
               pivotrow = -1;
               for (j = myrow; j < rows; ++j)
               {//only search below for new pivot
                  if (abs(inout[j][i]) > tempval)
                  {
                     pivotrow = (msize_t)j;
                     tempval = abs(inout[j][i]);
                  }
               }
               if (pivotrow == -1)//it may be a good idea to include a "very small value" check here, but it could mess up if used on a matrix with all values very small
               {//naively expect linearly dependence to show as an exact zero
                  continue;//move to the next column
               }
               inout[pivotrow].swap(inout[myrow]);//STL swap via pointers for constant time row swap
               tempval = inout[myrow][i];
               inout[myrow][i] = 1;
               for (j = i + 1; j < cols; ++j)
               {
                  inout[myrow][j] /= tempval;//divide row by pivot
               }
               for (j = 0; j < myrow; ++j)
               {//zero above pivot
                  tempval = inout[j][i];
                  inout[j][i] = 0;
                  for (k = i + 1; k < cols; ++k)
                  {
                     inout[j][k] -= tempval * inout[myrow][k];
                  }
               }
               for (j = myrow + 1; j < rows; ++j)
               {//zero below pivot
                  tempval = inout[j][i];
                  inout[j][i] = 0;
                  for (k = i + 1; k < cols; ++k)
                  {
                     inout[j][k] -= tempval * inout[myrow][k];
                  }
               }
               ++myrow;//increment row on successful pivot
            }
         } else {
            inout.resize(0);
            return;
         }
      } else {
         inout.resize(0);
         return;
      }
   }

   template<typename T>
   void MatrixFunctions::inverse(const vector<vector<T> > &in, vector<vector<T> > &result)
   {//rref implementation, there are faster (more complicated) ways - if it isn't invertible, it will hand back something strange
      msize_t inrows = (msize_t)in.size(), incols;
      if (inrows)
      {
         incols = (msize_t)in[0].size();
         if (incols == inrows)
         {
            vector<vector<T> > inter, inter2;
            identity(incols, inter2);
            horizCat(in, inter2, inter);
            rref(inter);
            getChunk(0, inrows, incols, incols * 2, inter, result);//already using a local variable, doesn't need to check for reference duplicity
         } else {
            result.resize(0);
            return;
         }
      } else {
         result.resize(0);
         return;
      }
   }

   template <typename T1, typename T2, typename T3>
   void MatrixFunctions::add(const vector<vector<T1> >& left, const vector<vector<T2> >& right, vector<vector<T3> >& result)
   {
      msize_t inrows = (msize_t)left.size(), incols;
      bool doresize = true;
      if (&left == &result || &right == &result)
      {
         doresize = false;//don't resize if an input is an output - this is ok for addition, don't need a copy
      }
      if (inrows)
      {
         incols = (msize_t)left[0].size();
         if (inrows == (msize_t)right.size() && incols == (msize_t)right[0].size())
         {
            if (doresize) resize(inrows, incols, result, true);
            for (msize_t i = 0; i < inrows; ++i)
            {
               for (msize_t j = 0; j < incols; ++j)
               {
                  result[i][j] = left[i][j] + right[i][j];
               }
            }
         } else {
            result.resize(0);//use empty matrix for error condition
            return;
         }
      } else {
         result.resize(0);
         return;
      }
   }

   template <typename T1, typename T2, typename T3>
   void MatrixFunctions::add(const vector<vector<T1> >& left, const T2 right, vector<vector<T3> >& result)
   {
      msize_t inrows = (msize_t)left.size(), incols;
      bool doresize = true;
      if (&left == &result)
      {
         doresize = false;//don't resize if an input is an output - this is ok for addition, don't need a copy
      }
      if (inrows)
      {
         incols = (msize_t)left[0].size();
         if (doresize) resize(inrows, incols, result, true);
         for (msize_t i = 0; i < inrows; ++i)
         {
            for (msize_t j = 0; j < incols; ++j)
            {
               result[i][j] = left[i][j] + right;
            }
         }
      } else {
         result.resize(0);
         return;
      }
   }

   template <typename T1, typename T2, typename T3>
   void MatrixFunctions::subtract(const vector<vector<T1> >& left, const vector<vector<T2> >& right, vector<vector<T3> >& result)
   {
      msize_t inrows = (msize_t)left.size(), incols;
      bool doresize = true;
      if (&left == &result || &right == &result)
      {
         doresize = false;//don't resize if an input is an output
      }
      if (inrows)
      {
         incols = (msize_t)left[0].size();
         if (inrows == (msize_t)right.size() && incols == (msize_t)right[0].size())
         {
            if (doresize) resize(inrows, incols, result, true);
            for (msize_t i = 0; i < inrows; ++i)
            {
               for (msize_t j = 0; j < incols; ++j)
               {
                  result[i][j] = left[i][j] - right[i][j];
               }
            }
         } else {
            result.resize(0);
            return;
         }
      } else {
         result.resize(0);
         return;
      }
   }

   template<typename T>
   void MatrixFunctions::transpose(const vector<vector<T> > &in, vector<vector<T> > &result)
   {
      msize_t inrows = (msize_t)in.size(), incols;
      vector<vector<T> > tempstorage, *tresult = &result;
      bool copyout = false;
      if (&in == &result)
      {
         copyout = true;
         tresult = &tempstorage;
      }
      if (inrows)
      {
         incols = (msize_t)in[0].size();
         resize(incols, inrows, (*tresult), true);
         for (msize_t i = 0; i < inrows; ++i)
         {
            for (msize_t j = 0; j < incols; ++j)
            {
               (*tresult)[j][i] = in[i][j];
            }
         }
      } else {
         result.resize(0);
      }
      if (copyout)
      {
         result = tempstorage;
      }
   }

   template<typename T>
   bool MatrixFunctions::checkDim(const vector<vector<T> > &in)
   {
      bool ret = true;
      msize_t rows = (msize_t)in.size(), columns;
      if (rows)
      {
         columns = (msize_t)in[0].size();
         for (msize_t i = 1; i < rows; ++i)
         {
            if (in[i].size() != columns)
            {
               ret = false;
            }
         }
      }
      return ret;
   }

   template<typename T>
   void MatrixFunctions::resize(const msize_t rows, const msize_t columns, vector<vector<T> >& result, bool destructive)
   {
      if (destructive && result.size() && ((msize_t)result.capacity() < rows || (msize_t)result[0].capacity() < columns))
      {//for large matrices, copying to preserve contents is slow
         result.resize(0);//not intended to dealloc, just to set number of items to copy to zero
      }//default is nondestructive resize, copies everything
      result.resize(rows);
      for (msize_t i = 0; i < (const msize_t)rows; ++i)
      {//naive method, may end up copying everything twice if both row and col resizes require realloc
         result[i].resize(columns);
      }
   }

   template<typename T>
   void MatrixFunctions::zeros(const msize_t rows, const msize_t columns, vector<vector<T> >& result)
   {
      resize(rows, columns, result, true);
      for (msize_t i = 0; i < rows; ++i)
      {
         for (msize_t j = 0; j < columns; ++j)
         {
            result[i][j] = 0;//should cast to float or double fine
         }
      }
   }

   template<typename T>
   void MatrixFunctions::ones(const msize_t rows, const msize_t columns, vector<vector<T> >& result)
   {
      resize(rows, columns, result, true);
      for (msize_t i = 0; i < rows; ++i)
      {
         for (msize_t j = 0; j < columns; ++j)
         {
            result[i][j] = 1;//should cast to float or double fine
         }
      }
   }

   template<typename T>
   void MatrixFunctions::identity(const msize_t size, vector<vector<T> >& result)
   {
      resize(size, size, result, true);
      for (msize_t i = 0; i < (const msize_t)size; ++i)
      {
         for (msize_t j = 0; j < (const msize_t)size; ++j)
         {
            result[i][j] = ((i == j) ? 1 : 0);//ditto, forgive the ternary
         }
      }
   }

   template <typename T1, typename T2, typename T3>
   void MatrixFunctions::horizCat(const vector<vector<T1> >& left, const vector<vector<T2> >& right, vector<vector<T3> >& result)
   {
      msize_t inrows = (msize_t)left.size(), leftcols, rightcols;
      vector<vector<T3> > tempstorage, *tresult = &result;
      bool copyout = false;
      if (&left == &result || &right == &result)
      {
         copyout = true;
         tresult = &tempstorage;
      }
      if (inrows && inrows == (msize_t)right.size())
      {
         leftcols = (msize_t)left[0].size();
         rightcols = (msize_t)right[0].size();
         (*tresult) = left;//use STL copy to start
         resize(inrows, leftcols + rightcols, (*tresult));//values survive nondestructive resize
         for (msize_t i = 0; i < inrows; ++i)
         {
            for (msize_t j = 0; j < rightcols; ++j)
            {
               (*tresult)[i][j + leftcols] = right[i][j];
            }
         }
      } else {
         result.resize(0);
         return;
      }
      if (copyout)
      {
         result = tempstorage;
      }
   }

   template <typename T1, typename T2, typename T3>
   void MatrixFunctions::vertCat(const vector<vector<T1> >& top, const vector<vector<T2> >& bottom, vector<vector<T3> >& result)
   {
      msize_t toprows = (msize_t)top.size(), botrows = (msize_t)bottom.size(), incols;
      vector<vector<T3> > tempstorage, *tresult = &result;
      bool copyout = false;
      if (&top == &result || &bottom == &result)
      {
         copyout = true;
         tresult = &tempstorage;
      }
      if (toprows && botrows)
      {
         incols = (msize_t)top[0].size();
         if (incols == (msize_t)bottom[0].size())
         {
            (*tresult) = top;
            resize(toprows + botrows, incols, (*tresult));//nondestructive resize
            for (msize_t i = 0; i < botrows; ++i)
            {
               for (msize_t j = 0; j < incols; ++j)
               {
                  (*tresult)[i + toprows][j] = bottom[i][j];
               }
            }
         } else {
            result.resize(0);
            return;
         }
      } else {
         result.resize(0);
         return;
      }
      if (copyout)
      {
         result = tempstorage;
      }
   }

   template<typename T>
   void MatrixFunctions::getChunk(const msize_t firstrow, const msize_t lastrow, const msize_t firstcol, const msize_t lastcol, const vector<vector<T> >& in, vector<vector<T> >& result)
   {
      msize_t outrows = lastrow - firstrow;
      msize_t outcols = lastcol - firstcol;
      if (lastrow <= firstrow || lastcol <= firstcol || firstrow < 0 || firstcol < 0 || lastrow > (msize_t)in.size() || lastcol > (msize_t)in[0].size())
      {
         result.resize(0);
         return;
      }
      vector<vector<T> > tempstorage, *tresult = &result;
      bool copyout = false;
      if (&in == &result)
      {
         copyout = true;
         tresult = &tempstorage;
      }
      resize(outrows, outcols, (*tresult), true);
      for (msize_t i = 0; i < outrows; ++i)
      {
         for (msize_t j = 0; j < outcols; ++j)
         {
            (*tresult)[i][j] = in[i + firstrow][j + firstcol];
         }
      }
      if (copyout)
      {
         result = tempstorage;
      }
   }

}

#endif