This file is indexed.

/usr/lib/llvm-4.0/include/polly/Support/ScopHelper.h is in libclang-common-4.0-dev 1:4.0.1-10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
//===------ Support/ScopHelper.h -- Some Helper Functions for Scop. -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Small functions that help with LLVM-IR.
//
//===----------------------------------------------------------------------===//

#ifndef POLLY_SUPPORT_IRHELPER_H
#define POLLY_SUPPORT_IRHELPER_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/ValueHandle.h"
#include <tuple>
#include <vector>

namespace llvm {
class LoopInfo;
class Loop;
class ScalarEvolution;
class SCEV;
class Region;
class Pass;
class DominatorTree;
class RegionInfo;
class GetElementPtrInst;
} // namespace llvm

namespace polly {
class Scop;

/// Type to remap values.
using ValueMapT = llvm::DenseMap<llvm::AssertingVH<llvm::Value>,
                                 llvm::AssertingVH<llvm::Value>>;

/// Type for a set of invariant loads.
using InvariantLoadsSetTy = llvm::SetVector<llvm::AssertingVH<llvm::LoadInst>>;

/// Set type for parameters.
using ParameterSetTy = llvm::SetVector<const llvm::SCEV *>;

/// Set of loops (used to remember loops in non-affine subregions).
using BoxedLoopsSetTy = llvm::SetVector<const llvm::Loop *>;

/// Utility proxy to wrap the common members of LoadInst and StoreInst.
///
/// This works like the LLVM utility class CallSite, ie. it forwards all calls
/// to either a LoadInst, StoreInst, MemIntrinsic or MemTransferInst.
/// It is similar to LLVM's utility classes IntrinsicInst, MemIntrinsic,
/// MemTransferInst, etc. in that it offers a common interface, but does not act
/// as a fake base class.
/// It is similar to StringRef and ArrayRef in that it holds a pointer to the
/// referenced object and should be passed by-value as it is small enough.
///
/// This proxy can either represent a LoadInst instance, a StoreInst instance,
/// a MemIntrinsic instance (memset, memmove, memcpy), a CallInst instance or a
/// nullptr (only creatable using the default constructor); never an Instruction
/// that is neither of the above mentioned. When representing a nullptr, only
/// the following methods are defined:
/// isNull(), isInstruction(), isLoad(), isStore(), ..., isMemTransferInst(),
/// operator bool(), operator!()
///
/// The functions isa, cast, cast_or_null, dyn_cast are modeled te resemble
/// those from llvm/Support/Casting.h. Partial template function specialization
/// is currently not supported in C++ such that those cannot be used directly.
/// (llvm::isa could, but then llvm:cast etc. would not have the expected
/// behaviour)
class MemAccInst {
private:
  llvm::Instruction *I;

public:
  MemAccInst() : I(nullptr) {}
  MemAccInst(const MemAccInst &Inst) : I(Inst.I) {}
  /* implicit */ MemAccInst(llvm::LoadInst &LI) : I(&LI) {}
  /* implicit */ MemAccInst(llvm::LoadInst *LI) : I(LI) {}
  /* implicit */ MemAccInst(llvm::StoreInst &SI) : I(&SI) {}
  /* implicit */ MemAccInst(llvm::StoreInst *SI) : I(SI) {}
  /* implicit */ MemAccInst(llvm::MemIntrinsic *MI) : I(MI) {}
  /* implicit */ MemAccInst(llvm::CallInst *CI) : I(CI) {}
  explicit MemAccInst(llvm::Instruction &I) : I(&I) { assert(isa(I)); }
  explicit MemAccInst(llvm::Instruction *I) : I(I) { assert(isa(I)); }

  static bool isa(const llvm::Value &V) {
    return llvm::isa<llvm::LoadInst>(V) || llvm::isa<llvm::StoreInst>(V) ||
           llvm::isa<llvm::CallInst>(V) || llvm::isa<llvm::MemIntrinsic>(V);
  }
  static bool isa(const llvm::Value *V) {
    return llvm::isa<llvm::LoadInst>(V) || llvm::isa<llvm::StoreInst>(V) ||
           llvm::isa<llvm::CallInst>(V) || llvm::isa<llvm::MemIntrinsic>(V);
  }
  static MemAccInst cast(llvm::Value &V) {
    return MemAccInst(llvm::cast<llvm::Instruction>(V));
  }
  static MemAccInst cast(llvm::Value *V) {
    return MemAccInst(llvm::cast<llvm::Instruction>(V));
  }
  static MemAccInst cast_or_null(llvm::Value &V) {
    return MemAccInst(llvm::cast<llvm::Instruction>(V));
  }
  static MemAccInst cast_or_null(llvm::Value *V) {
    if (!V)
      return MemAccInst();
    return MemAccInst(llvm::cast<llvm::Instruction>(V));
  }
  static MemAccInst dyn_cast(llvm::Value &V) {
    if (isa(V))
      return MemAccInst(llvm::cast<llvm::Instruction>(V));
    return MemAccInst();
  }
  static MemAccInst dyn_cast(llvm::Value *V) {
    assert(V);
    if (isa(V))
      return MemAccInst(llvm::cast<llvm::Instruction>(V));
    return MemAccInst();
  }

  MemAccInst &operator=(const MemAccInst &Inst) {
    I = Inst.I;
    return *this;
  }
  MemAccInst &operator=(llvm::LoadInst &LI) {
    I = &LI;
    return *this;
  }
  MemAccInst &operator=(llvm::LoadInst *LI) {
    I = LI;
    return *this;
  }
  MemAccInst &operator=(llvm::StoreInst &SI) {
    I = &SI;
    return *this;
  }
  MemAccInst &operator=(llvm::StoreInst *SI) {
    I = SI;
    return *this;
  }
  MemAccInst &operator=(llvm::MemIntrinsic &MI) {
    I = &MI;
    return *this;
  }
  MemAccInst &operator=(llvm::MemIntrinsic *MI) {
    I = MI;
    return *this;
  }
  MemAccInst &operator=(llvm::CallInst &CI) {
    I = &CI;
    return *this;
  }
  MemAccInst &operator=(llvm::CallInst *CI) {
    I = CI;
    return *this;
  }

  llvm::Instruction *get() const {
    assert(I && "Unexpected nullptr!");
    return I;
  }
  operator llvm::Instruction *() const { return asInstruction(); }
  llvm::Instruction *operator->() const { return get(); }

  explicit operator bool() const { return isInstruction(); }
  bool operator!() const { return isNull(); }

  llvm::Value *getValueOperand() const {
    if (isLoad())
      return asLoad();
    if (isStore())
      return asStore()->getValueOperand();
    if (isMemIntrinsic())
      return nullptr;
    if (isCallInst())
      return nullptr;
    llvm_unreachable("Operation not supported on nullptr");
  }
  llvm::Value *getPointerOperand() const {
    if (isLoad())
      return asLoad()->getPointerOperand();
    if (isStore())
      return asStore()->getPointerOperand();
    if (isMemIntrinsic())
      return asMemIntrinsic()->getRawDest();
    if (isCallInst())
      return nullptr;
    llvm_unreachable("Operation not supported on nullptr");
  }

  unsigned getAlignment() const {
    if (isLoad())
      return asLoad()->getAlignment();
    if (isStore())
      return asStore()->getAlignment();
    if (isMemIntrinsic())
      return asMemIntrinsic()->getAlignment();
    if (isCallInst())
      return 0;
    llvm_unreachable("Operation not supported on nullptr");
  }
  bool isVolatile() const {
    if (isLoad())
      return asLoad()->isVolatile();
    if (isStore())
      return asStore()->isVolatile();
    if (isMemIntrinsic())
      return asMemIntrinsic()->isVolatile();
    if (isCallInst())
      return false;
    llvm_unreachable("Operation not supported on nullptr");
  }
  bool isSimple() const {
    if (isLoad())
      return asLoad()->isSimple();
    if (isStore())
      return asStore()->isSimple();
    if (isMemIntrinsic())
      return !asMemIntrinsic()->isVolatile();
    if (isCallInst())
      return true;
    llvm_unreachable("Operation not supported on nullptr");
  }
  llvm::AtomicOrdering getOrdering() const {
    if (isLoad())
      return asLoad()->getOrdering();
    if (isStore())
      return asStore()->getOrdering();
    if (isMemIntrinsic())
      return llvm::AtomicOrdering::NotAtomic;
    if (isCallInst())
      return llvm::AtomicOrdering::NotAtomic;
    llvm_unreachable("Operation not supported on nullptr");
  }
  bool isUnordered() const {
    if (isLoad())
      return asLoad()->isUnordered();
    if (isStore())
      return asStore()->isUnordered();
    // Copied from the Load/Store implementation of isUnordered:
    if (isMemIntrinsic())
      return !asMemIntrinsic()->isVolatile();
    if (isCallInst())
      return true;
    llvm_unreachable("Operation not supported on nullptr");
  }

  bool isNull() const { return !I; }
  bool isInstruction() const { return I; }

  llvm::Instruction *asInstruction() const { return I; }

private:
  bool isLoad() const { return I && llvm::isa<llvm::LoadInst>(I); }
  bool isStore() const { return I && llvm::isa<llvm::StoreInst>(I); }
  bool isCallInst() const { return I && llvm::isa<llvm::CallInst>(I); }
  bool isMemIntrinsic() const { return I && llvm::isa<llvm::MemIntrinsic>(I); }
  bool isMemSetInst() const { return I && llvm::isa<llvm::MemSetInst>(I); }
  bool isMemTransferInst() const {
    return I && llvm::isa<llvm::MemTransferInst>(I);
  }

  llvm::LoadInst *asLoad() const { return llvm::cast<llvm::LoadInst>(I); }
  llvm::StoreInst *asStore() const { return llvm::cast<llvm::StoreInst>(I); }
  llvm::CallInst *asCallInst() const { return llvm::cast<llvm::CallInst>(I); }
  llvm::MemIntrinsic *asMemIntrinsic() const {
    return llvm::cast<llvm::MemIntrinsic>(I);
  }
  llvm::MemSetInst *asMemSetInst() const {
    return llvm::cast<llvm::MemSetInst>(I);
  }
  llvm::MemTransferInst *asMemTransferInst() const {
    return llvm::cast<llvm::MemTransferInst>(I);
  }
};
} // namespace polly

namespace llvm {
/// Specialize simplify_type for MemAccInst to enable dyn_cast and cast
///        from a MemAccInst object.
template <> struct simplify_type<polly::MemAccInst> {
  typedef Instruction *SimpleType;
  static SimpleType getSimplifiedValue(polly::MemAccInst &I) {
    return I.asInstruction();
  }
};
} // namespace llvm

namespace polly {

/// Check if the PHINode has any incoming Invoke edge.
///
/// @param PN The PHINode to check.
///
/// @return If the PHINode has an incoming BB that jumps to the parent BB
///         of the PHINode with an invoke instruction, return true,
///         otherwise, return false.
bool hasInvokeEdge(const llvm::PHINode *PN);

/// Simplify the region to have a single unconditional entry edge and a
/// single exit edge.
///
/// Although this function allows DT and RI to be null, regions only work
/// properly if the DominatorTree (for Region::contains) and RegionInfo are kept
/// up-to-date.
///
/// @param R  The region to be simplified
/// @param DT DominatorTree to be updated.
/// @param LI LoopInfo to be updated.
/// @param RI RegionInfo to be updated.
void simplifyRegion(llvm::Region *R, llvm::DominatorTree *DT,
                    llvm::LoopInfo *LI, llvm::RegionInfo *RI);

/// Split the entry block of a function to store the newly inserted
///        allocations outside of all Scops.
///
/// @param EntryBlock The entry block of the current function.
/// @param P          The pass that currently running.
///
void splitEntryBlockForAlloca(llvm::BasicBlock *EntryBlock, llvm::Pass *P);

/// Wrapper for SCEVExpander extended to all Polly features.
///
/// This wrapper will internally call the SCEVExpander but also makes sure that
/// all additional features not represented in SCEV (e.g., SDiv/SRem are not
/// black boxes but can be part of the function) will be expanded correctly.
///
/// The parameters are the same as for the creation of a SCEVExpander as well
/// as the call to SCEVExpander::expandCodeFor:
///
/// @param S     The current Scop.
/// @param SE    The Scalar Evolution pass.
/// @param DL    The module data layout.
/// @param Name  The suffix added to the new instruction names.
/// @param E     The expression for which code is actually generated.
/// @param Ty    The type of the resulting code.
/// @param IP    The insertion point for the new code.
/// @param VMap  A remaping of values used in @p E.
/// @param RTCBB The last block of the RTC. Used to insert loop-invariant
///              instructions in rare cases.
llvm::Value *expandCodeFor(Scop &S, llvm::ScalarEvolution &SE,
                           const llvm::DataLayout &DL, const char *Name,
                           const llvm::SCEV *E, llvm::Type *Ty,
                           llvm::Instruction *IP, ValueMapT *VMap,
                           llvm::BasicBlock *RTCBB);

/// Check if the block is a error block.
///
/// A error block is currently any block that fullfills at least one of
/// the following conditions:
///
///  - It is terminated by an unreachable instruction
///  - It contains a call to a non-pure function that is not immediately
///    dominated by a loop header and that does not dominate the region exit.
///    This is a heuristic to pick only error blocks that are conditionally
///    executed and can be assumed to be not executed at all without the domains
///    beeing available.
///
/// @param BB The block to check.
/// @param R  The analyzed region.
/// @param LI The loop info analysis.
/// @param DT The dominator tree of the function.
///
/// @return True if the block is a error block, false otherwise.
bool isErrorBlock(llvm::BasicBlock &BB, const llvm::Region &R,
                  llvm::LoopInfo &LI, const llvm::DominatorTree &DT);

/// Return the condition for the terminator @p TI.
///
/// For unconditional branches the "i1 true" condition will be returned.
///
/// @param TI The terminator to get the condition from.
///
/// @return The condition of @p TI and nullptr if none could be extracted.
llvm::Value *getConditionFromTerminator(llvm::TerminatorInst *TI);

/// Check if @p LInst can be hoisted in @p R.
///
/// @param LInst The load to check.
/// @param R     The analyzed region.
/// @param LI    The loop info.
/// @param SE    The scalar evolution analysis.
/// @param DT    The dominator tree of the function.
///
/// @return True if @p LInst can be hoisted in @p R.
bool isHoistableLoad(llvm::LoadInst *LInst, llvm::Region &R, llvm::LoopInfo &LI,
                     llvm::ScalarEvolution &SE, const llvm::DominatorTree &DT);

/// Return true iff @p V is an intrinsic that we ignore during code
///        generation.
bool isIgnoredIntrinsic(const llvm::Value *V);

/// Check whether a value an be synthesized by the code generator.
///
/// Some value will be recalculated only from information that is code generated
/// from the polyhedral representation. For such instructions we do not need to
/// ensure that their operands are available during code generation.
///
/// @param V The value to check.
/// @param S The current SCoP.
/// @param SE The scalar evolution database.
/// @param Scope Location where the value would by synthesized.
/// @return If the instruction I can be regenerated from its
///         scalar evolution representation, return true,
///         otherwise return false.
bool canSynthesize(const llvm::Value *V, const Scop &S,
                   llvm::ScalarEvolution *SE, llvm::Loop *Scope);

/// Return the block in which a value is used.
///
/// For normal instructions, this is the instruction's parent block. For PHI
/// nodes, this is the incoming block of that use, because this is where the
/// operand must be defined (i.e. its definition dominates this block).
/// Non-instructions do not use operands at a specific point such that in this
/// case this function returns nullptr.
llvm::BasicBlock *getUseBlock(llvm::Use &U);

/// Derive the individual index expressions from a GEP instruction.
///
/// This function optimistically assumes the GEP references into a fixed size
/// array. If this is actually true, this function returns a list of array
/// subscript expressions as SCEV as well as a list of integers describing
/// the size of the individual array dimensions. Both lists have either equal
/// length or the size list is one element shorter in case there is no known
/// size available for the outermost array dimension.
///
/// @param GEP The GetElementPtr instruction to analyze.
///
/// @return A tuple with the subscript expressions and the dimension sizes.
std::tuple<std::vector<const llvm::SCEV *>, std::vector<int>>
getIndexExpressionsFromGEP(llvm::GetElementPtrInst *GEP,
                           llvm::ScalarEvolution &SE);
} // namespace polly
#endif