This file is indexed.

/usr/lib/llvm-5.0/include/polly/ScopDetection.h is in libclang-common-5.0-dev 1:5.0.1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
//===--- ScopDetection.h - Detect Scops -------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Detect the maximal Scops of a function.
//
// A static control part (Scop) is a subgraph of the control flow graph (CFG)
// that only has statically known control flow and can therefore be described
// within the polyhedral model.
//
// Every Scop fulfills these restrictions:
//
// * It is a single entry single exit region
//
// * Only affine linear bounds in the loops
//
// Every natural loop in a Scop must have a number of loop iterations that can
// be described as an affine linear function in surrounding loop iterators or
// parameters. (A parameter is a scalar that does not change its value during
// execution of the Scop).
//
// * Only comparisons of affine linear expressions in conditions
//
// * All loops and conditions perfectly nested
//
// The control flow needs to be structured such that it could be written using
// just 'for' and 'if' statements, without the need for any 'goto', 'break' or
// 'continue'.
//
// * Side effect free functions call
//
// Only function calls and intrinsics that do not have side effects are allowed
// (readnone).
//
// The Scop detection finds the largest Scops by checking if the largest
// region is a Scop. If this is not the case, its canonical subregions are
// checked until a region is a Scop. It is now tried to extend this Scop by
// creating a larger non canonical region.
//
//===----------------------------------------------------------------------===//

#ifndef POLLY_SCOP_DETECTION_H
#define POLLY_SCOP_DETECTION_H

#include "polly/ScopDetectionDiagnostic.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Pass.h"
#include <map>
#include <memory>
#include <set>

using namespace llvm;

namespace llvm {
class LoopInfo;
class Loop;
class ScalarEvolution;
class SCEV;
class SCEVAddRecExpr;
class SCEVUnknown;
class CallInst;
class Instruction;
class Value;
class IntrinsicInst;
} // namespace llvm

namespace polly {
typedef std::set<const SCEV *> ParamSetType;

// Description of the shape of an array.
struct ArrayShape {
  // Base pointer identifying all accesses to this array.
  const SCEVUnknown *BasePointer;

  // Sizes of each delinearized dimension.
  SmallVector<const SCEV *, 4> DelinearizedSizes;

  ArrayShape(const SCEVUnknown *B) : BasePointer(B), DelinearizedSizes() {}
};

struct MemAcc {
  const Instruction *Insn;

  // A pointer to the shape description of the array.
  std::shared_ptr<ArrayShape> Shape;

  // Subscripts computed by delinearization.
  SmallVector<const SCEV *, 4> DelinearizedSubscripts;

  MemAcc(const Instruction *I, std::shared_ptr<ArrayShape> S)
      : Insn(I), Shape(S), DelinearizedSubscripts() {}
};

typedef std::map<const Instruction *, MemAcc> MapInsnToMemAcc;
typedef std::pair<const Instruction *, const SCEV *> PairInstSCEV;
typedef std::vector<PairInstSCEV> AFs;
typedef std::map<const SCEVUnknown *, AFs> BaseToAFs;
typedef std::map<const SCEVUnknown *, const SCEV *> BaseToElSize;

extern bool PollyTrackFailures;
extern bool PollyDelinearize;
extern bool PollyUseRuntimeAliasChecks;
extern bool PollyProcessUnprofitable;
extern bool PollyInvariantLoadHoisting;
extern bool PollyAllowUnsignedOperations;

/// A function attribute which will cause Polly to skip the function
extern llvm::StringRef PollySkipFnAttr;

//===----------------------------------------------------------------------===//
/// Pass to detect the maximal static control parts (Scops) of a
/// function.
class ScopDetection {
public:
  typedef SetVector<const Region *> RegionSet;

  // Remember the valid regions
  RegionSet ValidRegions;

  /// Context variables for SCoP detection.
  struct DetectionContext {
    Region &CurRegion;   // The region to check.
    AliasSetTracker AST; // The AliasSetTracker to hold the alias information.
    bool Verifying;      // If we are in the verification phase?

    /// Container to remember rejection reasons for this region.
    RejectLog Log;

    /// Map a base pointer to all access functions accessing it.
    ///
    /// This map is indexed by the base pointer. Each element of the map
    /// is a list of memory accesses that reference this base pointer.
    BaseToAFs Accesses;

    /// The set of base pointers with non-affine accesses.
    ///
    /// This set contains all base pointers and the locations where they are
    /// used for memory accesses that can not be detected as affine accesses.
    SetVector<std::pair<const SCEVUnknown *, Loop *>> NonAffineAccesses;
    BaseToElSize ElementSize;

    /// The region has at least one load instruction.
    bool hasLoads;

    /// The region has at least one store instruction.
    bool hasStores;

    /// Flag to indicate the region has at least one unknown access.
    bool HasUnknownAccess;

    /// The set of non-affine subregions in the region we analyze.
    RegionSet NonAffineSubRegionSet;

    /// The set of loops contained in non-affine regions.
    BoxedLoopsSetTy BoxedLoopsSet;

    /// Loads that need to be invariant during execution.
    InvariantLoadsSetTy RequiredILS;

    /// Map to memory access description for the corresponding LLVM
    ///        instructions.
    MapInsnToMemAcc InsnToMemAcc;

    /// Initialize a DetectionContext from scratch.
    DetectionContext(Region &R, AliasAnalysis &AA, bool Verify)
        : CurRegion(R), AST(AA), Verifying(Verify), Log(&R), hasLoads(false),
          hasStores(false), HasUnknownAccess(false) {}

    /// Initialize a DetectionContext with the data from @p DC.
    DetectionContext(const DetectionContext &&DC)
        : CurRegion(DC.CurRegion), AST(DC.AST.getAliasAnalysis()),
          Verifying(DC.Verifying), Log(std::move(DC.Log)),
          Accesses(std::move(DC.Accesses)),
          NonAffineAccesses(std::move(DC.NonAffineAccesses)),
          ElementSize(std::move(DC.ElementSize)), hasLoads(DC.hasLoads),
          hasStores(DC.hasStores), HasUnknownAccess(DC.HasUnknownAccess),
          NonAffineSubRegionSet(std::move(DC.NonAffineSubRegionSet)),
          BoxedLoopsSet(std::move(DC.BoxedLoopsSet)),
          RequiredILS(std::move(DC.RequiredILS)) {
      AST.add(DC.AST);
    }
  };

  /// Helper data structure to collect statistics about loop counts.
  struct LoopStats {
    int NumLoops;
    int MaxDepth;
  };

private:
  //===--------------------------------------------------------------------===//

  /// Analyses used
  //@{
  const DominatorTree &DT;
  ScalarEvolution &SE;
  LoopInfo &LI;
  RegionInfo &RI;
  AliasAnalysis &AA;
  //@}

  /// Map to remember detection contexts for all regions.
  using DetectionContextMapTy = DenseMap<BBPair, DetectionContext>;
  mutable DetectionContextMapTy DetectionContextMap;

  /// Remove cached results for @p R.
  void removeCachedResults(const Region &R);

  /// Remove cached results for the children of @p R recursively.
  void removeCachedResultsRecursively(const Region &R);

  /// Check if @p S0 and @p S1 do contain multiple possibly aliasing pointers.
  ///
  /// @param S0    A expression to check.
  /// @param S1    Another expression to check or nullptr.
  /// @param Scope The loop/scope the expressions are checked in.
  ///
  /// @returns True, if multiple possibly aliasing pointers are used in @p S0
  ///          (and @p S1 if given).
  bool involvesMultiplePtrs(const SCEV *S0, const SCEV *S1, Loop *Scope) const;

  /// Add the region @p AR as over approximated sub-region in @p Context.
  ///
  /// @param AR      The non-affine subregion.
  /// @param Context The current detection context.
  ///
  /// @returns True if the subregion can be over approximated, false otherwise.
  bool addOverApproximatedRegion(Region *AR, DetectionContext &Context) const;

  /// Find for a given base pointer terms that hint towards dimension
  ///        sizes of a multi-dimensional array.
  ///
  /// @param Context      The current detection context.
  /// @param BasePointer  A base pointer indicating the virtual array we are
  ///                     interested in.
  SmallVector<const SCEV *, 4>
  getDelinearizationTerms(DetectionContext &Context,
                          const SCEVUnknown *BasePointer) const;

  /// Check if the dimension size of a delinearized array is valid.
  ///
  /// @param Context     The current detection context.
  /// @param Sizes       The sizes of the different array dimensions.
  /// @param BasePointer The base pointer we are interested in.
  /// @param Scope       The location where @p BasePointer is being used.
  /// @returns True if one or more array sizes could be derived - meaning: we
  ///          see this array as multi-dimensional.
  bool hasValidArraySizes(DetectionContext &Context,
                          SmallVectorImpl<const SCEV *> &Sizes,
                          const SCEVUnknown *BasePointer, Loop *Scope) const;

  /// Derive access functions for a given base pointer.
  ///
  /// @param Context     The current detection context.
  /// @param Sizes       The sizes of the different array dimensions.
  /// @param BasePointer The base pointer of all the array for which to compute
  ///                    access functions.
  /// @param Shape       The shape that describes the derived array sizes and
  ///                    which should be filled with newly computed access
  ///                    functions.
  /// @returns True if a set of affine access functions could be derived.
  bool computeAccessFunctions(DetectionContext &Context,
                              const SCEVUnknown *BasePointer,
                              std::shared_ptr<ArrayShape> Shape) const;

  /// Check if all accesses to a given BasePointer are affine.
  ///
  /// @param Context     The current detection context.
  /// @param BasePointer the base pointer we are interested in.
  /// @param Scope       The location where @p BasePointer is being used.
  /// @param True if consistent (multi-dimensional) array accesses could be
  ///        derived for this array.
  bool hasBaseAffineAccesses(DetectionContext &Context,
                             const SCEVUnknown *BasePointer, Loop *Scope) const;

  // Delinearize all non affine memory accesses and return false when there
  // exists a non affine memory access that cannot be delinearized. Return true
  // when all array accesses are affine after delinearization.
  bool hasAffineMemoryAccesses(DetectionContext &Context) const;

  // Try to expand the region R. If R can be expanded return the expanded
  // region, NULL otherwise.
  Region *expandRegion(Region &R);

  /// Find the Scops in this region tree.
  ///
  /// @param The region tree to scan for scops.
  void findScops(Region &R);

  /// Check if all basic block in the region are valid.
  ///
  /// @param Context The context of scop detection.
  ///
  /// @return True if all blocks in R are valid, false otherwise.
  bool allBlocksValid(DetectionContext &Context) const;

  /// Check if a region has sufficient compute instructions.
  ///
  /// This function checks if a region has a non-trivial number of instructions
  /// in each loop. This can be used as an indicator whether a loop is worth
  /// optimizing.
  ///
  /// @param Context  The context of scop detection.
  /// @param NumLoops The number of loops in the region.
  ///
  /// @return True if region is has sufficient compute instructions,
  ///         false otherwise.
  bool hasSufficientCompute(DetectionContext &Context,
                            int NumAffineLoops) const;

  /// Check if the unique affine loop might be amendable to distribution.
  ///
  /// This function checks if the number of non-trivial blocks in the unique
  /// affine loop in Context.CurRegion is at least two, thus if the loop might
  /// be amendable to distribution.
  ///
  /// @param Context  The context of scop detection.
  ///
  /// @return True only if the affine loop might be amendable to distributable.
  bool hasPossiblyDistributableLoop(DetectionContext &Context) const;

  /// Check if a region is profitable to optimize.
  ///
  /// Regions that are unlikely to expose interesting optimization opportunities
  /// are called 'unprofitable' and may be skipped during scop detection.
  ///
  /// @param Context The context of scop detection.
  ///
  /// @return True if region is profitable to optimize, false otherwise.
  bool isProfitableRegion(DetectionContext &Context) const;

  /// Check if a region is a Scop.
  ///
  /// @param Context The context of scop detection.
  ///
  /// @return True if R is a Scop, false otherwise.
  bool isValidRegion(DetectionContext &Context) const;

  /// Check if an intrinsic call can be part of a Scop.
  ///
  /// @param II      The intrinsic call instruction to check.
  /// @param Context The current detection context.
  ///
  /// @return True if the call instruction is valid, false otherwise.
  bool isValidIntrinsicInst(IntrinsicInst &II, DetectionContext &Context) const;

  /// Check if a call instruction can be part of a Scop.
  ///
  /// @param CI      The call instruction to check.
  /// @param Context The current detection context.
  ///
  /// @return True if the call instruction is valid, false otherwise.
  bool isValidCallInst(CallInst &CI, DetectionContext &Context) const;

  /// Check if the given loads could be invariant and can be hoisted.
  ///
  /// If true is returned the loads are added to the required invariant loads
  /// contained in the @p Context.
  ///
  /// @param RequiredILS The loads to check.
  /// @param Context     The current detection context.
  ///
  /// @return True if all loads can be assumed invariant.
  bool onlyValidRequiredInvariantLoads(InvariantLoadsSetTy &RequiredILS,
                                       DetectionContext &Context) const;

  /// Check if a value is invariant in the region Reg.
  ///
  /// @param Val Value to check for invariance.
  /// @param Reg The region to consider for the invariance of Val.
  /// @param Ctx The current detection context.
  ///
  /// @return True if the value represented by Val is invariant in the region
  ///         identified by Reg.
  bool isInvariant(Value &Val, const Region &Reg, DetectionContext &Ctx) const;

  /// Check if the memory access caused by @p Inst is valid.
  ///
  /// @param Inst    The access instruction.
  /// @param AF      The access function.
  /// @param BP      The access base pointer.
  /// @param Context The current detection context.
  bool isValidAccess(Instruction *Inst, const SCEV *AF, const SCEVUnknown *BP,
                     DetectionContext &Context) const;

  /// Check if a memory access can be part of a Scop.
  ///
  /// @param Inst The instruction accessing the memory.
  /// @param Context The context of scop detection.
  ///
  /// @return True if the memory access is valid, false otherwise.
  bool isValidMemoryAccess(MemAccInst Inst, DetectionContext &Context) const;

  /// Check if an instruction has any non trivial scalar dependencies as part of
  /// a Scop.
  ///
  /// @param Inst The instruction to check.
  /// @param RefRegion The region in respect to which we check the access
  ///                  function.
  ///
  /// @return True if the instruction has scalar dependences, false otherwise.
  bool hasScalarDependency(Instruction &Inst, Region &RefRegion) const;

  /// Check if an instruction can be part of a Scop.
  ///
  /// @param Inst The instruction to check.
  /// @param Context The context of scop detection.
  ///
  /// @return True if the instruction is valid, false otherwise.
  bool isValidInstruction(Instruction &Inst, DetectionContext &Context) const;

  /// Check if the switch @p SI with condition @p Condition is valid.
  ///
  /// @param BB           The block to check.
  /// @param SI           The switch to check.
  /// @param Condition    The switch condition.
  /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
  /// @param Context      The context of scop detection.
  ///
  /// @return True if the branch @p BI is valid.
  bool isValidSwitch(BasicBlock &BB, SwitchInst *SI, Value *Condition,
                     bool IsLoopBranch, DetectionContext &Context) const;

  /// Check if the branch @p BI with condition @p Condition is valid.
  ///
  /// @param BB           The block to check.
  /// @param BI           The branch to check.
  /// @param Condition    The branch condition.
  /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
  /// @param Context      The context of scop detection.
  ///
  /// @return True if the branch @p BI is valid.
  bool isValidBranch(BasicBlock &BB, BranchInst *BI, Value *Condition,
                     bool IsLoopBranch, DetectionContext &Context) const;

  /// Check if the SCEV @p S is affine in the current @p Context.
  ///
  /// This will also use a heuristic to decide if we want to require loads to be
  /// invariant to make the expression affine or if we want to treat is as
  /// non-affine.
  ///
  /// @param S           The expression to be checked.
  /// @param Scope       The loop nest in which @p S is used.
  /// @param Context     The context of scop detection.
  bool isAffine(const SCEV *S, Loop *Scope, DetectionContext &Context) const;

  /// Check if the control flow in a basic block is valid.
  ///
  /// This function checks if a certain basic block is terminated by a
  /// Terminator instruction we can handle or, if this is not the case,
  /// registers this basic block as the start of a non-affine region.
  ///
  /// This function optionally allows unreachable statements.
  ///
  /// @param BB               The BB to check the control flow.
  /// @param IsLoopBranch     Flag to indicate the branch is a loop exit/latch.
  //  @param AllowUnreachable Allow unreachable statements.
  /// @param Context          The context of scop detection.
  ///
  /// @return True if the BB contains only valid control flow.
  bool isValidCFG(BasicBlock &BB, bool IsLoopBranch, bool AllowUnreachable,
                  DetectionContext &Context) const;

  /// Is a loop valid with respect to a given region.
  ///
  /// @param L The loop to check.
  /// @param Context The context of scop detection.
  ///
  /// @return True if the loop is valid in the region.
  bool isValidLoop(Loop *L, DetectionContext &Context) const;

  /// Count the number of loops and the maximal loop depth in @p L.
  ///
  /// @param L The loop to check.
  /// @param SE The scalar evolution analysis.
  /// @param MinProfitableTrips The minimum number of trip counts from which
  ///                           a loop is assumed to be profitable and
  ///                           consequently is counted.
  /// returns A tuple of number of loops and their maximal depth.
  static ScopDetection::LoopStats
  countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
                          unsigned MinProfitableTrips);

  /// Check if the function @p F is marked as invalid.
  ///
  /// @note An OpenMP subfunction will be marked as invalid.
  bool isValidFunction(llvm::Function &F);

  /// Can ISL compute the trip count of a loop.
  ///
  /// @param L The loop to check.
  /// @param Context The context of scop detection.
  ///
  /// @return True if ISL can compute the trip count of the loop.
  bool canUseISLTripCount(Loop *L, DetectionContext &Context) const;

  /// Print the locations of all detected scops.
  void printLocations(llvm::Function &F);

  /// Check if a region is reducible or not.
  ///
  /// @param Region The region to check.
  /// @param DbgLoc Parameter to save the location of instruction that
  ///               causes irregular control flow if the region is irreducible.
  ///
  /// @return True if R is reducible, false otherwise.
  bool isReducibleRegion(Region &R, DebugLoc &DbgLoc) const;

  /// Track diagnostics for invalid scops.
  ///
  /// @param Context The context of scop detection.
  /// @param Assert Throw an assert in verify mode or not.
  /// @param Args Argument list that gets passed to the constructor of RR.
  template <class RR, typename... Args>
  inline bool invalid(DetectionContext &Context, bool Assert,
                      Args &&... Arguments) const;

public:
  ScopDetection(Function &F, const DominatorTree &DT, ScalarEvolution &SE,
                LoopInfo &LI, RegionInfo &RI, AliasAnalysis &AA,
                OptimizationRemarkEmitter &ORE);

  /// Get the RegionInfo stored in this pass.
  ///
  /// This was added to give the DOT printer easy access to this information.
  RegionInfo *getRI() const { return &RI; }

  /// Get the LoopInfo stored in this pass.
  LoopInfo *getLI() const { return &LI; }

  /// Is the region is the maximum region of a Scop?
  ///
  /// @param R The Region to test if it is maximum.
  /// @param Verify Rerun the scop detection to verify SCoP was not invalidated
  ///               meanwhile.
  ///
  /// @return Return true if R is the maximum Region in a Scop, false otherwise.
  bool isMaxRegionInScop(const Region &R, bool Verify = true) const;

  /// Return the detection context for @p R, nullptr if @p R was invalid.
  DetectionContext *getDetectionContext(const Region *R) const;

  /// Return the set of rejection causes for @p R.
  const RejectLog *lookupRejectionLog(const Region *R) const;

  /// Return true if @p SubR is a non-affine subregion in @p ScopR.
  bool isNonAffineSubRegion(const Region *SubR, const Region *ScopR) const;

  /// Get a message why a region is invalid
  ///
  /// @param R The region for which we get the error message
  ///
  /// @return The error or "" if no error appeared.
  std::string regionIsInvalidBecause(const Region *R) const;

  /// @name Maximum Region In Scops Iterators
  ///
  /// These iterators iterator over all maximum region in Scops of this
  /// function.
  //@{
  typedef RegionSet::iterator iterator;
  typedef RegionSet::const_iterator const_iterator;

  iterator begin() { return ValidRegions.begin(); }
  iterator end() { return ValidRegions.end(); }

  const_iterator begin() const { return ValidRegions.begin(); }
  const_iterator end() const { return ValidRegions.end(); }
  //@}

  /// Emit rejection remarks for all rejected regions.
  ///
  /// @param F The function to emit remarks for.
  void emitMissedRemarks(const Function &F);

  /// Mark the function as invalid so we will not extract any scop from
  ///        the function.
  ///
  /// @param F The function to mark as invalid.
  static void markFunctionAsInvalid(Function *F);

  /// Verify if all valid Regions in this Function are still valid
  /// after some transformations.
  void verifyAnalysis() const;

  /// Verify if R is still a valid part of Scop after some transformations.
  ///
  /// @param R The Region to verify.
  void verifyRegion(const Region &R) const;

  /// Count the number of loops and the maximal loop depth in @p R.
  ///
  /// @param R The region to check
  /// @param SE The scalar evolution analysis.
  /// @param MinProfitableTrips The minimum number of trip counts from which
  ///                           a loop is assumed to be profitable and
  ///                           consequently is counted.
  /// returns A tuple of number of loops and their maximal depth.
  static ScopDetection::LoopStats
  countBeneficialLoops(Region *R, ScalarEvolution &SE, LoopInfo &LI,
                       unsigned MinProfitableTrips);

  /// OptimizationRemarkEmitter object used to emit diagnostic remarks
  OptimizationRemarkEmitter &ORE;
};

struct ScopAnalysis : public AnalysisInfoMixin<ScopAnalysis> {
  static AnalysisKey Key;
  using Result = ScopDetection;
  Result run(Function &F, FunctionAnalysisManager &FAM);
};

struct ScopAnalysisPrinterPass : public PassInfoMixin<ScopAnalysisPrinterPass> {
  ScopAnalysisPrinterPass(raw_ostream &O) : Stream(O) {}
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
  raw_ostream &Stream;
};

struct ScopDetectionWrapperPass : public FunctionPass {
  static char ID;
  std::unique_ptr<ScopDetection> Result;

  ScopDetectionWrapperPass();
  /// @name FunctionPass interface
  //@{
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
  virtual void releaseMemory();
  virtual bool runOnFunction(Function &F);
  virtual void print(raw_ostream &OS, const Module *) const;
  //@}

  ScopDetection &getSD() { return *Result; }
  const ScopDetection &getSD() const { return *Result; }
};

} // end namespace polly

namespace llvm {
class PassRegistry;
void initializeScopDetectionWrapperPassPass(llvm::PassRegistry &);
} // namespace llvm

#endif