/usr/lib/llvm-5.0/include/polly/ScopDetection.h is in libclang-common-5.0-dev 1:5.0.1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 | //===--- ScopDetection.h - Detect Scops -------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Detect the maximal Scops of a function.
//
// A static control part (Scop) is a subgraph of the control flow graph (CFG)
// that only has statically known control flow and can therefore be described
// within the polyhedral model.
//
// Every Scop fulfills these restrictions:
//
// * It is a single entry single exit region
//
// * Only affine linear bounds in the loops
//
// Every natural loop in a Scop must have a number of loop iterations that can
// be described as an affine linear function in surrounding loop iterators or
// parameters. (A parameter is a scalar that does not change its value during
// execution of the Scop).
//
// * Only comparisons of affine linear expressions in conditions
//
// * All loops and conditions perfectly nested
//
// The control flow needs to be structured such that it could be written using
// just 'for' and 'if' statements, without the need for any 'goto', 'break' or
// 'continue'.
//
// * Side effect free functions call
//
// Only function calls and intrinsics that do not have side effects are allowed
// (readnone).
//
// The Scop detection finds the largest Scops by checking if the largest
// region is a Scop. If this is not the case, its canonical subregions are
// checked until a region is a Scop. It is now tried to extend this Scop by
// creating a larger non canonical region.
//
//===----------------------------------------------------------------------===//
#ifndef POLLY_SCOP_DETECTION_H
#define POLLY_SCOP_DETECTION_H
#include "polly/ScopDetectionDiagnostic.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Pass.h"
#include <map>
#include <memory>
#include <set>
using namespace llvm;
namespace llvm {
class LoopInfo;
class Loop;
class ScalarEvolution;
class SCEV;
class SCEVAddRecExpr;
class SCEVUnknown;
class CallInst;
class Instruction;
class Value;
class IntrinsicInst;
} // namespace llvm
namespace polly {
typedef std::set<const SCEV *> ParamSetType;
// Description of the shape of an array.
struct ArrayShape {
// Base pointer identifying all accesses to this array.
const SCEVUnknown *BasePointer;
// Sizes of each delinearized dimension.
SmallVector<const SCEV *, 4> DelinearizedSizes;
ArrayShape(const SCEVUnknown *B) : BasePointer(B), DelinearizedSizes() {}
};
struct MemAcc {
const Instruction *Insn;
// A pointer to the shape description of the array.
std::shared_ptr<ArrayShape> Shape;
// Subscripts computed by delinearization.
SmallVector<const SCEV *, 4> DelinearizedSubscripts;
MemAcc(const Instruction *I, std::shared_ptr<ArrayShape> S)
: Insn(I), Shape(S), DelinearizedSubscripts() {}
};
typedef std::map<const Instruction *, MemAcc> MapInsnToMemAcc;
typedef std::pair<const Instruction *, const SCEV *> PairInstSCEV;
typedef std::vector<PairInstSCEV> AFs;
typedef std::map<const SCEVUnknown *, AFs> BaseToAFs;
typedef std::map<const SCEVUnknown *, const SCEV *> BaseToElSize;
extern bool PollyTrackFailures;
extern bool PollyDelinearize;
extern bool PollyUseRuntimeAliasChecks;
extern bool PollyProcessUnprofitable;
extern bool PollyInvariantLoadHoisting;
extern bool PollyAllowUnsignedOperations;
/// A function attribute which will cause Polly to skip the function
extern llvm::StringRef PollySkipFnAttr;
//===----------------------------------------------------------------------===//
/// Pass to detect the maximal static control parts (Scops) of a
/// function.
class ScopDetection {
public:
typedef SetVector<const Region *> RegionSet;
// Remember the valid regions
RegionSet ValidRegions;
/// Context variables for SCoP detection.
struct DetectionContext {
Region &CurRegion; // The region to check.
AliasSetTracker AST; // The AliasSetTracker to hold the alias information.
bool Verifying; // If we are in the verification phase?
/// Container to remember rejection reasons for this region.
RejectLog Log;
/// Map a base pointer to all access functions accessing it.
///
/// This map is indexed by the base pointer. Each element of the map
/// is a list of memory accesses that reference this base pointer.
BaseToAFs Accesses;
/// The set of base pointers with non-affine accesses.
///
/// This set contains all base pointers and the locations where they are
/// used for memory accesses that can not be detected as affine accesses.
SetVector<std::pair<const SCEVUnknown *, Loop *>> NonAffineAccesses;
BaseToElSize ElementSize;
/// The region has at least one load instruction.
bool hasLoads;
/// The region has at least one store instruction.
bool hasStores;
/// Flag to indicate the region has at least one unknown access.
bool HasUnknownAccess;
/// The set of non-affine subregions in the region we analyze.
RegionSet NonAffineSubRegionSet;
/// The set of loops contained in non-affine regions.
BoxedLoopsSetTy BoxedLoopsSet;
/// Loads that need to be invariant during execution.
InvariantLoadsSetTy RequiredILS;
/// Map to memory access description for the corresponding LLVM
/// instructions.
MapInsnToMemAcc InsnToMemAcc;
/// Initialize a DetectionContext from scratch.
DetectionContext(Region &R, AliasAnalysis &AA, bool Verify)
: CurRegion(R), AST(AA), Verifying(Verify), Log(&R), hasLoads(false),
hasStores(false), HasUnknownAccess(false) {}
/// Initialize a DetectionContext with the data from @p DC.
DetectionContext(const DetectionContext &&DC)
: CurRegion(DC.CurRegion), AST(DC.AST.getAliasAnalysis()),
Verifying(DC.Verifying), Log(std::move(DC.Log)),
Accesses(std::move(DC.Accesses)),
NonAffineAccesses(std::move(DC.NonAffineAccesses)),
ElementSize(std::move(DC.ElementSize)), hasLoads(DC.hasLoads),
hasStores(DC.hasStores), HasUnknownAccess(DC.HasUnknownAccess),
NonAffineSubRegionSet(std::move(DC.NonAffineSubRegionSet)),
BoxedLoopsSet(std::move(DC.BoxedLoopsSet)),
RequiredILS(std::move(DC.RequiredILS)) {
AST.add(DC.AST);
}
};
/// Helper data structure to collect statistics about loop counts.
struct LoopStats {
int NumLoops;
int MaxDepth;
};
private:
//===--------------------------------------------------------------------===//
/// Analyses used
//@{
const DominatorTree &DT;
ScalarEvolution &SE;
LoopInfo &LI;
RegionInfo &RI;
AliasAnalysis &AA;
//@}
/// Map to remember detection contexts for all regions.
using DetectionContextMapTy = DenseMap<BBPair, DetectionContext>;
mutable DetectionContextMapTy DetectionContextMap;
/// Remove cached results for @p R.
void removeCachedResults(const Region &R);
/// Remove cached results for the children of @p R recursively.
void removeCachedResultsRecursively(const Region &R);
/// Check if @p S0 and @p S1 do contain multiple possibly aliasing pointers.
///
/// @param S0 A expression to check.
/// @param S1 Another expression to check or nullptr.
/// @param Scope The loop/scope the expressions are checked in.
///
/// @returns True, if multiple possibly aliasing pointers are used in @p S0
/// (and @p S1 if given).
bool involvesMultiplePtrs(const SCEV *S0, const SCEV *S1, Loop *Scope) const;
/// Add the region @p AR as over approximated sub-region in @p Context.
///
/// @param AR The non-affine subregion.
/// @param Context The current detection context.
///
/// @returns True if the subregion can be over approximated, false otherwise.
bool addOverApproximatedRegion(Region *AR, DetectionContext &Context) const;
/// Find for a given base pointer terms that hint towards dimension
/// sizes of a multi-dimensional array.
///
/// @param Context The current detection context.
/// @param BasePointer A base pointer indicating the virtual array we are
/// interested in.
SmallVector<const SCEV *, 4>
getDelinearizationTerms(DetectionContext &Context,
const SCEVUnknown *BasePointer) const;
/// Check if the dimension size of a delinearized array is valid.
///
/// @param Context The current detection context.
/// @param Sizes The sizes of the different array dimensions.
/// @param BasePointer The base pointer we are interested in.
/// @param Scope The location where @p BasePointer is being used.
/// @returns True if one or more array sizes could be derived - meaning: we
/// see this array as multi-dimensional.
bool hasValidArraySizes(DetectionContext &Context,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEVUnknown *BasePointer, Loop *Scope) const;
/// Derive access functions for a given base pointer.
///
/// @param Context The current detection context.
/// @param Sizes The sizes of the different array dimensions.
/// @param BasePointer The base pointer of all the array for which to compute
/// access functions.
/// @param Shape The shape that describes the derived array sizes and
/// which should be filled with newly computed access
/// functions.
/// @returns True if a set of affine access functions could be derived.
bool computeAccessFunctions(DetectionContext &Context,
const SCEVUnknown *BasePointer,
std::shared_ptr<ArrayShape> Shape) const;
/// Check if all accesses to a given BasePointer are affine.
///
/// @param Context The current detection context.
/// @param BasePointer the base pointer we are interested in.
/// @param Scope The location where @p BasePointer is being used.
/// @param True if consistent (multi-dimensional) array accesses could be
/// derived for this array.
bool hasBaseAffineAccesses(DetectionContext &Context,
const SCEVUnknown *BasePointer, Loop *Scope) const;
// Delinearize all non affine memory accesses and return false when there
// exists a non affine memory access that cannot be delinearized. Return true
// when all array accesses are affine after delinearization.
bool hasAffineMemoryAccesses(DetectionContext &Context) const;
// Try to expand the region R. If R can be expanded return the expanded
// region, NULL otherwise.
Region *expandRegion(Region &R);
/// Find the Scops in this region tree.
///
/// @param The region tree to scan for scops.
void findScops(Region &R);
/// Check if all basic block in the region are valid.
///
/// @param Context The context of scop detection.
///
/// @return True if all blocks in R are valid, false otherwise.
bool allBlocksValid(DetectionContext &Context) const;
/// Check if a region has sufficient compute instructions.
///
/// This function checks if a region has a non-trivial number of instructions
/// in each loop. This can be used as an indicator whether a loop is worth
/// optimizing.
///
/// @param Context The context of scop detection.
/// @param NumLoops The number of loops in the region.
///
/// @return True if region is has sufficient compute instructions,
/// false otherwise.
bool hasSufficientCompute(DetectionContext &Context,
int NumAffineLoops) const;
/// Check if the unique affine loop might be amendable to distribution.
///
/// This function checks if the number of non-trivial blocks in the unique
/// affine loop in Context.CurRegion is at least two, thus if the loop might
/// be amendable to distribution.
///
/// @param Context The context of scop detection.
///
/// @return True only if the affine loop might be amendable to distributable.
bool hasPossiblyDistributableLoop(DetectionContext &Context) const;
/// Check if a region is profitable to optimize.
///
/// Regions that are unlikely to expose interesting optimization opportunities
/// are called 'unprofitable' and may be skipped during scop detection.
///
/// @param Context The context of scop detection.
///
/// @return True if region is profitable to optimize, false otherwise.
bool isProfitableRegion(DetectionContext &Context) const;
/// Check if a region is a Scop.
///
/// @param Context The context of scop detection.
///
/// @return True if R is a Scop, false otherwise.
bool isValidRegion(DetectionContext &Context) const;
/// Check if an intrinsic call can be part of a Scop.
///
/// @param II The intrinsic call instruction to check.
/// @param Context The current detection context.
///
/// @return True if the call instruction is valid, false otherwise.
bool isValidIntrinsicInst(IntrinsicInst &II, DetectionContext &Context) const;
/// Check if a call instruction can be part of a Scop.
///
/// @param CI The call instruction to check.
/// @param Context The current detection context.
///
/// @return True if the call instruction is valid, false otherwise.
bool isValidCallInst(CallInst &CI, DetectionContext &Context) const;
/// Check if the given loads could be invariant and can be hoisted.
///
/// If true is returned the loads are added to the required invariant loads
/// contained in the @p Context.
///
/// @param RequiredILS The loads to check.
/// @param Context The current detection context.
///
/// @return True if all loads can be assumed invariant.
bool onlyValidRequiredInvariantLoads(InvariantLoadsSetTy &RequiredILS,
DetectionContext &Context) const;
/// Check if a value is invariant in the region Reg.
///
/// @param Val Value to check for invariance.
/// @param Reg The region to consider for the invariance of Val.
/// @param Ctx The current detection context.
///
/// @return True if the value represented by Val is invariant in the region
/// identified by Reg.
bool isInvariant(Value &Val, const Region &Reg, DetectionContext &Ctx) const;
/// Check if the memory access caused by @p Inst is valid.
///
/// @param Inst The access instruction.
/// @param AF The access function.
/// @param BP The access base pointer.
/// @param Context The current detection context.
bool isValidAccess(Instruction *Inst, const SCEV *AF, const SCEVUnknown *BP,
DetectionContext &Context) const;
/// Check if a memory access can be part of a Scop.
///
/// @param Inst The instruction accessing the memory.
/// @param Context The context of scop detection.
///
/// @return True if the memory access is valid, false otherwise.
bool isValidMemoryAccess(MemAccInst Inst, DetectionContext &Context) const;
/// Check if an instruction has any non trivial scalar dependencies as part of
/// a Scop.
///
/// @param Inst The instruction to check.
/// @param RefRegion The region in respect to which we check the access
/// function.
///
/// @return True if the instruction has scalar dependences, false otherwise.
bool hasScalarDependency(Instruction &Inst, Region &RefRegion) const;
/// Check if an instruction can be part of a Scop.
///
/// @param Inst The instruction to check.
/// @param Context The context of scop detection.
///
/// @return True if the instruction is valid, false otherwise.
bool isValidInstruction(Instruction &Inst, DetectionContext &Context) const;
/// Check if the switch @p SI with condition @p Condition is valid.
///
/// @param BB The block to check.
/// @param SI The switch to check.
/// @param Condition The switch condition.
/// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
/// @param Context The context of scop detection.
///
/// @return True if the branch @p BI is valid.
bool isValidSwitch(BasicBlock &BB, SwitchInst *SI, Value *Condition,
bool IsLoopBranch, DetectionContext &Context) const;
/// Check if the branch @p BI with condition @p Condition is valid.
///
/// @param BB The block to check.
/// @param BI The branch to check.
/// @param Condition The branch condition.
/// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
/// @param Context The context of scop detection.
///
/// @return True if the branch @p BI is valid.
bool isValidBranch(BasicBlock &BB, BranchInst *BI, Value *Condition,
bool IsLoopBranch, DetectionContext &Context) const;
/// Check if the SCEV @p S is affine in the current @p Context.
///
/// This will also use a heuristic to decide if we want to require loads to be
/// invariant to make the expression affine or if we want to treat is as
/// non-affine.
///
/// @param S The expression to be checked.
/// @param Scope The loop nest in which @p S is used.
/// @param Context The context of scop detection.
bool isAffine(const SCEV *S, Loop *Scope, DetectionContext &Context) const;
/// Check if the control flow in a basic block is valid.
///
/// This function checks if a certain basic block is terminated by a
/// Terminator instruction we can handle or, if this is not the case,
/// registers this basic block as the start of a non-affine region.
///
/// This function optionally allows unreachable statements.
///
/// @param BB The BB to check the control flow.
/// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
// @param AllowUnreachable Allow unreachable statements.
/// @param Context The context of scop detection.
///
/// @return True if the BB contains only valid control flow.
bool isValidCFG(BasicBlock &BB, bool IsLoopBranch, bool AllowUnreachable,
DetectionContext &Context) const;
/// Is a loop valid with respect to a given region.
///
/// @param L The loop to check.
/// @param Context The context of scop detection.
///
/// @return True if the loop is valid in the region.
bool isValidLoop(Loop *L, DetectionContext &Context) const;
/// Count the number of loops and the maximal loop depth in @p L.
///
/// @param L The loop to check.
/// @param SE The scalar evolution analysis.
/// @param MinProfitableTrips The minimum number of trip counts from which
/// a loop is assumed to be profitable and
/// consequently is counted.
/// returns A tuple of number of loops and their maximal depth.
static ScopDetection::LoopStats
countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
unsigned MinProfitableTrips);
/// Check if the function @p F is marked as invalid.
///
/// @note An OpenMP subfunction will be marked as invalid.
bool isValidFunction(llvm::Function &F);
/// Can ISL compute the trip count of a loop.
///
/// @param L The loop to check.
/// @param Context The context of scop detection.
///
/// @return True if ISL can compute the trip count of the loop.
bool canUseISLTripCount(Loop *L, DetectionContext &Context) const;
/// Print the locations of all detected scops.
void printLocations(llvm::Function &F);
/// Check if a region is reducible or not.
///
/// @param Region The region to check.
/// @param DbgLoc Parameter to save the location of instruction that
/// causes irregular control flow if the region is irreducible.
///
/// @return True if R is reducible, false otherwise.
bool isReducibleRegion(Region &R, DebugLoc &DbgLoc) const;
/// Track diagnostics for invalid scops.
///
/// @param Context The context of scop detection.
/// @param Assert Throw an assert in verify mode or not.
/// @param Args Argument list that gets passed to the constructor of RR.
template <class RR, typename... Args>
inline bool invalid(DetectionContext &Context, bool Assert,
Args &&... Arguments) const;
public:
ScopDetection(Function &F, const DominatorTree &DT, ScalarEvolution &SE,
LoopInfo &LI, RegionInfo &RI, AliasAnalysis &AA,
OptimizationRemarkEmitter &ORE);
/// Get the RegionInfo stored in this pass.
///
/// This was added to give the DOT printer easy access to this information.
RegionInfo *getRI() const { return &RI; }
/// Get the LoopInfo stored in this pass.
LoopInfo *getLI() const { return &LI; }
/// Is the region is the maximum region of a Scop?
///
/// @param R The Region to test if it is maximum.
/// @param Verify Rerun the scop detection to verify SCoP was not invalidated
/// meanwhile.
///
/// @return Return true if R is the maximum Region in a Scop, false otherwise.
bool isMaxRegionInScop(const Region &R, bool Verify = true) const;
/// Return the detection context for @p R, nullptr if @p R was invalid.
DetectionContext *getDetectionContext(const Region *R) const;
/// Return the set of rejection causes for @p R.
const RejectLog *lookupRejectionLog(const Region *R) const;
/// Return true if @p SubR is a non-affine subregion in @p ScopR.
bool isNonAffineSubRegion(const Region *SubR, const Region *ScopR) const;
/// Get a message why a region is invalid
///
/// @param R The region for which we get the error message
///
/// @return The error or "" if no error appeared.
std::string regionIsInvalidBecause(const Region *R) const;
/// @name Maximum Region In Scops Iterators
///
/// These iterators iterator over all maximum region in Scops of this
/// function.
//@{
typedef RegionSet::iterator iterator;
typedef RegionSet::const_iterator const_iterator;
iterator begin() { return ValidRegions.begin(); }
iterator end() { return ValidRegions.end(); }
const_iterator begin() const { return ValidRegions.begin(); }
const_iterator end() const { return ValidRegions.end(); }
//@}
/// Emit rejection remarks for all rejected regions.
///
/// @param F The function to emit remarks for.
void emitMissedRemarks(const Function &F);
/// Mark the function as invalid so we will not extract any scop from
/// the function.
///
/// @param F The function to mark as invalid.
static void markFunctionAsInvalid(Function *F);
/// Verify if all valid Regions in this Function are still valid
/// after some transformations.
void verifyAnalysis() const;
/// Verify if R is still a valid part of Scop after some transformations.
///
/// @param R The Region to verify.
void verifyRegion(const Region &R) const;
/// Count the number of loops and the maximal loop depth in @p R.
///
/// @param R The region to check
/// @param SE The scalar evolution analysis.
/// @param MinProfitableTrips The minimum number of trip counts from which
/// a loop is assumed to be profitable and
/// consequently is counted.
/// returns A tuple of number of loops and their maximal depth.
static ScopDetection::LoopStats
countBeneficialLoops(Region *R, ScalarEvolution &SE, LoopInfo &LI,
unsigned MinProfitableTrips);
/// OptimizationRemarkEmitter object used to emit diagnostic remarks
OptimizationRemarkEmitter &ORE;
};
struct ScopAnalysis : public AnalysisInfoMixin<ScopAnalysis> {
static AnalysisKey Key;
using Result = ScopDetection;
Result run(Function &F, FunctionAnalysisManager &FAM);
};
struct ScopAnalysisPrinterPass : public PassInfoMixin<ScopAnalysisPrinterPass> {
ScopAnalysisPrinterPass(raw_ostream &O) : Stream(O) {}
PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
raw_ostream &Stream;
};
struct ScopDetectionWrapperPass : public FunctionPass {
static char ID;
std::unique_ptr<ScopDetection> Result;
ScopDetectionWrapperPass();
/// @name FunctionPass interface
//@{
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory();
virtual bool runOnFunction(Function &F);
virtual void print(raw_ostream &OS, const Module *) const;
//@}
ScopDetection &getSD() { return *Result; }
const ScopDetection &getSD() const { return *Result; }
};
} // end namespace polly
namespace llvm {
class PassRegistry;
void initializeScopDetectionWrapperPassPass(llvm::PassRegistry &);
} // namespace llvm
#endif
|