This file is indexed.

/usr/lib/llvm-6.0/include/polly/ScopBuilder.h is in libclang-common-6.0-dev 1:6.0-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
//===- polly/ScopBuilder.h --------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the SCoP
// detection derived from their LLVM-IR code.
//
//===----------------------------------------------------------------------===//

#ifndef POLLY_SCOPBUILDER_H
#define POLLY_SCOPBUILDER_H

#include "polly/ScopInfo.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include <algorithm>
#include <memory>
#include <utility>

namespace llvm {

class AssumptionCache;
class BasicBlock;
class DataLayout;
class DominatorTree;
class Instruction;
class LoopInfo;
class PassRegistry;
class PHINode;
class Region;
class ScalarEvolution;
class SCEV;
class Type;
class Value;

void initializeScopInfoRegionPassPass(PassRegistry &);
void initializeScopInfoWrapperPassPass(PassRegistry &);

} // end namespace llvm

namespace polly {

class ScopDetection;

/// Command line switch whether to model read-only accesses.
extern bool ModelReadOnlyScalars;

/// Build the Polly IR (Scop and ScopStmt) on a Region.
class ScopBuilder {
  /// The AliasAnalysis to build AliasSetTracker.
  AliasAnalysis &AA;

  /// Target data for element size computing.
  const DataLayout &DL;

  /// DominatorTree to reason about guaranteed execution.
  DominatorTree &DT;

  /// LoopInfo for information about loops.
  LoopInfo &LI;

  /// Valid Regions for Scop
  ScopDetection &SD;

  /// The ScalarEvolution to help building Scop.
  ScalarEvolution &SE;

  /// Set of instructions that might read any memory location.
  SmallVector<std::pair<ScopStmt *, Instruction *>, 16> GlobalReads;

  /// Set of all accessed array base pointers.
  SmallSetVector<Value *, 16> ArrayBasePointers;

  // The Scop
  std::unique_ptr<Scop> scop;

  // Methods for pattern matching against Fortran code generated by dragonegg.
  // @{

  /// Try to match for the descriptor of a Fortran array whose allocation
  /// is not visible. That is, we can see the load/store into the memory, but
  /// we don't actually know where the memory is allocated. If ALLOCATE had been
  /// called on the Fortran array, then we will see the lowered malloc() call.
  /// If not, this is dubbed as an "invisible allocation".
  ///
  /// "<descriptor>" is the descriptor of the Fortran array.
  ///
  /// Pattern match for "@descriptor":
  ///  1. %mem = load double*, double** bitcast (%"struct.array1_real(kind=8)"*
  ///    <descriptor> to double**), align 32
  ///
  ///  2. [%slot = getelementptr inbounds i8, i8* %mem, i64 <index>]
  ///  2 is optional because if you are writing to the 0th index, you don't
  ///     need a GEP.
  ///
  ///  3.1 store/load <memtype> <val>, <memtype>* %slot
  ///  3.2 store/load <memtype> <val>, <memtype>* %mem
  ///
  /// @see polly::MemoryAccess, polly::ScopArrayInfo
  ///
  /// @note assumes -polly-canonicalize has been run.
  ///
  /// @param Inst The LoadInst/StoreInst that accesses the memory.
  ///
  /// @returns Reference to <descriptor> on success, nullptr on failure.
  Value *findFADAllocationInvisible(MemAccInst Inst);

  /// Try to match for the descriptor of a Fortran array whose allocation
  /// call is visible. When we have a Fortran array, we try to look for a
  /// Fortran array where we can see the lowered ALLOCATE call. ALLOCATE
  /// is materialized as a malloc(...) which we pattern match for.
  ///
  /// Pattern match for "%untypedmem":
  ///  1. %untypedmem = i8* @malloc(...)
  ///
  ///  2. %typedmem = bitcast i8* %untypedmem to <memtype>
  ///
  ///  3. [%slot = getelementptr inbounds i8, i8* %typedmem, i64 <index>]
  ///  3 is optional because if you are writing to the 0th index, you don't
  ///     need a GEP.
  ///
  ///  4.1 store/load <memtype> <val>, <memtype>* %slot, align 8
  ///  4.2 store/load <memtype> <val>, <memtype>* %mem, align 8
  ///
  /// @see polly::MemoryAccess, polly::ScopArrayInfo
  ///
  /// @note assumes -polly-canonicalize has been run.
  ///
  /// @param Inst The LoadInst/StoreInst that accesses the memory.
  ///
  /// @returns Reference to %untypedmem on success, nullptr on failure.
  Value *findFADAllocationVisible(MemAccInst Inst);

  // @}

  // Build the SCoP for Region @p R.
  void buildScop(Region &R, AssumptionCache &AC,
                 OptimizationRemarkEmitter &ORE);

  /// Try to build a multi-dimensional fixed sized MemoryAccess from the
  /// Load/Store instruction.
  ///
  /// @param Inst       The Load/Store instruction that access the memory
  /// @param Stmt       The parent statement of the instruction
  ///
  /// @returns True if the access could be built, False otherwise.
  bool buildAccessMultiDimFixed(MemAccInst Inst, ScopStmt *Stmt);

  /// Try to build a multi-dimensional parametric sized MemoryAccess.
  ///        from the Load/Store instruction.
  ///
  /// @param Inst       The Load/Store instruction that access the memory
  /// @param Stmt       The parent statement of the instruction
  ///
  /// @returns True if the access could be built, False otherwise.
  bool buildAccessMultiDimParam(MemAccInst Inst, ScopStmt *Stmt);

  /// Try to build a MemoryAccess for a memory intrinsic.
  ///
  /// @param Inst       The instruction that access the memory
  /// @param Stmt       The parent statement of the instruction
  ///
  /// @returns True if the access could be built, False otherwise.
  bool buildAccessMemIntrinsic(MemAccInst Inst, ScopStmt *Stmt);

  /// Try to build a MemoryAccess for a call instruction.
  ///
  /// @param Inst       The call instruction that access the memory
  /// @param Stmt       The parent statement of the instruction
  ///
  /// @returns True if the access could be built, False otherwise.
  bool buildAccessCallInst(MemAccInst Inst, ScopStmt *Stmt);

  /// Build a single-dimensional parametric sized MemoryAccess
  ///        from the Load/Store instruction.
  ///
  /// @param Inst       The Load/Store instruction that access the memory
  /// @param Stmt       The parent statement of the instruction
  void buildAccessSingleDim(MemAccInst Inst, ScopStmt *Stmt);

  /// Build an instance of MemoryAccess from the Load/Store instruction.
  ///
  /// @param Inst       The Load/Store instruction that access the memory
  /// @param Stmt       The parent statement of the instruction
  void buildMemoryAccess(MemAccInst Inst, ScopStmt *Stmt);

  /// Analyze and extract the cross-BB scalar dependences (or, dataflow
  /// dependencies) of an instruction.
  ///
  /// @param UserStmt The statement @p Inst resides in.
  /// @param Inst     The instruction to be analyzed.
  void buildScalarDependences(ScopStmt *UserStmt, Instruction *Inst);

  /// Build the escaping dependences for @p Inst.
  ///
  /// Search for uses of the llvm::Value defined by @p Inst that are not
  /// within the SCoP. If there is such use, add a SCALAR WRITE such that
  /// it is available after the SCoP as escaping value.
  ///
  /// @param Inst The instruction to be analyzed.
  void buildEscapingDependences(Instruction *Inst);

  /// Create MemoryAccesses for the given PHI node in the given region.
  ///
  /// @param PHIStmt            The statement @p PHI resides in.
  /// @param PHI                The PHI node to be handled
  /// @param NonAffineSubRegion The non affine sub-region @p PHI is in.
  /// @param IsExitBlock        Flag to indicate that @p PHI is in the exit BB.
  void buildPHIAccesses(ScopStmt *PHIStmt, PHINode *PHI,
                        Region *NonAffineSubRegion, bool IsExitBlock = false);

  /// Build the access functions for the subregion @p SR.
  void buildAccessFunctions();

  /// Should an instruction be modeled in a ScopStmt.
  ///
  /// @param Inst The instruction to check.
  /// @param L    The loop in which context the instruction is looked at.
  ///
  /// @returns True if the instruction should be modeled.
  bool shouldModelInst(Instruction *Inst, Loop *L);

  /// Create one or more ScopStmts for @p BB.
  ///
  /// Consecutive instructions are associated to the same statement until a
  /// separator is found.
  void buildSequentialBlockStmts(BasicBlock *BB, bool SplitOnStore = false);

  /// Create one or more ScopStmts for @p BB using equivalence classes.
  ///
  /// Instructions of a basic block that belong to the same equivalence class
  /// are added to the same statement.
  void buildEqivClassBlockStmts(BasicBlock *BB);

  /// Create ScopStmt for all BBs and non-affine subregions of @p SR.
  ///
  /// @param SR A subregion of @p R.
  ///
  /// Some of the statements might be optimized away later when they do not
  /// access any memory and thus have no effect.
  void buildStmts(Region &SR);

  /// Build the access functions for the statement @p Stmt in or represented by
  /// @p BB.
  ///
  /// @param Stmt               Statement to add MemoryAccesses to.
  /// @param BB                 A basic block in @p R.
  /// @param NonAffineSubRegion The non affine sub-region @p BB is in.
  void buildAccessFunctions(ScopStmt *Stmt, BasicBlock &BB,
                            Region *NonAffineSubRegion = nullptr);

  /// Create a new MemoryAccess object and add it to #AccFuncMap.
  ///
  /// @param Stmt        The statement where the access takes place.
  /// @param Inst        The instruction doing the access. It is not necessarily
  ///                    inside @p BB.
  /// @param AccType     The kind of access.
  /// @param BaseAddress The accessed array's base address.
  /// @param ElemType    The type of the accessed array elements.
  /// @param Affine      Whether all subscripts are affine expressions.
  /// @param AccessValue Value read or written.
  /// @param Subscripts  Access subscripts per dimension.
  /// @param Sizes       The array dimension's sizes.
  /// @param Kind        The kind of memory accessed.
  ///
  /// @return The created MemoryAccess, or nullptr if the access is not within
  ///         the SCoP.
  MemoryAccess *addMemoryAccess(ScopStmt *Stmt, Instruction *Inst,
                                MemoryAccess::AccessType AccType,
                                Value *BaseAddress, Type *ElemType, bool Affine,
                                Value *AccessValue,
                                ArrayRef<const SCEV *> Subscripts,
                                ArrayRef<const SCEV *> Sizes, MemoryKind Kind);

  /// Create a MemoryAccess that represents either a LoadInst or
  /// StoreInst.
  ///
  /// @param Stmt        The statement to add the MemoryAccess to.
  /// @param MemAccInst  The LoadInst or StoreInst.
  /// @param AccType     The kind of access.
  /// @param BaseAddress The accessed array's base address.
  /// @param ElemType    The type of the accessed array elements.
  /// @param IsAffine    Whether all subscripts are affine expressions.
  /// @param Subscripts  Access subscripts per dimension.
  /// @param Sizes       The array dimension's sizes.
  /// @param AccessValue Value read or written.
  ///
  /// @see MemoryKind
  void addArrayAccess(ScopStmt *Stmt, MemAccInst MemAccInst,
                      MemoryAccess::AccessType AccType, Value *BaseAddress,
                      Type *ElemType, bool IsAffine,
                      ArrayRef<const SCEV *> Subscripts,
                      ArrayRef<const SCEV *> Sizes, Value *AccessValue);

  /// Create a MemoryAccess for writing an llvm::Instruction.
  ///
  /// The access will be created at the position of @p Inst.
  ///
  /// @param Inst The instruction to be written.
  ///
  /// @see ensureValueRead()
  /// @see MemoryKind
  void ensureValueWrite(Instruction *Inst);

  /// Ensure an llvm::Value is available in the BB's statement, creating a
  /// MemoryAccess for reloading it if necessary.
  ///
  /// @param V        The value expected to be loaded.
  /// @param UserStmt Where to reload the value.
  ///
  /// @see ensureValueStore()
  /// @see MemoryKind
  void ensureValueRead(Value *V, ScopStmt *UserStmt);

  /// Create a write MemoryAccess for the incoming block of a phi node.
  ///
  /// Each of the incoming blocks write their incoming value to be picked in the
  /// phi's block.
  ///
  /// @param PHI           PHINode under consideration.
  /// @param IncomingStmt  The statement to add the MemoryAccess to.
  /// @param IncomingBlock Some predecessor block.
  /// @param IncomingValue @p PHI's value when coming from @p IncomingBlock.
  /// @param IsExitBlock   When true, uses the .s2a alloca instead of the
  ///                      .phiops one. Required for values escaping through a
  ///                      PHINode in the SCoP region's exit block.
  /// @see addPHIReadAccess()
  /// @see MemoryKind
  void ensurePHIWrite(PHINode *PHI, ScopStmt *IncomintStmt,
                      BasicBlock *IncomingBlock, Value *IncomingValue,
                      bool IsExitBlock);

  /// Create a MemoryAccess for reading the value of a phi.
  ///
  /// The modeling assumes that all incoming blocks write their incoming value
  /// to the same location. Thus, this access will read the incoming block's
  /// value as instructed by this @p PHI.
  ///
  /// @param PHIStmt Statement @p PHI resides in.
  /// @param PHI     PHINode under consideration; the READ access will be added
  ///                here.
  ///
  /// @see ensurePHIWrite()
  /// @see MemoryKind
  void addPHIReadAccess(ScopStmt *PHIStmt, PHINode *PHI);

  /// Build the domain of @p Stmt.
  void buildDomain(ScopStmt &Stmt);

  /// Fill NestLoops with loops surrounding @p Stmt.
  void collectSurroundingLoops(ScopStmt &Stmt);

  /// Check for reductions in @p Stmt.
  ///
  /// Iterate over all store memory accesses and check for valid binary
  /// reduction like chains. For all candidates we check if they have the same
  /// base address and there are no other accesses which overlap with them. The
  /// base address check rules out impossible reductions candidates early. The
  /// overlap check, together with the "only one user" check in
  /// collectCandidateReductionLoads, guarantees that none of the intermediate
  /// results will escape during execution of the loop nest. We basically check
  /// here that no other memory access can access the same memory as the
  /// potential reduction.
  void checkForReductions(ScopStmt &Stmt);

  /// Collect loads which might form a reduction chain with @p StoreMA.
  ///
  /// Check if the stored value for @p StoreMA is a binary operator with one or
  /// two loads as operands. If the binary operand is commutative & associative,
  /// used only once (by @p StoreMA) and its load operands are also used only
  /// once, we have found a possible reduction chain. It starts at an operand
  /// load and includes the binary operator and @p StoreMA.
  ///
  /// Note: We allow only one use to ensure the load and binary operator cannot
  ///       escape this block or into any other store except @p StoreMA.
  void collectCandidateReductionLoads(MemoryAccess *StoreMA,
                                      SmallVectorImpl<MemoryAccess *> &Loads);

  /// Build the access relation of all memory accesses of @p Stmt.
  void buildAccessRelations(ScopStmt &Stmt);

public:
  explicit ScopBuilder(Region *R, AssumptionCache &AC, AliasAnalysis &AA,
                       const DataLayout &DL, DominatorTree &DT, LoopInfo &LI,
                       ScopDetection &SD, ScalarEvolution &SE,
                       OptimizationRemarkEmitter &ORE);
  ScopBuilder(const ScopBuilder &) = delete;
  ScopBuilder &operator=(const ScopBuilder &) = delete;
  ~ScopBuilder() = default;

  /// Try to build the Polly IR of static control part on the current
  /// SESE-Region.
  ///
  /// @return Give up the ownership of the scop object or static control part
  ///         for the region
  std::unique_ptr<Scop> getScop() { return std::move(scop); }
};

} // end namespace polly

#endif // POLLY_SCOPBUILDER_H