/usr/lib/llvm-6.0/include/polly/ScopBuilder.h is in libclang-common-6.0-dev 1:6.0-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 | //===- polly/ScopBuilder.h --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the SCoP
// detection derived from their LLVM-IR code.
//
//===----------------------------------------------------------------------===//
#ifndef POLLY_SCOPBUILDER_H
#define POLLY_SCOPBUILDER_H
#include "polly/ScopInfo.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include <algorithm>
#include <memory>
#include <utility>
namespace llvm {
class AssumptionCache;
class BasicBlock;
class DataLayout;
class DominatorTree;
class Instruction;
class LoopInfo;
class PassRegistry;
class PHINode;
class Region;
class ScalarEvolution;
class SCEV;
class Type;
class Value;
void initializeScopInfoRegionPassPass(PassRegistry &);
void initializeScopInfoWrapperPassPass(PassRegistry &);
} // end namespace llvm
namespace polly {
class ScopDetection;
/// Command line switch whether to model read-only accesses.
extern bool ModelReadOnlyScalars;
/// Build the Polly IR (Scop and ScopStmt) on a Region.
class ScopBuilder {
/// The AliasAnalysis to build AliasSetTracker.
AliasAnalysis &AA;
/// Target data for element size computing.
const DataLayout &DL;
/// DominatorTree to reason about guaranteed execution.
DominatorTree &DT;
/// LoopInfo for information about loops.
LoopInfo &LI;
/// Valid Regions for Scop
ScopDetection &SD;
/// The ScalarEvolution to help building Scop.
ScalarEvolution &SE;
/// Set of instructions that might read any memory location.
SmallVector<std::pair<ScopStmt *, Instruction *>, 16> GlobalReads;
/// Set of all accessed array base pointers.
SmallSetVector<Value *, 16> ArrayBasePointers;
// The Scop
std::unique_ptr<Scop> scop;
// Methods for pattern matching against Fortran code generated by dragonegg.
// @{
/// Try to match for the descriptor of a Fortran array whose allocation
/// is not visible. That is, we can see the load/store into the memory, but
/// we don't actually know where the memory is allocated. If ALLOCATE had been
/// called on the Fortran array, then we will see the lowered malloc() call.
/// If not, this is dubbed as an "invisible allocation".
///
/// "<descriptor>" is the descriptor of the Fortran array.
///
/// Pattern match for "@descriptor":
/// 1. %mem = load double*, double** bitcast (%"struct.array1_real(kind=8)"*
/// <descriptor> to double**), align 32
///
/// 2. [%slot = getelementptr inbounds i8, i8* %mem, i64 <index>]
/// 2 is optional because if you are writing to the 0th index, you don't
/// need a GEP.
///
/// 3.1 store/load <memtype> <val>, <memtype>* %slot
/// 3.2 store/load <memtype> <val>, <memtype>* %mem
///
/// @see polly::MemoryAccess, polly::ScopArrayInfo
///
/// @note assumes -polly-canonicalize has been run.
///
/// @param Inst The LoadInst/StoreInst that accesses the memory.
///
/// @returns Reference to <descriptor> on success, nullptr on failure.
Value *findFADAllocationInvisible(MemAccInst Inst);
/// Try to match for the descriptor of a Fortran array whose allocation
/// call is visible. When we have a Fortran array, we try to look for a
/// Fortran array where we can see the lowered ALLOCATE call. ALLOCATE
/// is materialized as a malloc(...) which we pattern match for.
///
/// Pattern match for "%untypedmem":
/// 1. %untypedmem = i8* @malloc(...)
///
/// 2. %typedmem = bitcast i8* %untypedmem to <memtype>
///
/// 3. [%slot = getelementptr inbounds i8, i8* %typedmem, i64 <index>]
/// 3 is optional because if you are writing to the 0th index, you don't
/// need a GEP.
///
/// 4.1 store/load <memtype> <val>, <memtype>* %slot, align 8
/// 4.2 store/load <memtype> <val>, <memtype>* %mem, align 8
///
/// @see polly::MemoryAccess, polly::ScopArrayInfo
///
/// @note assumes -polly-canonicalize has been run.
///
/// @param Inst The LoadInst/StoreInst that accesses the memory.
///
/// @returns Reference to %untypedmem on success, nullptr on failure.
Value *findFADAllocationVisible(MemAccInst Inst);
// @}
// Build the SCoP for Region @p R.
void buildScop(Region &R, AssumptionCache &AC,
OptimizationRemarkEmitter &ORE);
/// Try to build a multi-dimensional fixed sized MemoryAccess from the
/// Load/Store instruction.
///
/// @param Inst The Load/Store instruction that access the memory
/// @param Stmt The parent statement of the instruction
///
/// @returns True if the access could be built, False otherwise.
bool buildAccessMultiDimFixed(MemAccInst Inst, ScopStmt *Stmt);
/// Try to build a multi-dimensional parametric sized MemoryAccess.
/// from the Load/Store instruction.
///
/// @param Inst The Load/Store instruction that access the memory
/// @param Stmt The parent statement of the instruction
///
/// @returns True if the access could be built, False otherwise.
bool buildAccessMultiDimParam(MemAccInst Inst, ScopStmt *Stmt);
/// Try to build a MemoryAccess for a memory intrinsic.
///
/// @param Inst The instruction that access the memory
/// @param Stmt The parent statement of the instruction
///
/// @returns True if the access could be built, False otherwise.
bool buildAccessMemIntrinsic(MemAccInst Inst, ScopStmt *Stmt);
/// Try to build a MemoryAccess for a call instruction.
///
/// @param Inst The call instruction that access the memory
/// @param Stmt The parent statement of the instruction
///
/// @returns True if the access could be built, False otherwise.
bool buildAccessCallInst(MemAccInst Inst, ScopStmt *Stmt);
/// Build a single-dimensional parametric sized MemoryAccess
/// from the Load/Store instruction.
///
/// @param Inst The Load/Store instruction that access the memory
/// @param Stmt The parent statement of the instruction
void buildAccessSingleDim(MemAccInst Inst, ScopStmt *Stmt);
/// Build an instance of MemoryAccess from the Load/Store instruction.
///
/// @param Inst The Load/Store instruction that access the memory
/// @param Stmt The parent statement of the instruction
void buildMemoryAccess(MemAccInst Inst, ScopStmt *Stmt);
/// Analyze and extract the cross-BB scalar dependences (or, dataflow
/// dependencies) of an instruction.
///
/// @param UserStmt The statement @p Inst resides in.
/// @param Inst The instruction to be analyzed.
void buildScalarDependences(ScopStmt *UserStmt, Instruction *Inst);
/// Build the escaping dependences for @p Inst.
///
/// Search for uses of the llvm::Value defined by @p Inst that are not
/// within the SCoP. If there is such use, add a SCALAR WRITE such that
/// it is available after the SCoP as escaping value.
///
/// @param Inst The instruction to be analyzed.
void buildEscapingDependences(Instruction *Inst);
/// Create MemoryAccesses for the given PHI node in the given region.
///
/// @param PHIStmt The statement @p PHI resides in.
/// @param PHI The PHI node to be handled
/// @param NonAffineSubRegion The non affine sub-region @p PHI is in.
/// @param IsExitBlock Flag to indicate that @p PHI is in the exit BB.
void buildPHIAccesses(ScopStmt *PHIStmt, PHINode *PHI,
Region *NonAffineSubRegion, bool IsExitBlock = false);
/// Build the access functions for the subregion @p SR.
void buildAccessFunctions();
/// Should an instruction be modeled in a ScopStmt.
///
/// @param Inst The instruction to check.
/// @param L The loop in which context the instruction is looked at.
///
/// @returns True if the instruction should be modeled.
bool shouldModelInst(Instruction *Inst, Loop *L);
/// Create one or more ScopStmts for @p BB.
///
/// Consecutive instructions are associated to the same statement until a
/// separator is found.
void buildSequentialBlockStmts(BasicBlock *BB, bool SplitOnStore = false);
/// Create one or more ScopStmts for @p BB using equivalence classes.
///
/// Instructions of a basic block that belong to the same equivalence class
/// are added to the same statement.
void buildEqivClassBlockStmts(BasicBlock *BB);
/// Create ScopStmt for all BBs and non-affine subregions of @p SR.
///
/// @param SR A subregion of @p R.
///
/// Some of the statements might be optimized away later when they do not
/// access any memory and thus have no effect.
void buildStmts(Region &SR);
/// Build the access functions for the statement @p Stmt in or represented by
/// @p BB.
///
/// @param Stmt Statement to add MemoryAccesses to.
/// @param BB A basic block in @p R.
/// @param NonAffineSubRegion The non affine sub-region @p BB is in.
void buildAccessFunctions(ScopStmt *Stmt, BasicBlock &BB,
Region *NonAffineSubRegion = nullptr);
/// Create a new MemoryAccess object and add it to #AccFuncMap.
///
/// @param Stmt The statement where the access takes place.
/// @param Inst The instruction doing the access. It is not necessarily
/// inside @p BB.
/// @param AccType The kind of access.
/// @param BaseAddress The accessed array's base address.
/// @param ElemType The type of the accessed array elements.
/// @param Affine Whether all subscripts are affine expressions.
/// @param AccessValue Value read or written.
/// @param Subscripts Access subscripts per dimension.
/// @param Sizes The array dimension's sizes.
/// @param Kind The kind of memory accessed.
///
/// @return The created MemoryAccess, or nullptr if the access is not within
/// the SCoP.
MemoryAccess *addMemoryAccess(ScopStmt *Stmt, Instruction *Inst,
MemoryAccess::AccessType AccType,
Value *BaseAddress, Type *ElemType, bool Affine,
Value *AccessValue,
ArrayRef<const SCEV *> Subscripts,
ArrayRef<const SCEV *> Sizes, MemoryKind Kind);
/// Create a MemoryAccess that represents either a LoadInst or
/// StoreInst.
///
/// @param Stmt The statement to add the MemoryAccess to.
/// @param MemAccInst The LoadInst or StoreInst.
/// @param AccType The kind of access.
/// @param BaseAddress The accessed array's base address.
/// @param ElemType The type of the accessed array elements.
/// @param IsAffine Whether all subscripts are affine expressions.
/// @param Subscripts Access subscripts per dimension.
/// @param Sizes The array dimension's sizes.
/// @param AccessValue Value read or written.
///
/// @see MemoryKind
void addArrayAccess(ScopStmt *Stmt, MemAccInst MemAccInst,
MemoryAccess::AccessType AccType, Value *BaseAddress,
Type *ElemType, bool IsAffine,
ArrayRef<const SCEV *> Subscripts,
ArrayRef<const SCEV *> Sizes, Value *AccessValue);
/// Create a MemoryAccess for writing an llvm::Instruction.
///
/// The access will be created at the position of @p Inst.
///
/// @param Inst The instruction to be written.
///
/// @see ensureValueRead()
/// @see MemoryKind
void ensureValueWrite(Instruction *Inst);
/// Ensure an llvm::Value is available in the BB's statement, creating a
/// MemoryAccess for reloading it if necessary.
///
/// @param V The value expected to be loaded.
/// @param UserStmt Where to reload the value.
///
/// @see ensureValueStore()
/// @see MemoryKind
void ensureValueRead(Value *V, ScopStmt *UserStmt);
/// Create a write MemoryAccess for the incoming block of a phi node.
///
/// Each of the incoming blocks write their incoming value to be picked in the
/// phi's block.
///
/// @param PHI PHINode under consideration.
/// @param IncomingStmt The statement to add the MemoryAccess to.
/// @param IncomingBlock Some predecessor block.
/// @param IncomingValue @p PHI's value when coming from @p IncomingBlock.
/// @param IsExitBlock When true, uses the .s2a alloca instead of the
/// .phiops one. Required for values escaping through a
/// PHINode in the SCoP region's exit block.
/// @see addPHIReadAccess()
/// @see MemoryKind
void ensurePHIWrite(PHINode *PHI, ScopStmt *IncomintStmt,
BasicBlock *IncomingBlock, Value *IncomingValue,
bool IsExitBlock);
/// Create a MemoryAccess for reading the value of a phi.
///
/// The modeling assumes that all incoming blocks write their incoming value
/// to the same location. Thus, this access will read the incoming block's
/// value as instructed by this @p PHI.
///
/// @param PHIStmt Statement @p PHI resides in.
/// @param PHI PHINode under consideration; the READ access will be added
/// here.
///
/// @see ensurePHIWrite()
/// @see MemoryKind
void addPHIReadAccess(ScopStmt *PHIStmt, PHINode *PHI);
/// Build the domain of @p Stmt.
void buildDomain(ScopStmt &Stmt);
/// Fill NestLoops with loops surrounding @p Stmt.
void collectSurroundingLoops(ScopStmt &Stmt);
/// Check for reductions in @p Stmt.
///
/// Iterate over all store memory accesses and check for valid binary
/// reduction like chains. For all candidates we check if they have the same
/// base address and there are no other accesses which overlap with them. The
/// base address check rules out impossible reductions candidates early. The
/// overlap check, together with the "only one user" check in
/// collectCandidateReductionLoads, guarantees that none of the intermediate
/// results will escape during execution of the loop nest. We basically check
/// here that no other memory access can access the same memory as the
/// potential reduction.
void checkForReductions(ScopStmt &Stmt);
/// Collect loads which might form a reduction chain with @p StoreMA.
///
/// Check if the stored value for @p StoreMA is a binary operator with one or
/// two loads as operands. If the binary operand is commutative & associative,
/// used only once (by @p StoreMA) and its load operands are also used only
/// once, we have found a possible reduction chain. It starts at an operand
/// load and includes the binary operator and @p StoreMA.
///
/// Note: We allow only one use to ensure the load and binary operator cannot
/// escape this block or into any other store except @p StoreMA.
void collectCandidateReductionLoads(MemoryAccess *StoreMA,
SmallVectorImpl<MemoryAccess *> &Loads);
/// Build the access relation of all memory accesses of @p Stmt.
void buildAccessRelations(ScopStmt &Stmt);
public:
explicit ScopBuilder(Region *R, AssumptionCache &AC, AliasAnalysis &AA,
const DataLayout &DL, DominatorTree &DT, LoopInfo &LI,
ScopDetection &SD, ScalarEvolution &SE,
OptimizationRemarkEmitter &ORE);
ScopBuilder(const ScopBuilder &) = delete;
ScopBuilder &operator=(const ScopBuilder &) = delete;
~ScopBuilder() = default;
/// Try to build the Polly IR of static control part on the current
/// SESE-Region.
///
/// @return Give up the ownership of the scop object or static control part
/// for the region
std::unique_ptr<Scop> getScop() { return std::move(scop); }
};
} // end namespace polly
#endif // POLLY_SCOPBUILDER_H
|