This file is indexed.

/usr/include/cln/univpoly.h is in libcln-dev 1.3.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
// Univariate Polynomials.

#ifndef _CL_UNIVPOLY_H
#define _CL_UNIVPOLY_H

#include "cln/object.h"
#include "cln/ring.h"
#include "cln/malloc.h"
#include "cln/proplist.h"
#include "cln/symbol.h"
#include "cln/V.h"
#include "cln/io.h"

namespace cln {

// To protect against mixing elements of different polynomial rings, every
// polynomial carries its ring in itself.

class cl_heap_univpoly_ring;

class cl_univpoly_ring : public cl_ring {
public:
	// Default constructor.
	cl_univpoly_ring ();
	// Constructor. Takes a cl_heap_univpoly_ring*, increments its refcount.
	cl_univpoly_ring (cl_heap_univpoly_ring* r);
	// Private constructor. Doesn't increment the refcount.
	cl_univpoly_ring (cl_private_thing);
	// Copy constructor.
	cl_univpoly_ring (const cl_univpoly_ring&);
	// Assignment operator.
	cl_univpoly_ring& operator= (const cl_univpoly_ring&);
	// Automatic dereferencing.
	cl_heap_univpoly_ring* operator-> () const
	{ return (cl_heap_univpoly_ring*)heappointer; }
};
// Copy constructor and assignment operator.
CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_ring,cl_ring)
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_ring,cl_univpoly_ring)

// Normal constructor for `cl_univpoly_ring'.
inline cl_univpoly_ring::cl_univpoly_ring (cl_heap_univpoly_ring* r)
	: cl_ring ((cl_private_thing) (cl_inc_pointer_refcount((cl_heap*)r), r)) {}
// Private constructor for `cl_univpoly_ring'.
inline cl_univpoly_ring::cl_univpoly_ring (cl_private_thing p)
	: cl_ring (p) {}

// Operations on univariate polynomial rings.

inline bool operator== (const cl_univpoly_ring& R1, const cl_univpoly_ring& R2)
{ return (R1.pointer == R2.pointer); }
inline bool operator!= (const cl_univpoly_ring& R1, const cl_univpoly_ring& R2)
{ return (R1.pointer != R2.pointer); }
inline bool operator== (const cl_univpoly_ring& R1, cl_heap_univpoly_ring* R2)
{ return (R1.pointer == R2); }
inline bool operator!= (const cl_univpoly_ring& R1, cl_heap_univpoly_ring* R2)
{ return (R1.pointer != R2); }

// Representation of a univariate polynomial.

class _cl_UP /* cf. _cl_ring_element */ {
public:
	cl_gcpointer rep; // vector of coefficients, a cl_V_any
	// Default constructor.
	_cl_UP ();
public: /* ugh */
	// Constructor.
	_cl_UP (const cl_heap_univpoly_ring* R, const cl_V_any& r) : rep (as_cl_private_thing(r)) { (void)R; }
	_cl_UP (const cl_univpoly_ring& R, const cl_V_any& r) : rep (as_cl_private_thing(r)) { (void)R; }
public:
	// Conversion.
	CL_DEFINE_CONVERTER(_cl_ring_element)
public:	// Ability to place an object at a given address.
	void* operator new (size_t size) { return malloc_hook(size); }
	void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
	void operator delete (void* ptr) { free_hook(ptr); }
};

class cl_UP /* cf. cl_ring_element */ : public _cl_UP {
protected:
	cl_univpoly_ring _ring;	// polynomial ring (references the base ring)
public:
	const cl_univpoly_ring& ring () const { return _ring; }
private:
	// Default constructor.
	cl_UP ();
public: /* ugh */
	// Constructor.
	cl_UP (const cl_univpoly_ring& R, const cl_V_any& r)
		: _cl_UP (R,r), _ring (R) {}
	cl_UP (const cl_univpoly_ring& R, const _cl_UP& r)
		: _cl_UP (r), _ring (R) {}
public:
	// Conversion.
	CL_DEFINE_CONVERTER(cl_ring_element)
	// Destructive modification.
	void set_coeff (uintL index, const cl_ring_element& y);
	void finalize();
	// Evaluation.
	const cl_ring_element operator() (const cl_ring_element& y) const;
	// Debugging output.
	void debug_print () const;
public:	// Ability to place an object at a given address.
	void* operator new (size_t size) { return malloc_hook(size); }
	void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
	void operator delete (void* ptr) { free_hook(ptr); }
};


// Ring operations.

struct _cl_univpoly_setops /* cf. _cl_ring_setops */ {
	// print
	void (* fprint) (cl_heap_univpoly_ring* R, std::ostream& stream, const _cl_UP& x);
	// equality
	// (Be careful: This is not well-defined for polynomials with
	// floating-point coefficients.)
	bool (* equal) (cl_heap_univpoly_ring* R, const _cl_UP& x, const _cl_UP& y);
};
struct _cl_univpoly_addops /* cf. _cl_ring_addops */ {
	// 0
	const _cl_UP (* zero) (cl_heap_univpoly_ring* R);
	bool (* zerop) (cl_heap_univpoly_ring* R, const _cl_UP& x);
	// x+y
	const _cl_UP (* plus) (cl_heap_univpoly_ring* R, const _cl_UP& x, const _cl_UP& y);
	// x-y
	const _cl_UP (* minus) (cl_heap_univpoly_ring* R, const _cl_UP& x, const _cl_UP& y);
	// -x
	const _cl_UP (* uminus) (cl_heap_univpoly_ring* R, const _cl_UP& x);
};
struct _cl_univpoly_mulops /* cf. _cl_ring_mulops */ {
	// 1
	const _cl_UP (* one) (cl_heap_univpoly_ring* R);
	// canonical homomorphism
	const _cl_UP (* canonhom) (cl_heap_univpoly_ring* R, const cl_I& x);
	// x*y
	const _cl_UP (* mul) (cl_heap_univpoly_ring* R, const _cl_UP& x, const _cl_UP& y);
	// x^2
	const _cl_UP (* square) (cl_heap_univpoly_ring* R, const _cl_UP& x);
	// x^y, y Integer >0
	const _cl_UP (* expt_pos) (cl_heap_univpoly_ring* R, const _cl_UP& x, const cl_I& y);
};
struct _cl_univpoly_modulops {
	// scalar multiplication x*y
	const _cl_UP (* scalmul) (cl_heap_univpoly_ring* R, const cl_ring_element& x, const _cl_UP& y);
};
struct _cl_univpoly_polyops {
	// degree
	sintL (* degree) (cl_heap_univpoly_ring* R, const _cl_UP& x);
	// low degree
	sintL (* ldegree) (cl_heap_univpoly_ring* R, const _cl_UP& x);
	// monomial
	const _cl_UP (* monomial) (cl_heap_univpoly_ring* R, const cl_ring_element& x, uintL e);
	// coefficient (0 if index>degree)
	const cl_ring_element (* coeff) (cl_heap_univpoly_ring* R, const _cl_UP& x, uintL index);
	// create new polynomial, bounded degree
	const _cl_UP (* create) (cl_heap_univpoly_ring* R, sintL deg);
	// set coefficient in new polynomial
	void (* set_coeff) (cl_heap_univpoly_ring* R, _cl_UP& x, uintL index, const cl_ring_element& y);
	// finalize polynomial
	void (* finalize) (cl_heap_univpoly_ring* R, _cl_UP& x);
	// evaluate, substitute an element of R
	const cl_ring_element (* eval) (cl_heap_univpoly_ring* R, const _cl_UP& x, const cl_ring_element& y);
};
  typedef const _cl_univpoly_setops  cl_univpoly_setops;
  typedef const _cl_univpoly_addops  cl_univpoly_addops;
  typedef const _cl_univpoly_mulops  cl_univpoly_mulops;
  typedef const _cl_univpoly_modulops  cl_univpoly_modulops;
  typedef const _cl_univpoly_polyops  cl_univpoly_polyops;

// Representation of a univariate polynomial ring.

class cl_heap_univpoly_ring /* cf. cl_heap_ring */ : public cl_heap {
	SUBCLASS_cl_heap_ring()
private:
	cl_property_list properties;
protected:
	cl_univpoly_setops* setops;
	cl_univpoly_addops* addops;
	cl_univpoly_mulops* mulops;
	cl_univpoly_modulops* modulops;
	cl_univpoly_polyops* polyops;
protected:
	cl_ring _basering;	// the coefficients are elements of this ring
public:
	const cl_ring& basering () const { return _basering; }
public:
	// Low-level operations.
	void _fprint (std::ostream& stream, const _cl_UP& x)
		{ setops->fprint(this,stream,x); }
	bool _equal (const _cl_UP& x, const _cl_UP& y)
		{ return setops->equal(this,x,y); }
	const _cl_UP _zero ()
		{ return addops->zero(this); }
	bool _zerop (const _cl_UP& x)
		{ return addops->zerop(this,x); }
	const _cl_UP _plus (const _cl_UP& x, const _cl_UP& y)
		{ return addops->plus(this,x,y); }
	const _cl_UP _minus (const _cl_UP& x, const _cl_UP& y)
		{ return addops->minus(this,x,y); }
	const _cl_UP _uminus (const _cl_UP& x)
		{ return addops->uminus(this,x); }
	const _cl_UP _one ()
		{ return mulops->one(this); }
	const _cl_UP _canonhom (const cl_I& x)
		{ return mulops->canonhom(this,x); }
	const _cl_UP _mul (const _cl_UP& x, const _cl_UP& y)
		{ return mulops->mul(this,x,y); }
	const _cl_UP _square (const _cl_UP& x)
		{ return mulops->square(this,x); }
	const _cl_UP _expt_pos (const _cl_UP& x, const cl_I& y)
		{ return mulops->expt_pos(this,x,y); }
	const _cl_UP _scalmul (const cl_ring_element& x, const _cl_UP& y)
		{ return modulops->scalmul(this,x,y); }
	sintL _degree (const _cl_UP& x)
		{ return polyops->degree(this,x); }
	sintL _ldegree (const _cl_UP& x)
		{ return polyops->ldegree(this,x); }
	const _cl_UP _monomial (const cl_ring_element& x, uintL e)
		{ return polyops->monomial(this,x,e); }
	const cl_ring_element _coeff (const _cl_UP& x, uintL index)
		{ return polyops->coeff(this,x,index); }
	const _cl_UP _create (sintL deg)
		{ return polyops->create(this,deg); }
	void _set_coeff (_cl_UP& x, uintL index, const cl_ring_element& y)
		{ polyops->set_coeff(this,x,index,y); }
	void _finalize (_cl_UP& x)
		{ polyops->finalize(this,x); }
	const cl_ring_element _eval (const _cl_UP& x, const cl_ring_element& y)
		{ return polyops->eval(this,x,y); }
	// High-level operations.
	void fprint (std::ostream& stream, const cl_UP& x)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		_fprint(stream,x);
	}
	bool equal (const cl_UP& x, const cl_UP& y)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		if (!(y.ring() == this)) throw runtime_exception();
		return _equal(x,y);
	}
	const cl_UP zero ()
	{
		return cl_UP(this,_zero());
	}
	bool zerop (const cl_UP& x)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		return _zerop(x);
	}
	const cl_UP plus (const cl_UP& x, const cl_UP& y)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		if (!(y.ring() == this)) throw runtime_exception();
		return cl_UP(this,_plus(x,y));
	}
	const cl_UP minus (const cl_UP& x, const cl_UP& y)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		if (!(y.ring() == this)) throw runtime_exception();
		return cl_UP(this,_minus(x,y));
	}
	const cl_UP uminus (const cl_UP& x)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		return cl_UP(this,_uminus(x));
	}
	const cl_UP one ()
	{
		return cl_UP(this,_one());
	}
	const cl_UP canonhom (const cl_I& x)
	{
		return cl_UP(this,_canonhom(x));
	}
	const cl_UP mul (const cl_UP& x, const cl_UP& y)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		if (!(y.ring() == this)) throw runtime_exception();
		return cl_UP(this,_mul(x,y));
	}
	const cl_UP square (const cl_UP& x)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		return cl_UP(this,_square(x));
	}
	const cl_UP expt_pos (const cl_UP& x, const cl_I& y)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		return cl_UP(this,_expt_pos(x,y));
	}
	const cl_UP scalmul (const cl_ring_element& x, const cl_UP& y)
	{
		if (!(y.ring() == this)) throw runtime_exception();
		return cl_UP(this,_scalmul(x,y));
	}
	sintL degree (const cl_UP& x)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		return _degree(x);
	}
	sintL ldegree (const cl_UP& x)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		return _ldegree(x);
	}
	const cl_UP monomial (const cl_ring_element& x, uintL e)
	{
		return cl_UP(this,_monomial(x,e));
	}
	const cl_ring_element coeff (const cl_UP& x, uintL index)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		return _coeff(x,index);
	}
	const cl_UP create (sintL deg)
	{
		return cl_UP(this,_create(deg));
	}
	void set_coeff (cl_UP& x, uintL index, const cl_ring_element& y)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		_set_coeff(x,index,y);
	}
	void finalize (cl_UP& x)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		_finalize(x);
	}
	const cl_ring_element eval (const cl_UP& x, const cl_ring_element& y)
	{
		if (!(x.ring() == this)) throw runtime_exception();
		return _eval(x,y);
	}
	// Property operations.
	cl_property* get_property (const cl_symbol& key)
		{ return properties.get_property(key); }
	void add_property (cl_property* new_property)
		{ properties.add_property(new_property); }
// Constructor.
	cl_heap_univpoly_ring (const cl_ring& r, cl_univpoly_setops*, cl_univpoly_addops*, cl_univpoly_mulops*, cl_univpoly_modulops*, cl_univpoly_polyops*);
	~cl_heap_univpoly_ring () {}
};
#define SUBCLASS_cl_heap_univpoly_ring() \
  SUBCLASS_cl_heap_ring()


// Lookup or create the "standard" univariate polynomial ring over a ring r.
extern const cl_univpoly_ring find_univpoly_ring (const cl_ring& r);

// Lookup or create a univariate polynomial ring with a named variable over r.
extern const cl_univpoly_ring find_univpoly_ring (const cl_ring& r, const cl_symbol& varname);

class cl_UP_init_helper
{
	static int count;
public:
	cl_UP_init_helper();
	~cl_UP_init_helper();
};
static cl_UP_init_helper cl_UP_init_helper_instance;


// Operations on polynomials.

// Output.
inline void fprint (std::ostream& stream, const cl_UP& x)
	{ x.ring()->fprint(stream,x); }
CL_DEFINE_PRINT_OPERATOR(cl_UP)

// Add.
inline const cl_UP operator+ (const cl_UP& x, const cl_UP& y)
	{ return x.ring()->plus(x,y); }

// Negate.
inline const cl_UP operator- (const cl_UP& x)
	{ return x.ring()->uminus(x); }

// Subtract.
inline const cl_UP operator- (const cl_UP& x, const cl_UP& y)
	{ return x.ring()->minus(x,y); }

// Equality.
inline bool operator== (const cl_UP& x, const cl_UP& y)
	{ return x.ring()->equal(x,y); }
inline bool operator!= (const cl_UP& x, const cl_UP& y)
	{ return !x.ring()->equal(x,y); }

// Compare against 0.
inline bool zerop (const cl_UP& x)
	{ return x.ring()->zerop(x); }

// Multiply.
inline const cl_UP operator* (const cl_UP& x, const cl_UP& y)
	{ return x.ring()->mul(x,y); }

// Squaring.
inline const cl_UP square (const cl_UP& x)
	{ return x.ring()->square(x); }

// Exponentiation x^y, where y > 0.
inline const cl_UP expt_pos (const cl_UP& x, const cl_I& y)
	{ return x.ring()->expt_pos(x,y); }

// Scalar multiplication.
#if 0 // less efficient
inline const cl_UP operator* (const cl_I& x, const cl_UP& y)
	{ return y.ring()->mul(y.ring()->canonhom(x),y); }
inline const cl_UP operator* (const cl_UP& x, const cl_I& y)
	{ return x.ring()->mul(x.ring()->canonhom(y),x); }
#endif
inline const cl_UP operator* (const cl_I& x, const cl_UP& y)
	{ return y.ring()->scalmul(y.ring()->basering()->canonhom(x),y); }
inline const cl_UP operator* (const cl_UP& x, const cl_I& y)
	{ return x.ring()->scalmul(x.ring()->basering()->canonhom(y),x); }
inline const cl_UP operator* (const cl_ring_element& x, const cl_UP& y)
	{ return y.ring()->scalmul(x,y); }
inline const cl_UP operator* (const cl_UP& x, const cl_ring_element& y)
	{ return x.ring()->scalmul(y,x); }

// Degree.
inline sintL degree (const cl_UP& x)
	{ return x.ring()->degree(x); }

// Low degree.
inline sintL ldegree (const cl_UP& x)
	{ return x.ring()->ldegree(x); }

// Coefficient.
inline const cl_ring_element coeff (const cl_UP& x, uintL index)
	{ return x.ring()->coeff(x,index); }

// Destructive modification.
inline void set_coeff (cl_UP& x, uintL index, const cl_ring_element& y)
	{ x.ring()->set_coeff(x,index,y); }
inline void finalize (cl_UP& x)
	{ x.ring()->finalize(x); }
inline void cl_UP::set_coeff (uintL index, const cl_ring_element& y)
	{ ring()->set_coeff(*this,index,y); }
inline void cl_UP::finalize ()
	{ ring()->finalize(*this); }

// Evaluation. (No extension of the base ring allowed here for now.)
inline const cl_ring_element cl_UP::operator() (const cl_ring_element& y) const
{
	return ring()->eval(*this,y);
}

// Derivative.
extern const cl_UP deriv (const cl_UP& x);


// Ring of uninitialized elements.
// Any operation results in a run-time error.

extern const cl_univpoly_ring cl_no_univpoly_ring;
extern cl_class cl_class_no_univpoly_ring;

class cl_UP_no_ring_init_helper
{
	static int count;
public:
	cl_UP_no_ring_init_helper();
	~cl_UP_no_ring_init_helper();
};
static cl_UP_no_ring_init_helper cl_UP_no_ring_init_helper_instance;

inline cl_univpoly_ring::cl_univpoly_ring ()
	: cl_ring (as_cl_private_thing(cl_no_univpoly_ring)) {}
inline _cl_UP::_cl_UP ()
	: rep ((cl_private_thing) cl_combine(cl_FN_tag,0)) {}
inline cl_UP::cl_UP ()
	: _cl_UP (), _ring () {}


// Debugging support.
#ifdef CL_DEBUG
extern int cl_UP_debug_module;
CL_FORCE_LINK(cl_UP_debug_dummy, cl_UP_debug_module)
#endif

}  // namespace cln

#endif /* _CL_UNIVPOLY_H */

namespace cln {

// Templates for univariate polynomials of complex/real/rational/integers.

#ifdef notyet
// Unfortunately, this is not usable now, because of gcc-2.7 bugs:
// - A template inline function is not inline in the first function that
//   uses it.
// - Argument matching bug: User-defined conversions are not tried (or
//   tried with too low priority) for template functions w.r.t. normal
//   functions. For example, a call expt_pos(cl_UP_specialized<cl_N>,int)
//   is compiled as expt_pos(const cl_UP&, const cl_I&) instead of
//   expt_pos(const cl_UP_specialized<cl_N>&, const cl_I&).
// It will, however, be usable when gcc-2.8 is released.

#if defined(_CL_UNIVPOLY_COMPLEX_H) || defined(_CL_UNIVPOLY_REAL_H) || defined(_CL_UNIVPOLY_RATIONAL_H) || defined(_CL_UNIVPOLY_INTEGER_H)
#ifndef _CL_UNIVPOLY_AUX_H

// Normal univariate polynomials with stricter static typing:
// `class T' instead of `cl_ring_element'.

template <class T> class cl_univpoly_specialized_ring;
template <class T> class cl_UP_specialized;
template <class T> class cl_heap_univpoly_specialized_ring;

template <class T>
class cl_univpoly_specialized_ring : public cl_univpoly_ring {
public:
	// Default constructor.
	cl_univpoly_specialized_ring () : cl_univpoly_ring () {}
	// Copy constructor.
	cl_univpoly_specialized_ring (const cl_univpoly_specialized_ring&);
	// Assignment operator.
	cl_univpoly_specialized_ring& operator= (const cl_univpoly_specialized_ring&);
	// Automatic dereferencing.
	cl_heap_univpoly_specialized_ring<T>* operator-> () const
	{ return (cl_heap_univpoly_specialized_ring<T>*)heappointer; }
};
// Copy constructor and assignment operator.
template <class T>
_CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_specialized_ring<T>,cl_univpoly_specialized_ring,cl_univpoly_ring)
template <class T>
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_specialized_ring<T>,cl_univpoly_specialized_ring<T>)

template <class T>
class cl_UP_specialized : public cl_UP {
public:
	const cl_univpoly_specialized_ring<T>& ring () const { return The(cl_univpoly_specialized_ring<T>)(_ring); }
	// Conversion.
	CL_DEFINE_CONVERTER(cl_ring_element)
	// Destructive modification.
	void set_coeff (uintL index, const T& y);
	void finalize();
	// Evaluation.
	const T operator() (const T& y) const;
public:	// Ability to place an object at a given address.
	void* operator new (size_t size) { return malloc_hook(size); }
	void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
	void operator delete (void* ptr) { free_hook(ptr); }
};

template <class T>
class cl_heap_univpoly_specialized_ring : public cl_heap_univpoly_ring {
	SUBCLASS_cl_heap_univpoly_ring()
	// High-level operations.
	void fprint (std::ostream& stream, const cl_UP_specialized<T>& x)
	{
		cl_heap_univpoly_ring::fprint(stream,x);
	}
	bool equal (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y)
	{
		return cl_heap_univpoly_ring::equal(x,y);
	}
	const cl_UP_specialized<T> zero ()
	{
		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::zero());
	}
	bool zerop (const cl_UP_specialized<T>& x)
	{
		return cl_heap_univpoly_ring::zerop(x);
	}
	const cl_UP_specialized<T> plus (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y)
	{
		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::plus(x,y));
	}
	const cl_UP_specialized<T> minus (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y)
	{
		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::minus(x,y));
	}
	const cl_UP_specialized<T> uminus (const cl_UP_specialized<T>& x)
	{
		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::uminus(x));
	}
	const cl_UP_specialized<T> one ()
	{
		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::one());
	}
	const cl_UP_specialized<T> canonhom (const cl_I& x)
	{
		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::canonhom(x));
	}
	const cl_UP_specialized<T> mul (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y)
	{
		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::mul(x,y));
	}
	const cl_UP_specialized<T> square (const cl_UP_specialized<T>& x)
	{
		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::square(x));
	}
	const cl_UP_specialized<T> expt_pos (const cl_UP_specialized<T>& x, const cl_I& y)
	{
		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::expt_pos(x,y));
	}
	const cl_UP_specialized<T> scalmul (const T& x, const cl_UP_specialized<T>& y)
	{
		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::scalmul(x,y));
	}
	sintL degree (const cl_UP_specialized<T>& x)
	{
		return cl_heap_univpoly_ring::degree(x);
	}
	sintL ldegree (const cl_UP_specialized<T>& x)
	{
		return cl_heap_univpoly_ring::ldegree(x);
	}
	const cl_UP_specialized<T> monomial (const T& x, uintL e)
	{
		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::monomial(cl_ring_element(cl_C_ring??,x),e));
	}
	const T coeff (const cl_UP_specialized<T>& x, uintL index)
	{
		return The(T)(cl_heap_univpoly_ring::coeff(x,index));
	}
	const cl_UP_specialized<T> create (sintL deg)
	{
		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::create(deg));
	}
	void set_coeff (cl_UP_specialized<T>& x, uintL index, const T& y)
	{
		cl_heap_univpoly_ring::set_coeff(x,index,cl_ring_element(cl_C_ring??,y));
	}
	void finalize (cl_UP_specialized<T>& x)
	{
		cl_heap_univpoly_ring::finalize(x);
	}
	const T eval (const cl_UP_specialized<T>& x, const T& y)
	{
		return The(T)(cl_heap_univpoly_ring::eval(x,cl_ring_element(cl_C_ring??,y)));
	}
private:
	// No need for any constructors.
	cl_heap_univpoly_specialized_ring ();
};

// Lookup of polynomial rings.
template <class T>
inline const cl_univpoly_specialized_ring<T> find_univpoly_ring (const cl_specialized_number_ring<T>& r)
{ return The(cl_univpoly_specialized_ring<T>) (find_univpoly_ring((const cl_ring&)r)); }
template <class T>
inline const cl_univpoly_specialized_ring<T> find_univpoly_ring (const cl_specialized_number_ring<T>& r, const cl_symbol& varname)
{ return The(cl_univpoly_specialized_ring<T>) (find_univpoly_ring((const cl_ring&)r,varname)); }

// Operations on polynomials.

// Add.
template <class T>
inline const cl_UP_specialized<T> operator+ (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y)
	{ return x.ring()->plus(x,y); }

// Negate.
template <class T>
inline const cl_UP_specialized<T> operator- (const cl_UP_specialized<T>& x)
	{ return x.ring()->uminus(x); }

// Subtract.
template <class T>
inline const cl_UP_specialized<T> operator- (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y)
	{ return x.ring()->minus(x,y); }

// Multiply.
template <class T>
inline const cl_UP_specialized<T> operator* (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y)
	{ return x.ring()->mul(x,y); }

// Squaring.
template <class T>
inline const cl_UP_specialized<T> square (const cl_UP_specialized<T>& x)
	{ return x.ring()->square(x); }

// Exponentiation x^y, where y > 0.
template <class T>
inline const cl_UP_specialized<T> expt_pos (const cl_UP_specialized<T>& x, const cl_I& y)
	{ return x.ring()->expt_pos(x,y); }

// Scalar multiplication.
// Need more discrimination on T ??
template <class T>
inline const cl_UP_specialized<T> operator* (const cl_I& x, const cl_UP_specialized<T>& y)
	{ return y.ring()->mul(y.ring()->canonhom(x),y); }
template <class T>
inline const cl_UP_specialized<T> operator* (const cl_UP_specialized<T>& x, const cl_I& y)
	{ return x.ring()->mul(x.ring()->canonhom(y),x); }
template <class T>
inline const cl_UP_specialized<T> operator* (const T& x, const cl_UP_specialized<T>& y)
	{ return y.ring()->scalmul(x,y); }
template <class T>
inline const cl_UP_specialized<T> operator* (const cl_UP_specialized<T>& x, const T& y)
	{ return x.ring()->scalmul(y,x); }

// Coefficient.
template <class T>
inline const T coeff (const cl_UP_specialized<T>& x, uintL index)
	{ return x.ring()->coeff(x,index); }

// Destructive modification.
template <class T>
inline void set_coeff (cl_UP_specialized<T>& x, uintL index, const T& y)
	{ x.ring()->set_coeff(x,index,y); }
template <class T>
inline void finalize (cl_UP_specialized<T>& x)
	{ x.ring()->finalize(x); }
template <class T>
inline void cl_UP_specialized<T>::set_coeff (uintL index, const T& y)
	{ ring()->set_coeff(*this,index,y); }
template <class T>
inline void cl_UP_specialized<T>::finalize ()
	{ ring()->finalize(*this); }

// Evaluation. (No extension of the base ring allowed here for now.)
template <class T>
inline const T cl_UP_specialized<T>::operator() (const T& y) const
{
	return ring()->eval(*this,y);
}

// Derivative.
template <class T>
inline const cl_UP_specialized<T> deriv (const cl_UP_specialized<T>& x)
	{ return The(cl_UP_specialized<T>)(deriv((const cl_UP&)x)); }


#endif /* _CL_UNIVPOLY_AUX_H */
#endif

#endif /* notyet */

}  // namespace cln