This file is indexed.

/usr/include/dlib/algs.h is in libdlib-dev 18.18-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
// Copyright (C) 2003  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_ALGs_
#define DLIB_ALGs_

// this file contains miscellaneous stuff                      


#ifdef _MSC_VER
// Disable the following warnings for Visual Studio

// this is to disable the "'this' : used in base member initializer list"
// warning you get from some of the GUI objects since all the objects
// require that their parent class be passed into their constructor. 
// In this case though it is totally safe so it is ok to disable this warning.
#pragma warning(disable : 4355)

// This is a warning you get sometimes when Visual Studio performs a Koenig Lookup. 
// This is a bug in visual studio.  It is a totally legitimate thing to 
// expect from a compiler. 
#pragma warning(disable : 4675)

// This is a warning you get from visual studio 2005 about things in the standard C++
// library being "deprecated."  I checked the C++ standard and it doesn't say jack 
// about any of them (I checked the searchable PDF).   So this warning is total Bunk.
#pragma warning(disable : 4996)

// This is a warning you get from visual studio 2003:
//    warning C4345: behavior change: an object of POD type constructed with an initializer 
//    of the form () will be default-initialized.
// I love it when this compiler gives warnings about bugs in previous versions of itself. 
#pragma warning(disable : 4345)


// Disable warnings about conversion from size_t to unsigned long and long.
#pragma warning(disable : 4267)

// Disable warnings about conversion from double to float  
#pragma warning(disable : 4244)
#pragma warning(disable : 4305)

// Disable "warning C4180: qualifier applied to function type has no meaning; ignored".
// This warning happens often in generic code that works with functions and isn't useful.
#pragma warning(disable : 4180)

// Disable "warning C4290: C++ exception specification ignored except to indicate a function is not __declspec(nothrow)"
#pragma warning(disable : 4290)

#endif

#ifdef __BORLANDC__
// Disable the following warnings for the Borland Compilers
//
// These warnings just say that the compiler is refusing to inline functions with
// loops or try blocks in them.  
//
#pragma option -w-8027
#pragma option -w-8026 
#endif

#include <string>       // for the exceptions

#ifdef __CYGWIN__
namespace std
{
   typedef std::basic_string<wchar_t> wstring;
}
#endif

#include "platform.h"
#include "windows_magic.h"


#include <algorithm>    // for std::swap
#include <new>          // for std::bad_alloc
#include <cstdlib>
#include <limits> // for std::numeric_limits for is_finite()
#include "assert.h"
#include "error.h"
#include "noncopyable.h"
#include "enable_if.h"
#include "uintn.h"
#include "numeric_constants.h"
#include "memory_manager_stateless/memory_manager_stateless_kernel_1.h" // for the default memory manager



// ----------------------------------------------------------------------------------------
/*!A _dT !*/

template <typename charT>
inline charT _dTcast (const char a, const wchar_t b);
template <>
inline char _dTcast<char> (const char a, const wchar_t ) { return a; }
template <>
inline wchar_t _dTcast<wchar_t> (const char , const wchar_t b) { return b; }

template <typename charT>
inline const charT* _dTcast ( const char* a, const wchar_t* b);
template <>
inline const char* _dTcast<char> ( const char* a, const wchar_t* ) { return a; }
template <>
inline const wchar_t* _dTcast<wchar_t> ( const char* , const wchar_t* b) { return b; }


#define _dT(charT,str) _dTcast<charT>(str,L##str) 
/*!
    requires
        - charT == char or wchar_t
        - str == a string or character literal
    ensures
        - returns the literal in the form of a charT type literal.
!*/

// ----------------------------------------------------------------------------------------



namespace dlib
{

// ----------------------------------------------------------------------------------------

    /*!A default_memory_manager

        This memory manager just calls new and delete directly.  

    !*/
    typedef memory_manager_stateless_kernel_1<char> default_memory_manager;

// ----------------------------------------------------------------------------------------

    /*!A swap !*/
    // make swap available in the dlib namespace
    using std::swap;

// ----------------------------------------------------------------------------------------

    /*!
        Here is where I define my return codes.  It is 
        important that they all be < 0.
    !*/

    enum general_return_codes
    {
        TIMEOUT     = -1,
        WOULDBLOCK  = -2,
        OTHER_ERROR = -3,
        SHUTDOWN    = -4,
        PORTINUSE   = -5
    };

// ----------------------------------------------------------------------------------------

    inline unsigned long square_root (
        unsigned long value
    )
    /*!
        requires
            - value <= 2^32 - 1
        ensures
            - returns the square root of value.  if the square root is not an
              integer then it will be rounded up to the nearest integer.
    !*/
    {
        unsigned long x;

        // set the initial guess for what the root is depending on 
        // how big value is
        if (value < 3)
            return value;
        else if (value < 4096) // 12
            x = 45;
        else if (value < 65536) // 16
            x = 179;
        else if (value < 1048576) // 20
            x = 717;
        else if (value < 16777216) // 24
            x = 2867;
        else if (value < 268435456) // 28
            x = 11469;
        else   // 32
            x = 45875;



        // find the root
        x = (x + value/x)>>1;
        x = (x + value/x)>>1;
        x = (x + value/x)>>1;
        x = (x + value/x)>>1;



        if (x*x < value)
            return x+1;
        else
            return x;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename T
        >    
    void median (
        T& one,
        T& two,
        T& three
    );
    /*!
        requires
            - T implements operator< 
            - T is swappable by a global swap()
        ensures
            - #one is the median 
            - #one, #two, and #three is some permutation of one, two, and three.  
    !*/
    
    
    template <
        typename T
        >
    void median (
        T& one,
        T& two,
        T& three
    )    
    {    
        using std::swap;
        using dlib::swap;

        if ( one < two )
        {
            // one < two
            if ( two < three )
            {
                // one < two < three : two
                swap(one,two);
                
            }
            else
            {
                // one < two >= three
                if ( one < three)
                {
                    // three
                    swap(three,one);
                }
            }
            
        }
        else
        {
            // one >= two
            if ( three < one )
            {
                // three <= one >= two
                if ( three < two )
                {
                    // two
                    swap(two,one);
                }
                else
                {
                    // three
                    swap(three,one);
                }
            }
        }        
    }

// ----------------------------------------------------------------------------------------

    namespace relational_operators
    {
        template <
            typename A,
            typename B
            >
        bool operator> (
            const A& a,
            const B& b
        ) { return b < a; }

    // ---------------------------------

        template <
            typename A,
            typename B
            >
        bool operator!= (
            const A& a,
            const B& b
        ) { return !(a == b); }

    // ---------------------------------

        template <
            typename A,
            typename B
            >
        bool operator<= (
            const A& a,
            const B& b
        ) { return !(b < a); }

    // ---------------------------------

        template <
            typename A,
            typename B
            >
        bool operator>= (
            const A& a,
            const B& b
        ) { return !(a < b); }

    }

// ----------------------------------------------------------------------------------------

    template <
        typename T
        >
    void exchange (
        T& a,
        T& b
    )
    /*!
        This function does the exact same thing that global swap does and it does it by
        just calling swap.  But a lot of compilers have problems doing a Koenig Lookup
        and the fact that this has a different name (global swap has the same name as
        the member functions called swap) makes them compile right.

        So this is a workaround but not too ugly of one.  But hopefully I get get
        rid of this in a few years.  So this function is already deprecated. 

        This also means you should NOT use this function in your own code unless
        you have to support an old buggy compiler that benefits from this hack.
    !*/
    {
        using std::swap;
        using dlib::swap;
        swap(a,b);
    }

// ----------------------------------------------------------------------------------------

    /*!A is_pointer_type

        This is a template where is_pointer_type<T>::value == true when T is a pointer 
        type and false otherwise.
    !*/

    template <
        typename T
        >
    class is_pointer_type
    {
    public:
        enum { value = false };
    private:
        is_pointer_type();
    };

    template <
        typename T
        >
    class is_pointer_type<T*>
    {
    public:
        enum { value = true };
    private:
        is_pointer_type();
    };

// ----------------------------------------------------------------------------------------

    /*!A is_const_type

        This is a template where is_const_type<T>::value == true when T is a const 
        type and false otherwise.
    !*/

    template <typename T>
    struct is_const_type
    {
        static const bool value = false;
    };
    template <typename T>
    struct is_const_type<const T>
    {
        static const bool value = true;
    };
    template <typename T>
    struct is_const_type<const T&>
    {
        static const bool value = true;
    };

// ----------------------------------------------------------------------------------------

    /*!A is_reference_type 

        This is a template where is_reference_type<T>::value == true when T is a reference 
        type and false otherwise.
    !*/

    template <typename T>
    struct is_reference_type
    {
        static const bool value = false;
    };

    template <typename T> struct is_reference_type<const T&> { static const bool value = true; };
    template <typename T> struct is_reference_type<T&> { static const bool value = true; };

// ----------------------------------------------------------------------------------------

    /*!A is_same_type 

        This is a template where is_same_type<T,U>::value == true when T and U are the
        same type and false otherwise.   
    !*/

    template <
        typename T,
        typename U
        >
    class is_same_type
    {
    public:
        enum {value = false};
    private:
        is_same_type();
    };

    template <typename T>
    class is_same_type<T,T>
    {
    public:
        enum {value = true};
    private:
        is_same_type();
    };

// ----------------------------------------------------------------------------------------

    /*!A is_float_type

        This is a template that can be used to determine if a type is one of the built
        int floating point types (i.e. float, double, or long double).
    !*/

    template < typename T > struct is_float_type  { const static bool value = false; };
    template <> struct is_float_type<float>       { const static bool value = true; };
    template <> struct is_float_type<double>      { const static bool value = true; };
    template <> struct is_float_type<long double> { const static bool value = true; };

// ----------------------------------------------------------------------------------------

    /*!A is_convertible

        This is a template that can be used to determine if one type is convertible 
        into another type.

        For example:
            is_convertible<int,float>::value == true    // because ints are convertible to floats
            is_convertible<int*,float>::value == false  // because int pointers are NOT convertible to floats
    !*/

    template <typename from, typename to>
    struct is_convertible
    {
        struct yes_type { char a; };
        struct no_type { yes_type a[2]; };
        static const from& from_helper();
        static yes_type test(to);
        static no_type test(...);
        const static bool value = sizeof(test(from_helper())) == sizeof(yes_type);
    };

// ----------------------------------------------------------------------------------------

    /*!A is_same_object 

        This is a templated function which checks if both of its arguments are actually
        references to the same object.  It returns true if they are and false otherwise.

    !*/

    // handle the case where T and U are unrelated types.
    template < typename T, typename U >
    typename disable_if_c<is_convertible<T*, U*>::value || is_convertible<U*,T*>::value, bool>::type
    is_same_object (
        const T& a, 
        const U& b
    ) 
    { 
        return ((void*)&a == (void*)&b); 
    }

    // handle the case where T and U are related types because their pointers can be
    // implicitly converted into one or the other.  E.g. a derived class and its base class. 
    // Or where both T and U are just the same type.  This way we make sure that if there is a
    // valid way to convert between these two pointer types then we will take that route rather
    // than the void* approach used otherwise.
    template < typename T, typename U >
    typename enable_if_c<is_convertible<T*, U*>::value || is_convertible<U*,T*>::value, bool>::type
    is_same_object (
        const T& a, 
        const U& b
    ) 
    { 
        return (&a == &b); 
    }

// ----------------------------------------------------------------------------------------

    /*!A is_unsigned_type 

        This is a template where is_unsigned_type<T>::value == true when T is an unsigned
        scalar type and false when T is a signed scalar type.
    !*/
    template <
        typename T
        >
    struct is_unsigned_type
    {
        static const bool value = static_cast<T>((static_cast<T>(0)-static_cast<T>(1))) > 0;
    };
    template <> struct is_unsigned_type<long double> { static const bool value = false; };
    template <> struct is_unsigned_type<double>      { static const bool value = false; };
    template <> struct is_unsigned_type<float>       { static const bool value = false; };

// ----------------------------------------------------------------------------------------

    /*!A is_signed_type 

        This is a template where is_signed_type<T>::value == true when T is a signed
        scalar type and false when T is an unsigned scalar type.
    !*/
    template <
        typename T
        >
    struct is_signed_type
    {
        static const bool value = !is_unsigned_type<T>::value;
    };

// ----------------------------------------------------------------------------------------

    template <
        typename T
        >
    class copy_functor
    {
    public:
        void operator() (
            const T& source, 
            T& destination
        ) const
        {
            destination = source;
        }
    };

// ----------------------------------------------------------------------------------------

    /*!A static_switch

        To use this template you give it some number of boolean expressions and it
        tells you which one of them is true.   If more than one of them is true then
        it causes a compile time error.

        for example:
            static_switch<1 + 1 == 2, 4 - 1 == 4>::value == 1  // because the first expression is true
            static_switch<1 + 1 == 3, 4 == 4>::value == 2      // because the second expression is true
            static_switch<1 + 1 == 3, 4 == 5>::value == 0      // 0 here because none of them are true 
            static_switch<1 + 1 == 2, 4 == 4>::value == compiler error  // because more than one expression is true 
    !*/

    template < bool v1 = 0, bool v2 = 0, bool v3 = 0, bool v4 = 0, bool v5 = 0,
               bool v6 = 0, bool v7 = 0, bool v8 = 0, bool v9 = 0, bool v10 = 0, 
               bool v11 = 0, bool v12 = 0, bool v13 = 0, bool v14 = 0, bool v15 = 0 >
    struct static_switch; 

    template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 0; };
    template <> struct static_switch<1,0,0,0,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 1; };
    template <> struct static_switch<0,1,0,0,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 2; };
    template <> struct static_switch<0,0,1,0,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 3; };
    template <> struct static_switch<0,0,0,1,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 4; };
    template <> struct static_switch<0,0,0,0,1,0,0,0,0,0,0,0,0,0,0> { const static int value = 5; };
    template <> struct static_switch<0,0,0,0,0,1,0,0,0,0,0,0,0,0,0> { const static int value = 6; };
    template <> struct static_switch<0,0,0,0,0,0,1,0,0,0,0,0,0,0,0> { const static int value = 7; };
    template <> struct static_switch<0,0,0,0,0,0,0,1,0,0,0,0,0,0,0> { const static int value = 8; };
    template <> struct static_switch<0,0,0,0,0,0,0,0,1,0,0,0,0,0,0> { const static int value = 9; };
    template <> struct static_switch<0,0,0,0,0,0,0,0,0,1,0,0,0,0,0> { const static int value = 10; };
    template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,1,0,0,0,0> { const static int value = 11; };
    template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,1,0,0,0> { const static int value = 12; };
    template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,0,1,0,0> { const static int value = 13; };
    template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,0,0,1,0> { const static int value = 14; };
    template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,0,0,0,1> { const static int value = 15; };

// ----------------------------------------------------------------------------------------
    /*!A is_built_in_scalar_type
        
        This is a template that allows you to determine if the given type is a built
        in scalar type such as an int, char, float, short, etc.

        For example, is_built_in_scalar_type<char>::value == true
        For example, is_built_in_scalar_type<std::string>::value == false 
    !*/

    template <typename T> struct is_built_in_scalar_type        { const static bool value = false; };

    template <> struct is_built_in_scalar_type<float>           { const static bool value = true; };
    template <> struct is_built_in_scalar_type<double>          { const static bool value = true; };
    template <> struct is_built_in_scalar_type<long double>     { const static bool value = true; };
    template <> struct is_built_in_scalar_type<short>           { const static bool value = true; };
    template <> struct is_built_in_scalar_type<int>             { const static bool value = true; };
    template <> struct is_built_in_scalar_type<long>            { const static bool value = true; };
    template <> struct is_built_in_scalar_type<unsigned short>  { const static bool value = true; };
    template <> struct is_built_in_scalar_type<unsigned int>    { const static bool value = true; };
    template <> struct is_built_in_scalar_type<unsigned long>   { const static bool value = true; };
    template <> struct is_built_in_scalar_type<uint64>          { const static bool value = true; };
    template <> struct is_built_in_scalar_type<int64>           { const static bool value = true; };
    template <> struct is_built_in_scalar_type<char>            { const static bool value = true; };
    template <> struct is_built_in_scalar_type<signed char>     { const static bool value = true; };
    template <> struct is_built_in_scalar_type<unsigned char>   { const static bool value = true; };
    // Don't define one for wchar_t when using a version of visual studio
    // older than 8.0 (visual studio 2005) since before then they improperly set
    // wchar_t to be a typedef rather than its own type as required by the C++ 
    // standard.
#if !defined(_MSC_VER) || _NATIVE_WCHAR_T_DEFINED
    template <> struct is_built_in_scalar_type<wchar_t>         { const static bool value = true; };
#endif

// ----------------------------------------------------------------------------------------
    
    template <
        typename T
        >
    typename enable_if<is_built_in_scalar_type<T>,bool>::type is_finite (
        const T& value
    )
    /*!
        requires
            - value must be some kind of scalar type such as int or double
        ensures
            - returns true if value is a finite value (e.g. not infinity or NaN) and false
              otherwise.
    !*/
    {
        if (is_float_type<T>::value)
            return -std::numeric_limits<T>::infinity() < value && value < std::numeric_limits<T>::infinity();
        else
            return true;
    }

// ----------------------------------------------------------------------------------------

    /*!A promote 
        
        This is a template that takes one of the built in scalar types and gives you another
        scalar type that should be big enough to hold sums of values from the original scalar 
        type.  The new scalar type will also always be signed.

        For example, promote<uint16>::type == int32
    !*/

    template <typename T, size_t s = sizeof(T)> struct promote;
    template <typename T> struct promote<T,1> { typedef int32 type; };
    template <typename T> struct promote<T,2> { typedef int32 type; };
    template <typename T> struct promote<T,4> { typedef int64 type; };
    template <typename T> struct promote<T,8> { typedef int64 type; };

    template <> struct promote<float,sizeof(float)>             { typedef double type; };
    template <> struct promote<double,sizeof(double)>           { typedef double type; };
    template <> struct promote<long double,sizeof(long double)> { typedef long double type; };

// ----------------------------------------------------------------------------------------
    
    /*!A assign_zero_if_built_in_scalar_type

        This function assigns its argument the value of 0 if it is a built in scalar
        type according to the is_built_in_scalar_type<> template.  If it isn't a
        built in scalar type then it does nothing.
    !*/

    template <typename T> inline typename disable_if<is_built_in_scalar_type<T>,void>::type assign_zero_if_built_in_scalar_type (T&){}
    template <typename T> inline typename enable_if<is_built_in_scalar_type<T>,void>::type assign_zero_if_built_in_scalar_type (T& a){a=0;}

// ----------------------------------------------------------------------------------------

    /*!A basic_type

        This is a template that takes a type and strips off any const, volatile, or reference
        qualifiers and gives you back the basic underlying type.  So for example:

        basic_type<const int&>::type == int
    !*/

    template <typename T> struct basic_type { typedef T type; };
    template <typename T> struct basic_type<const T> { typedef T type; };
    template <typename T> struct basic_type<const T&> { typedef T type; };
    template <typename T> struct basic_type<volatile const T&> { typedef T type; };
    template <typename T> struct basic_type<T&> { typedef T type; };
    template <typename T> struct basic_type<volatile T&> { typedef T type; };
    template <typename T> struct basic_type<volatile T> { typedef T type; };
    template <typename T> struct basic_type<volatile const T> { typedef T type; };

// ----------------------------------------------------------------------------------------

    template <typename T>
    T put_in_range (
        const T& a, 
        const T& b, 
        const T& val
    )
    /*!
        requires
            - T is a type that looks like double, float, int, or so forth
        ensures
            - if (val is within the range [a,b]) then
                - returns val
            - else 
                - returns the end of the range [a,b] that is closest to val
    !*/
    {
        if (a < b)
        {
            if (val < a)
                return a;
            else if (val > b)
                return b;
        }
        else
        {
            if (val < b)
                return b;
            else if (val > a)
                return a;
        }

        return val;
    }

    // overload for double 
    inline double put_in_range(const double& a, const double& b, const double& val)
    { return put_in_range<double>(a,b,val); }

// ----------------------------------------------------------------------------------------

    /*!A tabs 

        This is a template to compute the absolute value a number at compile time.

        For example,
            abs<-4>::value == 4
            abs<4>::value == 4
    !*/

        template <long x, typename enabled=void>
        struct tabs { const static long value = x; };
        template <long x>
        struct tabs<x,typename enable_if_c<(x < 0)>::type> { const static long value = -x; };

// ----------------------------------------------------------------------------------------

    /*!A tmax

        This is a template to compute the max of two values at compile time

        For example,
            abs<4,7>::value == 7
    !*/

        template <long x, long y, typename enabled=void>
        struct tmax { const static long value = x; };
        template <long x, long y>
        struct tmax<x,y,typename enable_if_c<(y > x)>::type> { const static long value = y; };

// ----------------------------------------------------------------------------------------

    /*!A tmin 

        This is a template to compute the min of two values at compile time

        For example,
            abs<4,7>::value == 4
    !*/

        template <long x, long y, typename enabled=void>
        struct tmin { const static long value = x; };
        template <long x, long y>
        struct tmin<x,y,typename enable_if_c<(y < x)>::type> { const static long value = y; };

    // ----------------------------------------------------------------------------------------

#define DLIB_MAKE_HAS_MEMBER_FUNCTION_TEST(testname, returnT, funct_name, args)                        \
    struct _two_bytes_##testname { char a[2]; };                                                       \
    template < typename T, returnT (T::*funct)args >                                                   \
    struct _helper_##testname { typedef char type; };                                                  \
    template <typename T>                                                                              \
    static char _has_##testname##_helper( typename _helper_##testname<T,&T::funct_name >::type ) { return 0;} \
    template <typename T>                                                                              \
    static _two_bytes_##testname _has_##testname##_helper(int) { return _two_bytes_##testname();}             \
    template <typename T> struct _##testname##workaroundbug {                                          \
                const static unsigned long U = sizeof(_has_##testname##_helper<T>('a')); };            \
    template <typename T, unsigned long U = _##testname##workaroundbug<T>::U >                         \
    struct testname      { static const bool value = false; };                                         \
    template <typename T>                                                                              \
    struct testname<T,1> { static const bool value = true; };
    /*!A DLIB_MAKE_HAS_MEMBER_FUNCTION_TEST

        The DLIB_MAKE_HAS_MEMBER_FUNCTION_TEST() macro is used to define traits templates
        that tell you if a class has a certain member function.  For example, to make a
        test to see if a class has a public method with the signature void print(int) you
        would say:
            DLIB_MAKE_HAS_MEMBER_FUNCTION_TEST(has_print, void, print, (int))

        Then you can check if a class, T, has this method by looking at the boolean value:
            has_print<T>::value 
        which will be true if the member function is in the T class.

        Note that you can test for member functions taking no arguments by simply passing
        in empty () like so:
            DLIB_MAKE_HAS_MEMBER_FUNCTION_TEST(has_print, void, print, ())
        This would test for a member of the form:
            void print().

        To test for const member functions you would use a statement such as this:
            DLIB_MAKE_HAS_MEMBER_FUNCTION_TEST(has_print, void, print, ()const)
        This would test for a member of the form: 
            void print() const.

        To test for const templated member functions you would use a statement such as this:
            DLIB_MAKE_HAS_MEMBER_FUNCTION_TEST(has_print, void, template print<int>, ())
        This would test for a member of the form: 
            template <typename T> void print().
    !*/

// ----------------------------------------------------------------------------------------

    /*!A is_function 
        
        This is a template that allows you to determine if the given type is a function.

        For example,
            void funct();

            is_built_in_scalar_type<funct>::value == true
            is_built_in_scalar_type<int>::value == false 
    !*/

    template <typename T> struct is_function { static const bool value = false; };
    template <typename T> 
    struct is_function<T (void)> { static const bool value = true; };
    template <typename T, typename A0> 
    struct is_function<T (A0)> { static const bool value = true; };
    template <typename T, typename A0, typename A1> 
    struct is_function<T (A0, A1)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2> 
    struct is_function<T (A0, A1, A2)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2, typename A3> 
    struct is_function<T (A0, A1, A2, A3)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4> 
    struct is_function<T (A0, A1, A2, A3, A4)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4,
                          typename A5> 
    struct is_function<T (A0,A1,A2,A3,A4,A5)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4,
                          typename A5, typename A6> 
    struct is_function<T (A0,A1,A2,A3,A4,A5,A6)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4,
                          typename A5, typename A6, typename A7> 
    struct is_function<T (A0,A1,A2,A3,A4,A5,A6,A7)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4,
                          typename A5, typename A6, typename A7, typename A8> 
    struct is_function<T (A0,A1,A2,A3,A4,A5,A6,A7,A8)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4,
                          typename A5, typename A6, typename A7, typename A8, typename A9> 
    struct is_function<T (A0,A1,A2,A3,A4,A5,A6,A7,A8,A9)> { static const bool value = true; };


    template <typename T> class funct_wrap0
    {
    public:
        funct_wrap0(T (&f_)()):f(f_){}
        T operator()() const { return f(); }
    private:
        T (&f)();
    };
    template <typename T, typename A0> class funct_wrap1
    {
    public:
        funct_wrap1(T (&f_)(A0)):f(f_){}
        T operator()(A0 a0) const { return f(a0); }
    private:
        T (&f)(A0);
    };
    template <typename T, typename A0, typename A1> class funct_wrap2
    {
    public:
        funct_wrap2(T (&f_)(A0,A1)):f(f_){}
        T operator()(A0 a0, A1 a1) const { return f(a0,a1); }
    private:
        T (&f)(A0,A1);
    };
    template <typename T, typename A0, typename A1, typename A2> class funct_wrap3
    {
    public:
        funct_wrap3(T (&f_)(A0,A1,A2)):f(f_){}
        T operator()(A0 a0, A1 a1, A2 a2) const { return f(a0,a1,a2); }
    private:
        T (&f)(A0,A1,A2);
    };
    template <typename T, typename A0, typename A1, typename A2, typename A3> class funct_wrap4
    {
    public:
        funct_wrap4(T (&f_)(A0,A1,A2,A3)):f(f_){}
        T operator()(A0 a0, A1 a1, A2 a2, A3 a3) const { return f(a0,a1,a2,a3); }
    private:
        T (&f)(A0,A1,A2,A3);
    };
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4> class funct_wrap5
    {
    public:
        funct_wrap5(T (&f_)(A0,A1,A2,A3,A4)):f(f_){}
        T operator()(A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) const { return f(a0,a1,a2,a3,a4); }
    private:
        T (&f)(A0,A1,A2,A3,A4);
    };

    /*!A wrap_function 
        
        This is a template that allows you to turn a global function into a 
        function object.  The reason for this template's existance is so you can
        do stuff like this:
            
            template <typename T>
            void call_funct(const T& funct)
            {  cout << funct(); }

            std::string test() { return "asdfasf"; }

            int main()
            {
                call_funct(wrap_function(test));
            }

        The above code doesn't work right on some compilers if you don't
        use wrap_function.  
    !*/

    template <typename T>
    funct_wrap0<T> wrap_function(T (&f)()) { return funct_wrap0<T>(f); }
    template <typename T, typename A0>
    funct_wrap1<T,A0> wrap_function(T (&f)(A0)) { return funct_wrap1<T,A0>(f); }
    template <typename T, typename A0, typename A1>
    funct_wrap2<T,A0,A1> wrap_function(T (&f)(A0, A1)) { return funct_wrap2<T,A0,A1>(f); }
    template <typename T, typename A0, typename A1, typename A2>
    funct_wrap3<T,A0,A1,A2> wrap_function(T (&f)(A0, A1, A2)) { return funct_wrap3<T,A0,A1,A2>(f); }
    template <typename T, typename A0, typename A1, typename A2, typename A3>
    funct_wrap4<T,A0,A1,A2,A3> wrap_function(T (&f)(A0, A1, A2, A3)) { return funct_wrap4<T,A0,A1,A2,A3>(f); }
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4>
    funct_wrap5<T,A0,A1,A2,A3,A4> wrap_function(T (&f)(A0, A1, A2, A3, A4)) { return funct_wrap5<T,A0,A1,A2,A3,A4>(f); }

// ----------------------------------------------------------------------------------------

    template <unsigned long bSIZE>
    class stack_based_memory_block : noncopyable
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This object is a simple container for a block of memory
                of bSIZE bytes.  This memory block is located on the stack
                and properly aligned to hold any kind of object.
        !*/
    public:
        static const unsigned long size = bSIZE;

        stack_based_memory_block(): data(mem.data) {}

        void* get () { return data; }
        /*!
            ensures
                - returns a pointer to the block of memory contained in this object
        !*/

        const void* get () const { return data; }
        /*!
            ensures
                - returns a pointer to the block of memory contained in this object
        !*/

    private:

        // You obviously can't have a block of memory that has zero bytes in it.
        COMPILE_TIME_ASSERT(bSIZE > 0);
        
        union mem_block
        {
            // All of this garbage is to make sure this union is properly aligned 
            // (a union is always aligned such that everything in it would be properly
            // aligned.  So the assumption here is that one of these objects has 
            // a large enough alignment requirement to satisfy any object this
            // block of memory might be cast into).
            void* void_ptr;
            int integer;
            struct {
                void (stack_based_memory_block::*callback)();
                stack_based_memory_block* o; 
            } stuff;
            long double more_stuff;

            uint64 var1;
            uint32 var2;
            double var3;

            char data[size]; 
        } mem;

        // The reason for having this variable is that doing it this way avoids
        // warnings from gcc about violations of strict-aliasing rules.
        void* const data; 
    };

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_ALGs_