This file is indexed.

/usr/include/dlib/control/mpc.h is in libdlib-dev 18.18-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_MPC_Hh_
#define DLIB_MPC_Hh_

#include "mpc_abstract.h"
#include "../matrix.h"
#include "../algs.h"


namespace dlib
{
    template <
        long S_,
        long I_,
        unsigned long horizon_
        >
    class mpc
    {

    public:

        const static long S = S_;
        const static long I = I_;
        const static unsigned long horizon = horizon_;

        mpc(
        ) 
        {
            A = 0;
            B = 0;
            C = 0;
            Q = 0;
            R = 0;
            lower = 0;
            upper = 0;

            max_iterations = 0;
            eps = 0.01;
            for (unsigned long i = 0; i < horizon; ++i)
            {
                target[i].set_size(A.nr());
                target[i] = 0;

                controls[i].set_size(B.nc());
                controls[i] = 0;
            }
            lambda = 0;
        }

        mpc (
            const matrix<double,S,S>& A_,
            const matrix<double,S,I>& B_,
            const matrix<double,S,1>& C_,
            const matrix<double,S,1>& Q_,
            const matrix<double,I,1>& R_,
            const matrix<double,I,1>& lower_,
            const matrix<double,I,1>& upper_
        ) : A(A_), B(B_), C(C_), Q(Q_), R(R_), lower(lower_), upper(upper_)
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(A.nr() > 0 && B.nc() > 0,
                "\t mpc::mpc()"
                << "\n\t invalid inputs were given to this function"
                << "\n\t A.nr(): " <<  A.nr()
                << "\n\t B.nc(): " <<  B.nc()
                );

            DLIB_ASSERT(A.nr() == A.nc() && 
                        A.nr() == B.nr() && 
                        A.nr() == C.nr() && 
                        A.nr() == Q.nr(),
                "\t mpc::mpc()"
                << "\n\t invalid inputs were given to this function"
                << "\n\t A.nr(): " <<  A.nr()
                << "\n\t A.nc(): " <<  A.nc()
                << "\n\t B.nr(): " <<  B.nr()
                << "\n\t C.nr(): " <<  C.nr()
                << "\n\t Q.nr(): " <<  Q.nr()
                );
            DLIB_ASSERT(
                        B.nc() == R.nr() && 
                        B.nc() == lower.nr() && 
                        B.nc() == upper.nr() ,
                "\t mpc::mpc()"
                << "\n\t invalid inputs were given to this function"
                << "\n\t B.nr(): " <<  B.nr()
                << "\n\t B.nc(): " <<  B.nc()
                << "\n\t lower.nr(): " <<  lower.nr()
                << "\n\t upper.nr(): " <<  upper.nr()
                );
            DLIB_ASSERT(min(Q) >= 0 &&
                        min(R) >  0 &&
                        min(upper-lower) >= 0,
                "\t mpc::mpc()"
                << "\n\t invalid inputs were given to this function"
                << "\n\t min(Q): " << min(Q) 
                << "\n\t min(R): " << min(R) 
                << "\n\t min(upper-lower): " << min(upper-lower) 
                );


            max_iterations = 10000;
            eps = 0.01;
            for (unsigned long i = 0; i < horizon; ++i)
            {
                target[i].set_size(A.nr());
                target[i] = 0;

                controls[i].set_size(B.nc());
                controls[i] = 0;
            }

            // Bound the maximum eigenvalue of the hessian by computing the trace of the
            // hessian matrix. 
            lambda = sum(R)*horizon;
            matrix<double,S,S> temp = diagm(Q);
            for (unsigned long c = 0; c < horizon; ++c)
            {
                lambda += trace(trans(B)*temp*B);
                Q_diag[horizon-c-1] = diag(trans(B)*temp*B);
                temp = trans(A)*temp*A + diagm(Q);
            }

        }

        const matrix<double,S,S>& get_A (
        ) const { return A; }
        const matrix<double,S,I>& get_B (
        ) const { return B; }
        const matrix<double,S,1>& get_C (
        ) const { return C; }
        const matrix<double,S,1>& get_Q (
        ) const { return Q; }
        const matrix<double,I,1>& get_R (
        ) const { return R; }
        const matrix<double,I,1>& get_lower_constraints (
        ) const { return lower; }
        const matrix<double,I,1>& get_upper_constraints (
        ) const { return upper; }

        void set_target (
            const matrix<double,S,1>& val,
            const unsigned long time
        )
        {
            DLIB_ASSERT(time < horizon,
                "\t void mpc::set_target(eps_)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t time: " << time 
                << "\n\t horizon: " << horizon 
                );

            target[time] = val;
        }

        void set_target (
            const matrix<double,S,1>& val
        )
        {
            for (unsigned long i = 0; i < horizon; ++i)
                target[i] = val;
        }

        void set_last_target (
            const matrix<double,S,1>& val
        )
        {
            set_target(val, horizon-1);
        }

        const matrix<double,S,1>& get_target (
            const unsigned long time
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(time < horizon,
                "\t matrix mpc::get_target(eps_)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t time: " << time 
                << "\n\t horizon: " << horizon 
                );

            return target[time];
        }

        unsigned long get_max_iterations (
        ) const { return max_iterations; }

        void set_max_iterations (
            unsigned long max_iter
        ) 
        {
            max_iterations = max_iter;
        }

        void set_epsilon (
            double eps_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(eps_ > 0,
                "\t void mpc::set_epsilon(eps_)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t eps_: " << eps_ 
                );
            eps = eps_;
        }

        double get_epsilon (
        ) const
        { 
            return eps;
        }

        matrix<double,I,1> operator() (
            const matrix<double,S,1>& current_state
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(min(R) > 0 && A.nr() == current_state.size(),
                "\t matrix mpc::operator(current_state)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t min(R): " << min(R) 
                << "\n\t A.nr(): " << A.nr() 
                << "\n\t current_state.size(): " << current_state.size() 
                );

            // Shift the inputs over by one time step so we can use them to warm start the
            // optimizer.
            for (unsigned long i = 1; i < horizon; ++i)
                controls[i-1] = controls[i];

            solve_linear_mpc(current_state);

            for (unsigned long i = 1; i < horizon; ++i)
                target[i-1] = target[i];

            return controls[0];
        }

    private:


        // These temporary variables here just to avoid reallocating them on each call to
        // operator().
        matrix<double,S,1> M[horizon];
        matrix<double,I,1> MM[horizon];
        matrix<double,I,1> df[horizon]; 
        matrix<double,I,1> v[horizon]; 
        matrix<double,I,1> v_old[horizon]; 

        void solve_linear_mpc (
            const matrix<double,S,1>& initial_state
        )
        {
            // make it so MM == trans(K)*Q*(M-target)
            M[0] = A*initial_state + C;
            for (unsigned long i = 1; i < horizon; ++i)
                M[i] = A*M[i-1] + C;
            for (unsigned long i = 0; i < horizon; ++i)
                M[i] = diagm(Q)*(M[i]-target[i]);
            for (long i = (long)horizon-2; i >= 0; --i)
                M[i] += trans(A)*M[i+1];
            for (unsigned long i = 0; i < horizon; ++i)
                MM[i] = trans(B)*M[i];



            unsigned long iter = 0;
            for (; iter < max_iterations; ++iter)
            {
                // compute current gradient and put it into df.
                // df == H*controls + MM;
                M[0] = B*controls[0];
                for (unsigned long i = 1; i < horizon; ++i)
                    M[i] = A*M[i-1] + B*controls[i];
                for (unsigned long i = 0; i < horizon; ++i)
                    M[i] = diagm(Q)*M[i];
                for (long i = (long)horizon-2; i >= 0; --i)
                    M[i] += trans(A)*M[i+1];
                for (unsigned long i = 0; i < horizon; ++i)
                    df[i] = MM[i] + trans(B)*M[i] + diagm(R)*controls[i];



                // Check the stopping condition, which is the magnitude of the largest element
                // of the gradient.
                double max_df = 0;
                unsigned long max_t = 0;
                long max_v = 0;
                for (unsigned long i = 0; i < horizon; ++i)
                {
                    for (long j = 0; j < controls[i].size(); ++j)
                    {
                        // if this variable isn't an active constraint then we care about it's
                        // derivative.
                        if (!((controls[i](j) <= lower(j) && df[i](j) > 0) || 
                              (controls[i](j) >= upper(j) && df[i](j) < 0)))
                        {
                            if (std::abs(df[i](j)) > max_df)
                            {
                                max_df = std::abs(df[i](j));
                                max_t = i;
                                max_v = j;
                            }
                        }
                    }
                }
                if (max_df < eps)
                    break;



                // We will start out by doing a little bit of coordinate descent because it
                // allows us to optimize individual variables exactly.  Since we are warm
                // starting each iteration with a really good solution this helps speed
                // things up a lot.
                const unsigned long smo_iters = 50;
                if (iter < smo_iters)
                {
                    if (Q_diag[max_t](max_v) == 0) continue;

                    // Take the optimal step but just for one variable.
                    controls[max_t](max_v) = -(df[max_t](max_v)-Q_diag[max_t](max_v)*controls[max_t](max_v))/Q_diag[max_t](max_v);
                    controls[max_t](max_v) = put_in_range(lower(max_v), upper(max_v), controls[max_t](max_v));

                    // If this is the last SMO iteration then don't forget to initialize v
                    // for the gradient steps.
                    if (iter+1 == smo_iters)
                    {
                        for (unsigned long i = 0; i < horizon; ++i)
                            v[i] = controls[i];
                    }
                }
                else
                {
                    // Take a projected gradient step.
                    for (unsigned long i = 0; i < horizon; ++i)
                    {
                        v_old[i] = v[i];
                        v[i] = clamp(controls[i] - 1.0/lambda * df[i], lower, upper);
                        controls[i] = clamp(v[i] + (std::sqrt(lambda)-1)/(std::sqrt(lambda)+1)*(v[i]-v_old[i]), lower, upper);
                    }
                }
            }
        }

        unsigned long max_iterations;
        double eps;

        matrix<double,S,S> A;
        matrix<double,S,I> B;
        matrix<double,S,1> C;
        matrix<double,S,1> Q;
        matrix<double,I,1> R;
        matrix<double,I,1> lower;
        matrix<double,I,1> upper;
        matrix<double,S,1> target[horizon]; 

        double lambda; // abound on the largest eigenvalue of the hessian matrix.
        matrix<double,I,1> Q_diag[horizon]; 
        matrix<double,I,1> controls[horizon]; 

    };

}

#endif // DLIB_MPC_Hh_