This file is indexed.

/usr/include/dlib/matrix/lapack/gees.h is in libdlib-dev 18.18-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// Copyright (C) 2010  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_LAPACk_ES_Hh_
#define DLIB_LAPACk_ES_Hh_

#include "fortran_id.h"
#include "../matrix.h"

namespace dlib
{
    namespace lapack
    {
        namespace binding
        {
#if defined(__alpha__) || defined(__sparc64__) || defined(__x86_64__) || defined(__ia64__)
            typedef int logical;
#else
            typedef long int logical;
#endif
            typedef logical (*L_fp)(...);

            extern "C"
            {
                void DLIB_FORTRAN_ID(dgees) (char *jobvs, char *sort, L_fp select, integer *n, 
                                             double *a, integer *lda, integer *sdim, double *wr, 
                                             double *wi, double *vs, integer *ldvs, double *work, 
                                             integer *lwork, logical *bwork, integer *info);

                void DLIB_FORTRAN_ID(sgees) (char *jobvs, char *sort, L_fp select, integer *n, 
                                             float *a, integer *lda, integer *sdim, float *wr, 
                                             float *wi, float *vs, integer *ldvs, float *work, 
                                             integer *lwork, logical *bwork, integer *info);

            }

            inline int gees (char jobvs, integer n, 
                             double *a, integer lda, double *wr, 
                             double *wi, double *vs, integer ldvs, double *work, 
                             integer lwork)
            {
                // No sorting allowed
                integer info = 0;
                char sort = 'N';
                L_fp fnil = 0;
                logical nil = 0;
                integer sdim = 0;
                DLIB_FORTRAN_ID(dgees)(&jobvs, &sort, fnil, &n,
                                       a, &lda, &sdim, wr,
                                       wi, vs, &ldvs, work,
                                       &lwork, &nil, &info);
                return info;
            }


            inline int gees (char jobvs, integer n, 
                             float *a, integer lda, float *wr, 
                             float *wi, float *vs, integer ldvs, float *work, 
                             integer lwork)
            {
                // No sorting allowed
                integer info = 0;
                char sort = 'N';
                L_fp fnil = 0;
                logical nil = 0;
                integer sdim = 0;
                DLIB_FORTRAN_ID(sgees)(&jobvs, &sort, fnil, &n,
                                       a, &lda, &sdim, wr,
                                       wi, vs, &ldvs, work,
                                       &lwork, &nil, &info);
                return info;
            }


        }

    // ------------------------------------------------------------------------------------

/*  -- LAPACK driver routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */
/*     .. Function Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGEES computes for an N-by-N real nonsymmetric matrix A, the */
/*  eigenvalues, the real Schur form T, and, optionally, the matrix of */
/*  Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T). */

/*  Optionally, it also orders the eigenvalues on the diagonal of the */
/*  real Schur form so that selected eigenvalues are at the top left. */
/*  The leading columns of Z then form an orthonormal basis for the */
/*  invariant subspace corresponding to the selected eigenvalues. */

/*  A matrix is in real Schur form if it is upper quasi-triangular with */
/*  1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the */
/*  form */
/*          [  a  b  ] */
/*          [  c  a  ] */

/*  where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc). */

/*  Arguments */
/*  ========= */

/*  JOBVS   (input) CHARACTER*1 */
/*          = 'N': Schur vectors are not computed; */
/*          = 'V': Schur vectors are computed. */

/*  SORT    (input) CHARACTER*1 */
/*          Specifies whether or not to order the eigenvalues on the */
/*          diagonal of the Schur form. */
/*          = 'N': Eigenvalues are not ordered; */
/*          = 'S': Eigenvalues are ordered (see SELECT). */

/*  SELECT  (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION arguments */
/*          SELECT must be declared EXTERNAL in the calling subroutine. */
/*          If SORT = 'S', SELECT is used to select eigenvalues to sort */
/*          to the top left of the Schur form. */
/*          If SORT = 'N', SELECT is not referenced. */
/*          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if */
/*          SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex */
/*          conjugate pair of eigenvalues is selected, then both complex */
/*          eigenvalues are selected. */
/*          Note that a selected complex eigenvalue may no longer */
/*          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since */
/*          ordering may change the value of complex eigenvalues */
/*          (especially if the eigenvalue is ill-conditioned); in this */
/*          case INFO is set to N+2 (see INFO below). */

/*  N       (input) INTEGER */
/*          The order of the matrix A. N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the N-by-N matrix A. */
/*          On exit, A has been overwritten by its real Schur form T. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  SDIM    (output) INTEGER */
/*          If SORT = 'N', SDIM = 0. */
/*          If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
/*                         for which SELECT is true. (Complex conjugate */
/*                         pairs for which SELECT is true for either */
/*                         eigenvalue count as 2.) */

/*  WR      (output) DOUBLE PRECISION array, dimension (N) */
/*  WI      (output) DOUBLE PRECISION array, dimension (N) */
/*          WR and WI contain the real and imaginary parts, */
/*          respectively, of the computed eigenvalues in the same order */
/*          that they appear on the diagonal of the output Schur form T. */
/*          Complex conjugate pairs of eigenvalues will appear */
/*          consecutively with the eigenvalue having the positive */
/*          imaginary part first. */

/*  VS      (output) DOUBLE PRECISION array, dimension (LDVS,N) */
/*          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur */
/*          vectors. */
/*          If JOBVS = 'N', VS is not referenced. */

/*  LDVS    (input) INTEGER */
/*          The leading dimension of the array VS.  LDVS >= 1; if */
/*          JOBVS = 'V', LDVS >= N. */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) contains the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,3*N). */
/*          For good performance, LWORK must generally be larger. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  BWORK   (workspace) LOGICAL array, dimension (N) */
/*          Not referenced if SORT = 'N'. */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value. */
/*          > 0: if INFO = i, and i is */
/*             <= N: the QR algorithm failed to compute all the */
/*                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI */
/*                   contain those eigenvalues which have converged; if */
/*                   JOBVS = 'V', VS contains the matrix which reduces A */
/*                   to its partially converged Schur form. */
/*             = N+1: the eigenvalues could not be reordered because some */
/*                   eigenvalues were too close to separate (the problem */
/*                   is very ill-conditioned); */
/*             = N+2: after reordering, roundoff changed values of some */
/*                   complex eigenvalues so that leading eigenvalues in */
/*                   the Schur form no longer satisfy SELECT=.TRUE.  This */
/*                   could also be caused by underflow due to scaling. */

    // ------------------------------------------------------------------------------------

        template <
            typename T, 
            long NR1, long NR2, long NR3, long NR4,
            long NC1, long NC2, long NC3, long NC4,
            typename MM,
            typename layout
            >
        int gees (
            const char jobz,
            matrix<T,NR1,NC1,MM,column_major_layout>& a,
            matrix<T,NR2,NC2,MM,layout>& wr,
            matrix<T,NR3,NC3,MM,layout>& wi,
            matrix<T,NR4,NC4,MM,column_major_layout>& vs
        )
        {
            matrix<T,0,1,MM,column_major_layout> work;

            const long n = a.nr();

            wr.set_size(n,1);
            wi.set_size(n,1);

            if (jobz == 'V')
                vs.set_size(n,n);
            else
                vs.set_size(NR4?NR4:1, NC4?NC4:1);

            // figure out how big the workspace needs to be.
            T work_size = 1;
            int info = binding::gees(jobz, n, 
                                     &a(0,0), a.nr(), &wr(0,0), 
                                     &wi(0,0), &vs(0,0), vs.nr(), &work_size, 
                                     -1);

            if (info != 0)
                return info;

            if (work.size() < work_size)
                work.set_size(static_cast<long>(work_size), 1);

            // compute the actual decomposition 
            info = binding::gees(jobz, n, 
                                 &a(0,0), a.nr(), &wr(0,0), 
                                 &wi(0,0), &vs(0,0), vs.nr(), &work(0,0), 
                                 work.size());

            return info;
        }

    // ------------------------------------------------------------------------------------

    }

}

// ----------------------------------------------------------------------------------------

#endif // DLIB_LAPACk_ES_Hh_