This file is indexed.

/usr/include/dlib/matrix/lapack/geqrf.h is in libdlib-dev 18.18-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// Copyright (C) 2010  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_LAPACk_GEQRF_Hh_
#define DLIB_LAPACk_GEQRF_Hh_

#include "fortran_id.h"
#include "../matrix.h"

namespace dlib
{
    namespace lapack
    {
        namespace binding
        {
            extern "C"
            {
                void DLIB_FORTRAN_ID(dgeqrf) (integer *m, integer *n, double *a, integer *
                                              lda, double *tau, double *work, integer *lwork, 
                                              integer *info);

                void DLIB_FORTRAN_ID(sgeqrf) (integer *m, integer *n, float *a, integer *
                                              lda, float *tau, float *work, integer *lwork, 
                                              integer *info);
            }

            inline int geqrf (integer m, integer n, double *a, integer lda, 
                              double *tau, double *work, integer lwork)
            {
                integer info = 0;
                DLIB_FORTRAN_ID(dgeqrf)(&m, &n, a, &lda,
                                        tau, work, &lwork, &info);
                return info;
            }

            inline int geqrf (integer m, integer n, float *a, integer lda, 
                              float *tau, float *work, integer lwork)
            {
                integer info = 0;
                DLIB_FORTRAN_ID(sgeqrf)(&m, &n, a, &lda,
                                        tau, work, &lwork, &info);
                return info;
            }


        }

    // ------------------------------------------------------------------------------------

/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGEQRF computes a QR factorization of a real M-by-N matrix A: */
/*  A = Q * R. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, the elements on and above the diagonal of the array */
/*          contain the min(M,N)-by-N upper trapezoidal matrix R (R is */
/*          upper triangular if m >= n); the elements below the diagonal, */
/*          with the array TAU, represent the orthogonal matrix Q as a */
/*          product of min(m,n) elementary reflectors (see Further */
/*          Details). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors (see Further */
/*          Details). */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,N). */
/*          For optimum performance LWORK >= N*NB, where NB is */
/*          the optimal blocksize. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a real scalar, and v is a real vector with */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
/*  and tau in TAU(i). */


    // ------------------------------------------------------------------------------------

        template <
            typename T, 
            long NR1, long NR2,
            long NC1, long NC2,
            typename MM
            >
        int geqrf (
            matrix<T,NR1,NC1,MM,column_major_layout>& a,
            matrix<T,NR2,NC2,MM,column_major_layout>& tau
        )
        {
            matrix<T,0,1,MM,column_major_layout> work;

            tau.set_size(std::min(a.nr(), a.nc()), 1);

            // figure out how big the workspace needs to be.
            T work_size = 1;
            int info = binding::geqrf(a.nr(), a.nc(), &a(0,0), a.nr(),
                                      &tau(0,0), &work_size, -1);

            if (info != 0)
                return info;

            if (work.size() < work_size)
                work.set_size(static_cast<long>(work_size), 1);

            // compute the actual decomposition 
            info = binding::geqrf(a.nr(), a.nc(), &a(0,0), a.nr(),
                                  &tau(0,0), &work(0,0), work.size());

            return info;
        }

    // ------------------------------------------------------------------------------------

    }

}

// ----------------------------------------------------------------------------------------

#endif // DLIB_LAPACk_GEQRF_Hh_