/usr/include/dlib/matrix/lapack/getrf.h is in libdlib-dev 18.18-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | // Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_LAPACk_GETRF_Hh_
#define DLIB_LAPACk_GETRF_Hh_
#include "fortran_id.h"
#include "../matrix.h"
namespace dlib
{
namespace lapack
{
namespace binding
{
extern "C"
{
void DLIB_FORTRAN_ID(dgetrf) (integer* m, integer *n, double *a,
integer* lda, integer *ipiv, integer *info);
void DLIB_FORTRAN_ID(sgetrf) (integer* m, integer *n, float *a,
integer* lda, integer *ipiv, integer *info);
}
inline int getrf (integer m, integer n, double *a,
integer lda, integer *ipiv)
{
integer info = 0;
DLIB_FORTRAN_ID(dgetrf)(&m, &n, a, &lda, ipiv, &info);
return info;
}
inline int getrf (integer m, integer n, float *a,
integer lda, integer *ipiv)
{
integer info = 0;
DLIB_FORTRAN_ID(sgetrf)(&m, &n, a, &lda, ipiv, &info);
return info;
}
}
// ------------------------------------------------------------------------------------
/* -- LAPACK routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGETRF computes an LU factorization of a general M-by-N matrix A */
/* using partial pivoting with row interchanges. */
/* The factorization has the form */
/* A = P * L * U */
/* where P is a permutation matrix, L is lower triangular with unit */
/* diagonal elements (lower trapezoidal if m > n), and U is upper */
/* triangular (upper trapezoidal if m < n). */
/* This is the right-looking Level 3 BLAS version of the algorithm. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the M-by-N matrix to be factored. */
/* On exit, the factors L and U from the factorization */
/* A = P*L*U; the unit diagonal elements of L are not stored. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* IPIV (output) INTEGER array, dimension (min(M,N)) */
/* The pivot indices; for 1 <= i <= min(M,N), row i of the */
/* matrix was interchanged with row IPIV(i). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, U(i,i) is exactly zero. The factorization */
/* has been completed, but the factor U is exactly */
/* singular, and division by zero will occur if it is used */
/* to solve a system of equations. */
// ------------------------------------------------------------------------------------
template <
typename T,
long NR1, long NR2,
long NC1, long NC2,
typename MM,
typename layout
>
int getrf (
matrix<T,NR1,NC1,MM,column_major_layout>& a,
matrix<integer,NR2,NC2,MM,layout>& ipiv
)
{
const long m = a.nr();
const long n = a.nc();
ipiv.set_size(std::min(m,n), 1);
// compute the actual decomposition
return binding::getrf(m, n, &a(0,0), a.nr(), &ipiv(0,0));
}
// ------------------------------------------------------------------------------------
}
}
// ----------------------------------------------------------------------------------------
#endif // DLIB_LAPACk_GETRF_Hh_
|