/usr/include/dlib/matrix/lapack/potrf.h is in libdlib-dev 18.18-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | // Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_LAPACk_POTRF_Hh_
#define DLIB_LAPACk_POTRF_Hh_
#include "fortran_id.h"
#include "../matrix.h"
namespace dlib
{
namespace lapack
{
namespace binding
{
extern "C"
{
void DLIB_FORTRAN_ID(dpotrf) (char *uplo, integer *n, double *a,
integer* lda, integer *info);
void DLIB_FORTRAN_ID(spotrf) (char *uplo, integer *n, float *a,
integer* lda, integer *info);
}
inline int potrf (char uplo, integer n, double *a, integer lda)
{
integer info = 0;
DLIB_FORTRAN_ID(dpotrf)(&uplo, &n, a, &lda, &info);
return info;
}
inline int potrf (char uplo, integer n, float *a, integer lda)
{
integer info = 0;
DLIB_FORTRAN_ID(spotrf)(&uplo, &n, a, &lda, &info);
return info;
}
}
// ------------------------------------------------------------------------------------
/* -- LAPACK routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DPOTRF computes the Cholesky factorization of a real symmetric */
/* positive definite matrix A. */
/* The factorization has the form */
/* A = U**T * U, if UPLO = 'U', or */
/* A = L * L**T, if UPLO = 'L', */
/* where U is an upper triangular matrix and L is lower triangular. */
/* This is the block version of the algorithm, calling Level 3 BLAS. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
/* N-by-N upper triangular part of A contains the upper */
/* triangular part of the matrix A, and the strictly lower */
/* triangular part of A is not referenced. If UPLO = 'L', the */
/* leading N-by-N lower triangular part of A contains the lower */
/* triangular part of the matrix A, and the strictly upper */
/* triangular part of A is not referenced. */
/* On exit, if INFO = 0, the factor U or L from the Cholesky */
/* factorization A = U**T*U or A = L*L**T. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, the leading minor of order i is not */
/* positive definite, and the factorization could not be */
/* completed. */
// ------------------------------------------------------------------------------------
template <
typename T,
long NR1,
long NC1,
typename MM
>
int potrf (
char uplo,
matrix<T,NR1,NC1,MM,column_major_layout>& a
)
{
// compute the actual decomposition
int info = binding::potrf(uplo, a.nr(), &a(0,0), a.nr());
// If it fails part way though the factorization then make sure
// the end of the matrix gets properly initialized with zeros.
if (info > 0)
{
if (uplo == 'L')
set_colm(a, range(info-1, a.nc()-1)) = 0;
else
set_rowm(a, range(info-1, a.nr()-1)) = 0;
}
return info;
}
// ------------------------------------------------------------------------------------
template <
typename T,
long NR1,
long NC1,
typename MM
>
int potrf (
char uplo,
matrix<T,NR1,NC1,MM,row_major_layout>& a
)
{
// since we are working on a row major order matrix we need to ask
// LAPACK for the transpose of whatever the user asked for.
if (uplo == 'L')
uplo = 'U';
else
uplo = 'L';
// compute the actual decomposition
int info = binding::potrf(uplo, a.nr(), &a(0,0), a.nr());
// If it fails part way though the factorization then make sure
// the end of the matrix gets properly initialized with zeros.
if (info > 0)
{
if (uplo == 'U')
set_colm(a, range(info-1, a.nc()-1)) = 0;
else
set_rowm(a, range(info-1, a.nr()-1)) = 0;
}
return info;
}
// ------------------------------------------------------------------------------------
}
}
// ----------------------------------------------------------------------------------------
#endif // DLIB_LAPACk_POTRF_Hh_
|