This file is indexed.

/usr/include/dlib/matrix/lapack/syevr.h is in libdlib-dev 18.18-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
// Copyright (C) 2010  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_LAPACk_EVR_Hh_
#define DLIB_LAPACk_EVR_Hh_

#include "fortran_id.h"
#include "../matrix.h"

namespace dlib
{
    namespace lapack
    {
        namespace binding
        {
            extern "C"
            {
                void DLIB_FORTRAN_ID(dsyevr) (char *jobz, char *range, char *uplo, integer *n, 
                                              double *a, integer *lda, double *vl, double *vu, integer * il, 
                                              integer *iu, double *abstol, integer *m, double *w, 
                                              double *z_, integer *ldz, integer *isuppz, double *work, 
                                              integer *lwork, integer *iwork, integer *liwork, integer *info);

                void DLIB_FORTRAN_ID(ssyevr) (char *jobz, char *range, char *uplo, integer *n, 
                                              float *a, integer *lda, float *vl, float *vu, integer * il, 
                                              integer *iu, float *abstol, integer *m, float *w, 
                                              float *z_, integer *ldz, integer *isuppz, float *work, 
                                              integer *lwork, integer *iwork, integer *liwork, integer *info);
            }

            inline int syevr (char jobz, char range, char uplo, integer n, 
                              double* a, integer lda, double vl, double vu, integer il, 
                              integer iu, double abstol, integer *m, double *w, 
                              double *z, integer ldz, integer *isuppz, double *work, 
                              integer lwork, integer *iwork, integer liwork)
            {
                integer info = 0;
                DLIB_FORTRAN_ID(dsyevr)(&jobz, &range, &uplo, &n,
                                        a, &lda, &vl, &vu, &il,
                                        &iu, &abstol, m, w,
                                        z, &ldz, isuppz, work,
                                        &lwork, iwork, &liwork, &info);
                return info;
            }

            inline int syevr (char jobz, char range, char uplo, integer n, 
                              float* a, integer lda, float vl, float vu, integer il, 
                              integer iu, float abstol, integer *m, float *w, 
                              float *z, integer ldz, integer *isuppz, float *work, 
                              integer lwork, integer *iwork, integer liwork)
            {
                integer info = 0;
                DLIB_FORTRAN_ID(ssyevr)(&jobz, &range, &uplo, &n,
                                        a, &lda, &vl, &vu, &il,
                                        &iu, &abstol, m, w,
                                        z, &ldz, isuppz, work,
                                        &lwork, iwork, &liwork, &info);
                return info;
            }

        }

    // ------------------------------------------------------------------------------------

        /*

*  -- LAPACK driver routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, RANGE, UPLO
      INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
      DOUBLE PRECISION   ABSTOL, VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            ISUPPZ( * ), IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  DSYEVR computes selected eigenvalues and, optionally, eigenvectors
*  of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
*  selected by specifying either a range of values or a range of
*  indices for the desired eigenvalues.
*
*  DSYEVR first reduces the matrix A to tridiagonal form T with a call
*  to DSYTRD.  Then, whenever possible, DSYEVR calls DSTEMR to compute
*  the eigenspectrum using Relatively Robust Representations.  DSTEMR
*  computes eigenvalues by the dqds algorithm, while orthogonal
*  eigenvectors are computed from various "good" L D L^T representations
*  (also known as Relatively Robust Representations). Gram-Schmidt
*  orthogonalization is avoided as far as possible. More specifically,
*  the various steps of the algorithm are as follows.
*
*  For each unreduced block (submatrix) of T,
*     (a) Compute T - sigma I  = L D L^T, so that L and D
*         define all the wanted eigenvalues to high relative accuracy.
*         This means that small relative changes in the entries of D and L
*         cause only small relative changes in the eigenvalues and
*         eigenvectors. The standard (unfactored) representation of the
*         tridiagonal matrix T does not have this property in general.
*     (b) Compute the eigenvalues to suitable accuracy.
*         If the eigenvectors are desired, the algorithm attains full
*         accuracy of the computed eigenvalues only right before
*         the corresponding vectors have to be computed, see steps c) and d).
*     (c) For each cluster of close eigenvalues, select a new
*         shift close to the cluster, find a new factorization, and refine
*         the shifted eigenvalues to suitable accuracy.
*     (d) For each eigenvalue with a large enough relative separation compute
*         the corresponding eigenvector by forming a rank revealing twisted
*         factorization. Go back to (c) for any clusters that remain.
*
*  The desired accuracy of the output can be specified by the input
*  parameter ABSTOL.
*
*  For more details, see DSTEMR's documentation and:
*  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
*    to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
*    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
*  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
*    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
*    2004.  Also LAPACK Working Note 154.
*  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
*    tridiagonal eigenvalue/eigenvector problem",
*    Computer Science Division Technical Report No. UCB/CSD-97-971,
*    UC Berkeley, May 1997.
*
*
*  Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested
*  on machines which conform to the ieee-754 floating point standard.
*  DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and
*  when partial spectrum requests are made.
*
*  Normal execution of DSTEMR may create NaNs and infinities and
*  hence may abort due to a floating point exception in environments
*  which do not handle NaNs and infinities in the ieee standard default
*  manner.
*
*  Arguments
*  =========
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  RANGE   (input) CHARACTER*1
*          = 'A': all eigenvalues will be found.
*          = 'V': all eigenvalues in the half-open interval (VL,VU]
*                 will be found.
*          = 'I': the IL-th through IU-th eigenvalues will be found.
********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
********** DSTEIN are called
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the
*          leading N-by-N upper triangular part of A contains the
*          upper triangular part of the matrix A.  If UPLO = 'L',
*          the leading N-by-N lower triangular part of A contains
*          the lower triangular part of the matrix A.
*          On exit, the lower triangle (if UPLO='L') or the upper
*          triangle (if UPLO='U') of A, including the diagonal, is
*          destroyed.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  VL      (input) DOUBLE PRECISION
*  VU      (input) DOUBLE PRECISION
*          If RANGE='V', the lower and upper bounds of the interval to
*          be searched for eigenvalues. VL < VU.
*          Not referenced if RANGE = 'A' or 'I'.
*
*  IL      (input) INTEGER
*  IU      (input) INTEGER
*          If RANGE='I', the indices (in ascending order) of the
*          smallest and largest eigenvalues to be returned.
*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
*          Not referenced if RANGE = 'A' or 'V'.
*
*  ABSTOL  (input) DOUBLE PRECISION
*          The absolute error tolerance for the eigenvalues.
*          An approximate eigenvalue is accepted as converged
*          when it is determined to lie in an interval [a,b]
*          of width less than or equal to
*
*                  ABSTOL + EPS *   max( |a|,|b| ) ,
*
*          where EPS is the machine precision.  If ABSTOL is less than
*          or equal to zero, then  EPS*|T|  will be used in its place,
*          where |T| is the 1-norm of the tridiagonal matrix obtained
*          by reducing A to tridiagonal form.
*
*          See "Computing Small Singular Values of Bidiagonal Matrices
*          with Guaranteed High Relative Accuracy," by Demmel and
*          Kahan, LAPACK Working Note #3.
*
*          If high relative accuracy is important, set ABSTOL to
*          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
*          eigenvalues are computed to high relative accuracy when
*          possible in future releases.  The current code does not
*          make any guarantees about high relative accuracy, but
*          future releases will. See J. Barlow and J. Demmel,
*          "Computing Accurate Eigensystems of Scaled Diagonally
*          Dominant Matrices", LAPACK Working Note #7, for a discussion
*          of which matrices define their eigenvalues to high relative
*          accuracy.
*
*  M       (output) INTEGER
*          The total number of eigenvalues found.  0 <= M <= N.
*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*
*  W       (output) DOUBLE PRECISION array, dimension (N)
*          The first M elements contain the selected eigenvalues in
*          ascending order.
*
*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
*          contain the orthonormal eigenvectors of the matrix A
*          corresponding to the selected eigenvalues, with the i-th
*          column of Z holding the eigenvector associated with W(i).
*          If JOBZ = 'N', then Z is not referenced.
*          Note: the user must ensure that at least max(1,M) columns are
*          supplied in the array Z; if RANGE = 'V', the exact value of M
*          is not known in advance and an upper bound must be used.
*          Supplying N columns is always safe.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          JOBZ = 'V', LDZ >= max(1,N).
*
*  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
*          The support of the eigenvectors in Z, i.e., the indices
*          indicating the nonzero elements in Z. The i-th eigenvector
*          is nonzero only in elements ISUPPZ( 2*i-1 ) through
*          ISUPPZ( 2*i ).
********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.  LWORK >= max(1,26*N).
*          For optimal efficiency, LWORK >= (NB+6)*N,
*          where NB is the max of the blocksize for DSYTRD and DORMTR
*          returned by ILAENV.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
*          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
*
*          If LIWORK = -1, then a workspace query is assumed; the
*          routine only calculates the optimal size of the IWORK array,
*          returns this value as the first entry of the IWORK array, and
*          no error message related to LIWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  Internal error
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Inderjit Dhillon, IBM Almaden, USA
*     Osni Marques, LBNL/NERSC, USA
*     Ken Stanley, Computer Science Division, University of
*       California at Berkeley, USA
*     Jason Riedy, Computer Science Division, University of
*       California at Berkeley, USA
*
* =====================================================================

        */

    // ------------------------------------------------------------------------------------

        template <
            typename T, 
            long NR1, long NR2, long NR3, long NR4,
            long NC1, long NC2, long NC3, long NC4,
            typename MM
            >
        int syevr (
            const char jobz,
            const char range,
            const char uplo,
            matrix<T,NR1,NC1,MM,column_major_layout>& a,
            const double vl,
            const double vu,
            const integer il,
            const integer iu,
            const double abstol,
            integer& num_eigenvalues_found,
            matrix<T,NR2,NC2,MM,column_major_layout>& w,
            matrix<T,NR3,NC3,MM,column_major_layout>& z,
            matrix<integer,NR4,NC4,MM,column_major_layout>& isuppz
        )
        {
            matrix<T,0,1,MM,column_major_layout> work;
            matrix<integer,0,1,MM,column_major_layout> iwork;

            const long n = a.nr();

            w.set_size(n,1);

            isuppz.set_size(2*n, 1);

            if (jobz == 'V')
            {
                z.set_size(n,n);
            }
            else
            {
                z.set_size(NR3?NR3:1, NC3?NC3:1);
            }

            // figure out how big the workspace needs to be.
            T work_size = 1;
            integer iwork_size = 1;
            int info = binding::syevr(jobz, range, uplo, n, &a(0,0),
                                      a.nr(), vl, vu, il, iu, abstol, &num_eigenvalues_found,
                                      &w(0,0), &z(0,0), z.nr(), &isuppz(0,0), &work_size, -1,
                                      &iwork_size, -1);

            if (info != 0)
                return info;

            if (work.size() < work_size)
                work.set_size(static_cast<long>(work_size), 1);
            if (iwork.size() < iwork_size)
                iwork.set_size(iwork_size, 1);

            // compute the actual decomposition 
            info = binding::syevr(jobz, range, uplo, n, &a(0,0),
                                  a.nr(), vl, vu, il, iu, abstol, &num_eigenvalues_found,
                                  &w(0,0), &z(0,0), z.nr(), &isuppz(0,0), &work(0,0), work.size(),
                                  &iwork(0,0), iwork.size());


            return info;
        }

    // ------------------------------------------------------------------------------------

        template <
            typename T, 
            long NR1, long NR2, long NR3, long NR4,
            long NC1, long NC2, long NC3, long NC4,
            typename MM
            >
        int syevr (
            const char jobz,
            const char range,
            char uplo,
            matrix<T,NR1,NC1,MM,row_major_layout>& a,
            const double vl,
            const double vu,
            const integer il,
            const integer iu,
            const double abstol,
            integer& num_eigenvalues_found,
            matrix<T,NR2,NC2,MM,row_major_layout>& w,
            matrix<T,NR3,NC3,MM,row_major_layout>& z,
            matrix<integer,NR4,NC4,MM,row_major_layout>& isuppz
        )
        {
            matrix<T,0,1,MM,row_major_layout> work;
            matrix<integer,0,1,MM,row_major_layout> iwork;

            if (uplo == 'L')
                uplo = 'U';
            else
                uplo = 'L';

            const long n = a.nr();

            w.set_size(n,1);

            isuppz.set_size(2*n, 1);

            if (jobz == 'V')
            {
                z.set_size(n,n);
            }
            else
            {
                z.set_size(NR3?NR3:1, NC3?NC3:1);
            }

            // figure out how big the workspace needs to be.
            T work_size = 1;
            integer iwork_size = 1;
            int info = binding::syevr(jobz, range, uplo, n, &a(0,0),
                                      a.nc(), vl, vu, il, iu, abstol, &num_eigenvalues_found,
                                      &w(0,0), &z(0,0), z.nc(), &isuppz(0,0), &work_size, -1,
                                      &iwork_size, -1);

            if (info != 0)
                return info;

            if (work.size() < work_size)
                work.set_size(static_cast<long>(work_size), 1);
            if (iwork.size() < iwork_size)
                iwork.set_size(iwork_size, 1);

            // compute the actual decomposition 
            info = binding::syevr(jobz, range, uplo, n, &a(0,0),
                                  a.nc(), vl, vu, il, iu, abstol, &num_eigenvalues_found,
                                  &w(0,0), &z(0,0), z.nc(), &isuppz(0,0), &work(0,0), work.size(),
                                  &iwork(0,0), iwork.size());

            z = trans(z);

            return info;
        }

    // ------------------------------------------------------------------------------------

    }

}

// ----------------------------------------------------------------------------------------

#endif // DLIB_LAPACk_EVR_Hh_