This file is indexed.

/usr/include/dlib/matrix/matrix_qr.h is in libdlib-dev 18.18-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
// Copyright (C) 2009  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
// This code was adapted from code from the JAMA part of NIST's TNT library.
//    See: http://math.nist.gov/tnt/ 
#ifndef DLIB_MATRIX_QR_DECOMPOSITION_H
#define DLIB_MATRIX_QR_DECOMPOSITION_H

#include "matrix.h" 
#include "matrix_utilities.h"
#include "matrix_subexp.h"

#ifdef DLIB_USE_LAPACK
#include "lapack/geqrf.h"
#include "lapack/ormqr.h"
#endif

#include "matrix_trsm.h"

namespace dlib 
{

    template <
        typename matrix_exp_type
        >
    class qr_decomposition 
    {

    public:

        const static long NR = matrix_exp_type::NR;
        const static long NC = matrix_exp_type::NC;
        typedef typename matrix_exp_type::type type;
        typedef typename matrix_exp_type::mem_manager_type mem_manager_type;
        typedef typename matrix_exp_type::layout_type layout_type;

        typedef matrix<type,0,0,mem_manager_type,layout_type>  matrix_type;

        // You have supplied an invalid type of matrix_exp_type.  You have
        // to use this object with matrices that contain float or double type data.
        COMPILE_TIME_ASSERT((is_same_type<float, type>::value || 
                             is_same_type<double, type>::value ));



        template <typename EXP>
        qr_decomposition(
            const matrix_exp<EXP>& A
        );

        bool is_full_rank(
        ) const;

        long nr(
        ) const;

        long nc(
        ) const;

        const matrix_type get_r (
        ) const;

        const matrix_type get_q (
        ) const;

        void get_q (
            matrix_type& Q
        ) const;

        template <typename EXP>
        const matrix_type solve (
            const matrix_exp<EXP>& B
        ) const;

    private:

#ifndef DLIB_USE_LAPACK
        template <typename EXP>
        const matrix_type solve_mat (
            const matrix_exp<EXP>& B
        ) const;

        template <typename EXP>
        const matrix_type solve_vect (
            const matrix_exp<EXP>& B
        ) const;
#endif


        /** Array for internal storage of decomposition.
        @serial internal array storage.
        */
        matrix<type,0,0,mem_manager_type,column_major_layout> QR_;

        /** Row and column dimensions.
        @serial column dimension.
        @serial row dimension.
        */
        long m, n;

        /** Array for internal storage of diagonal of R.
        @serial diagonal of R.
        */
        typedef matrix<type,0,1,mem_manager_type,column_major_layout> column_vector_type;
        column_vector_type tau;
        column_vector_type Rdiag;


    };

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
//                                      Member functions
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    template <typename EXP>
    qr_decomposition<matrix_exp_type>::
    qr_decomposition(
        const matrix_exp<EXP>& A
    )		
    {
        COMPILE_TIME_ASSERT((is_same_type<type, typename EXP::type>::value));

        // make sure requires clause is not broken
        DLIB_ASSERT(A.nr() >= A.nc() && A.size() > 0,
            "\tqr_decomposition::qr_decomposition(A)"
            << "\n\tInvalid inputs were given to this function"
            << "\n\tA.nr():   " << A.nr()
            << "\n\tA.nc():   " << A.nc()
            << "\n\tA.size(): " << A.size()
            << "\n\tthis:     " << this
            );


        QR_ = A;
        m = A.nr();
        n = A.nc();

#ifdef DLIB_USE_LAPACK

        lapack::geqrf(QR_, tau);
        Rdiag = diag(QR_);

#else
        Rdiag.set_size(n);
        long i=0, j=0, k=0;

        // Main loop.
        for (k = 0; k < n; k++) 
        {
            // Compute 2-norm of k-th column without under/overflow.
            type nrm = 0;
            for (i = k; i < m; i++) 
            {
                nrm = hypot(nrm,QR_(i,k));
            }

            if (nrm != 0.0) 
            {
                // Form k-th Householder vector.
                if (QR_(k,k) < 0) 
                {
                    nrm = -nrm;
                }
                for (i = k; i < m; i++) 
                {
                    QR_(i,k) /= nrm;
                }
                QR_(k,k) += 1.0;

                // Apply transformation to remaining columns.
                for (j = k+1; j < n; j++) 
                {
                    type s = 0.0; 
                    for (i = k; i < m; i++) 
                    {
                        s += QR_(i,k)*QR_(i,j);
                    }
                    s = -s/QR_(k,k);
                    for (i = k; i < m; i++) 
                    {
                        QR_(i,j) += s*QR_(i,k);
                    }
                }
            }
            Rdiag(k) = -nrm;
        }
#endif
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    long qr_decomposition<matrix_exp_type>::
    nr (
    ) const
    {
        return m;
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    long qr_decomposition<matrix_exp_type>::
    nc (
    ) const
    {
        return n;
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    bool qr_decomposition<matrix_exp_type>::
    is_full_rank(
    ) const		
    {
        type eps = max(abs(Rdiag));
        if (eps != 0)
            eps *= std::sqrt(std::numeric_limits<type>::epsilon())/100;
        else
            eps = 1;  // there is no max so just use 1

        // check if any of the elements of Rdiag are effectively 0
        return min(abs(Rdiag)) > eps;
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    const typename qr_decomposition<matrix_exp_type>::matrix_type qr_decomposition<matrix_exp_type>::
    get_r(
    ) const
    {
        matrix_type R(n,n);
        for (long i = 0; i < n; i++) 
        {
            for (long j = 0; j < n; j++) 
            {
                if (i < j) 
                {
                    R(i,j) = QR_(i,j);
                } 
                else if (i == j) 
                {
                    R(i,j) = Rdiag(i);
                } 
                else 
                {
                    R(i,j) = 0.0;
                }
            }
        }
        return R;
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    const typename qr_decomposition<matrix_exp_type>::matrix_type qr_decomposition<matrix_exp_type>::
    get_q(
    ) const
    {
        matrix_type Q;
        get_q(Q);
        return Q;
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    void qr_decomposition<matrix_exp_type>::
    get_q(
        matrix_type& X
    ) const
    {
#ifdef DLIB_USE_LAPACK
        // Take only the first n columns of an identity matrix.  This way
        // X ends up being an m by n matrix.
        X = colm(identity_matrix<type>(m), range(0,n-1));

        // Compute Y = Q*X 
        lapack::ormqr('L','N', QR_, tau, X);

#else
        long i=0, j=0, k=0;

        X.set_size(m,n);
        for (k = n-1; k >= 0; k--) 
        {
            for (i = 0; i < m; i++) 
            {
                X(i,k) = 0.0;
            }
            X(k,k) = 1.0;
            for (j = k; j < n; j++) 
            {
                if (QR_(k,k) != 0) 
                {
                    type s = 0.0;
                    for (i = k; i < m; i++) 
                    {
                        s += QR_(i,k)*X(i,j);
                    }
                    s = -s/QR_(k,k);
                    for (i = k; i < m; i++) 
                    {
                        X(i,j) += s*QR_(i,k);
                    }
                }
            }
        }
#endif
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    template <typename EXP>
    const typename qr_decomposition<matrix_exp_type>::matrix_type qr_decomposition<matrix_exp_type>::
    solve(
        const matrix_exp<EXP>& B
    ) const
    {
        COMPILE_TIME_ASSERT((is_same_type<type, typename EXP::type>::value));

        // make sure requires clause is not broken
        DLIB_ASSERT(B.nr() == nr(),
            "\tconst matrix_type qr_decomposition::solve(B)"
            << "\n\tInvalid inputs were given to this function"
            << "\n\tB.nr():         " << B.nr()
            << "\n\tnr():           " << nr()
            << "\n\tthis:           " << this
            );

#ifdef DLIB_USE_LAPACK

        using namespace blas_bindings;
        matrix<type,0,0,mem_manager_type,column_major_layout> X(B);
        // Compute Y = transpose(Q)*B
        lapack::ormqr('L','T',QR_, tau, X);
        // Solve R*X = Y;
        triangular_solver(CblasLeft, CblasUpper, CblasNoTrans, CblasNonUnit, QR_, X, n);

        /* return n x nx portion of X */
        return subm(X,0,0,n,B.nc());

#else
        // just call the right version of the solve function
        if (B.nc() == 1)
            return solve_vect(B);
        else
            return solve_mat(B);
#endif
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
//                           Private member functions
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

#ifndef DLIB_USE_LAPACK

    template <typename matrix_exp_type>
    template <typename EXP>
    const typename qr_decomposition<matrix_exp_type>::matrix_type qr_decomposition<matrix_exp_type>::
    solve_vect(
        const matrix_exp<EXP>& B
    ) const
    {

        column_vector_type x(B);

        // Compute Y = transpose(Q)*B
        for (long k = 0; k < n; k++) 
        {
            type s = 0.0; 
            for (long i = k; i < m; i++) 
            {
                s += QR_(i,k)*x(i);
            }
            s = -s/QR_(k,k);
            for (long i = k; i < m; i++) 
            {
                x(i) += s*QR_(i,k);
            }
        }
        // Solve R*X = Y;
        for (long k = n-1; k >= 0; k--) 
        {
            x(k) /= Rdiag(k);
            for (long i = 0; i < k; i++) 
            {
                x(i) -= x(k)*QR_(i,k);
            }
        }


        /* return n x 1 portion of x */
        return colm(x,0,n);
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_exp_type>
    template <typename EXP>
    const typename qr_decomposition<matrix_exp_type>::matrix_type qr_decomposition<matrix_exp_type>::
    solve_mat(
        const matrix_exp<EXP>& B
    ) const
    {
        const long nx = B.nc(); 
        matrix_type X(B);
        long i=0, j=0, k=0;

        // Compute Y = transpose(Q)*B
        for (k = 0; k < n; k++) 
        {
            for (j = 0; j < nx; j++) 
            {
                type s = 0.0; 
                for (i = k; i < m; i++) 
                {
                    s += QR_(i,k)*X(i,j);
                }
                s = -s/QR_(k,k);
                for (i = k; i < m; i++) 
                {
                    X(i,j) += s*QR_(i,k);
                }
            }
        }
        // Solve R*X = Y;
        for (k = n-1; k >= 0; k--) 
        {
            for (j = 0; j < nx; j++) 
            {
                X(k,j) /= Rdiag(k);
            }
            for (i = 0; i < k; i++) 
            {
                for (j = 0; j < nx; j++) 
                {
                    X(i,j) -= X(k,j)*QR_(i,k);
                }
            }
        }

        /* return n x nx portion of X */
        return subm(X,0,0,n,nx);
    }

// ----------------------------------------------------------------------------------------

#endif // DLIB_USE_LAPACK not defined

} 

#endif // DLIB_MATRIX_QR_DECOMPOSITION_H