This file is indexed.

/usr/include/dlib/matrix/matrix_trsm.h is in libdlib-dev 18.18-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
// Copyright (C) 2010  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_MATRiX_TRSM_Hh_
#define DLIB_MATRiX_TRSM_Hh_
#include "lapack/fortran_id.h"
#include "cblas_constants.h"

namespace dlib
{
    namespace blas_bindings
    {

        extern "C"
        {
            void cblas_strsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
                             const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,
                             const enum CBLAS_DIAG Diag, const int M, const int N,
                             const float alpha, const float *A, const int lda,
                             float *B, const int ldb);

            void cblas_dtrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
                             const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,
                             const enum CBLAS_DIAG Diag, const int M, const int N,
                             const double alpha, const double *A, const int lda,
                             double *B, const int ldb);
        }

    // ------------------------------------------------------------------------------------

/*  Purpose */
/*  ======= */

/*  DTRSM  solves one of the matrix equations */

/*     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B, */

/*  where alpha is a scalar, X and B are m by n matrices, A is a unit, or */
/*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of */

/*     op( A ) = A   or   op( A ) = A'. */

/*  The matrix X is overwritten on B. */

/*  Arguments */
/*  ========== */

/*  SIDE   - CHARACTER*1. */
/*           On entry, SIDE specifies whether op( A ) appears on the left */
/*           or right of X as follows: */

/*              SIDE = 'L' or 'l'   op( A )*X = alpha*B. */

/*              SIDE = 'R' or 'r'   X*op( A ) = alpha*B. */

/*           Unchanged on exit. */

/*  UPLO   - CHARACTER*1. */
/*           On entry, UPLO specifies whether the matrix A is an upper or */
/*           lower triangular matrix as follows: */

/*              UPLO = 'U' or 'u'   A is an upper triangular matrix. */

/*              UPLO = 'L' or 'l'   A is a lower triangular matrix. */

/*           Unchanged on exit. */

/*  TRANSA - CHARACTER*1. */
/*           On entry, TRANSA specifies the form of op( A ) to be used in */
/*           the matrix multiplication as follows: */

/*              TRANSA = 'N' or 'n'   op( A ) = A. */

/*              TRANSA = 'T' or 't'   op( A ) = A'. */

/*              TRANSA = 'C' or 'c'   op( A ) = A'. */

/*           Unchanged on exit. */

/*  DIAG   - CHARACTER*1. */
/*           On entry, DIAG specifies whether or not A is unit triangular */
/*           as follows: */

/*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. */

/*              DIAG = 'N' or 'n'   A is not assumed to be unit */
/*                                  triangular. */

/*           Unchanged on exit. */

/*  M      - INTEGER. */
/*           On entry, M specifies the number of rows of B. M must be at */
/*           least zero. */
/*           Unchanged on exit. */

/*  N      - INTEGER. */
/*           On entry, N specifies the number of columns of B.  N must be */
/*           at least zero. */
/*           Unchanged on exit. */

/*  ALPHA  - DOUBLE PRECISION. */
/*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is */
/*           zero then  A is not referenced and  B need not be set before */
/*           entry. */
/*           Unchanged on exit. */

/*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m */
/*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'. */
/*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k */
/*           upper triangular part of the array  A must contain the upper */
/*           triangular matrix  and the strictly lower triangular part of */
/*           A is not referenced. */
/*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k */
/*           lower triangular part of the array  A must contain the lower */
/*           triangular matrix  and the strictly upper triangular part of */
/*           A is not referenced. */
/*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of */
/*           A  are not referenced either,  but are assumed to be  unity. */
/*           Unchanged on exit. */

/*  LDA    - INTEGER. */
/*           On entry, LDA specifies the first dimension of A as declared */
/*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then */
/*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r' */
/*           then LDA must be at least max( 1, n ). */
/*           Unchanged on exit. */

/*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ). */
/*           Before entry,  the leading  m by n part of the array  B must */
/*           contain  the  right-hand  side  matrix  B,  and  on exit  is */
/*           overwritten by the solution matrix  X. */

/*  LDB    - INTEGER. */
/*           On entry, LDB specifies the first dimension of B as declared */
/*           in  the  calling  (sub)  program.   LDB  must  be  at  least */
/*           max( 1, m ). */
/*           Unchanged on exit. */


/*  Level 3 Blas routine. */


/*  -- Written on 8-February-1989. */
/*     Jack Dongarra, Argonne National Laboratory. */
/*     Iain Duff, AERE Harwell. */
/*     Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/*     Sven Hammarling, Numerical Algorithms Group Ltd. */

        template <typename T>
        void local_trsm(
            const enum CBLAS_ORDER Order,
            enum CBLAS_SIDE Side,
            enum CBLAS_UPLO Uplo, 
            const enum CBLAS_TRANSPOSE TransA,
            const enum CBLAS_DIAG Diag, 
            long m, 
            long n, 
            T alpha, 
            const T *a, 
            long lda, 
            T *b, 
            long ldb
        )
        /*!
            This is a copy of the dtrsm routine from the netlib.org BLAS which was run though
            f2c and converted into this form for use when a BLAS library is not available.
        !*/
        {
            if (Order == CblasRowMajor)
            {
                // since row major ordering looks like transposition to FORTRAN we need to flip a
                // few things.
                if (Side == CblasLeft)
                    Side = CblasRight;
                else
                    Side = CblasLeft;

                if (Uplo == CblasUpper)
                    Uplo = CblasLower;
                else
                    Uplo = CblasUpper;

                std::swap(m,n);
            }

            /* System generated locals */
            long a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;

            /* Local variables */
            long i__, j, k, info;
            T temp;
            bool lside;
            long nrowa;
            bool upper;
            bool nounit;

            /* Parameter adjustments */
            a_dim1 = lda;
            a_offset = 1 + a_dim1;
            a -= a_offset;
            b_dim1 = ldb;
            b_offset = 1 + b_dim1;
            b -= b_offset;

            /* Function Body */
            lside = (Side == CblasLeft);
            if (lside) 
            {
                nrowa = m;
            } else 
            {
                nrowa = n;
            }
            nounit = (Diag == CblasNonUnit); 
            upper = (Uplo == CblasUpper); 

            info = 0;
            if (! lside && ! (Side == CblasRight)) {
                info = 1;
            } else if (! upper && !(Uplo == CblasLower) ) {
                info = 2;
            } else if (!(TransA == CblasNoTrans) && 
                       !(TransA == CblasTrans) && 
                       !(TransA == CblasConjTrans))  {
                info = 3;
            } else if (!(Diag == CblasUnit) && 
                       !(Diag == CblasNonUnit) ) {
                info = 4;
            } else if (m < 0) {
                info = 5;
            } else if (n < 0) {
                info = 6;
            } else if (lda < std::max<long>(1,nrowa)) {
                info = 9;
            } else if (ldb < std::max<long>(1,m)) {
                info = 11;
            }
            DLIB_CASSERT( info == 0, "Invalid inputs given to local_trsm");

            /*     Quick return if possible. */

            if (m == 0 || n == 0) {
                return;
            }

            /*     And when  alpha.eq.zero. */

            if (alpha == 0.) {
                i__1 = n;
                for (j = 1; j <= i__1; ++j) {
                    i__2 = m;
                    for (i__ = 1; i__ <= i__2; ++i__) {
                        b[i__ + j * b_dim1] = 0.;
                        /* L10: */
                    }
                    /* L20: */
                }
                return;
            }

            /*     Start the operations. */

            if (lside) {
                if (TransA == CblasNoTrans) {

                    /*           Form  B := alpha*inv( A )*B. */

                    if (upper) {
                        i__1 = n;
                        for (j = 1; j <= i__1; ++j) {
                            if (alpha != 1.) {
                                i__2 = m;
                                for (i__ = 1; i__ <= i__2; ++i__) {
                                    b[i__ + j * b_dim1] = alpha * b[i__ + j * b_dim1]
                                        ;
                                    /* L30: */
                                }
                            }
                            for (k = m; k >= 1; --k) {
                                if (b[k + j * b_dim1] != 0.) {
                                    if (nounit) {
                                        b[k + j * b_dim1] /= a[k + k * a_dim1];
                                    }
                                    i__2 = k - 1;
                                    for (i__ = 1; i__ <= i__2; ++i__) {
                                        b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
                                            i__ + k * a_dim1];
                                        /* L40: */
                                    }
                                }
                                /* L50: */
                            }
                            /* L60: */
                        }
                    } else {
                        i__1 = n;
                        for (j = 1; j <= i__1; ++j) {
                            if (alpha != 1.) {
                                i__2 = m;
                                for (i__ = 1; i__ <= i__2; ++i__) {
                                    b[i__ + j * b_dim1] = alpha * b[i__ + j * b_dim1]
                                        ;
                                    /* L70: */
                                }
                            }
                            i__2 = m;
                            for (k = 1; k <= i__2; ++k) {
                                if (b[k + j * b_dim1] != 0.) {
                                    if (nounit) {
                                        b[k + j * b_dim1] /= a[k + k * a_dim1];
                                    }
                                    i__3 = m;
                                    for (i__ = k + 1; i__ <= i__3; ++i__) {
                                        b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
                                            i__ + k * a_dim1];
                                        /* L80: */
                                    }
                                }
                                /* L90: */
                            }
                            /* L100: */
                        }
                    }
                } else {

                    /*           Form  B := alpha*inv( A' )*B. */

                    if (upper) {
                        i__1 = n;
                        for (j = 1; j <= i__1; ++j) {
                            i__2 = m;
                            for (i__ = 1; i__ <= i__2; ++i__) {
                                temp = alpha * b[i__ + j * b_dim1];
                                i__3 = i__ - 1;
                                for (k = 1; k <= i__3; ++k) {
                                    temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
                                    /* L110: */
                                }
                                if (nounit) {
                                    temp /= a[i__ + i__ * a_dim1];
                                }
                                b[i__ + j * b_dim1] = temp;
                                /* L120: */
                            }
                            /* L130: */
                        }
                    } else {
                        i__1 = n;
                        for (j = 1; j <= i__1; ++j) {
                            for (i__ = m; i__ >= 1; --i__) {
                                temp = alpha * b[i__ + j * b_dim1];
                                i__2 = m;
                                for (k = i__ + 1; k <= i__2; ++k) {
                                    temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
                                    /* L140: */
                                }
                                if (nounit) {
                                    temp /= a[i__ + i__ * a_dim1];
                                }
                                b[i__ + j * b_dim1] = temp;
                                /* L150: */
                            }
                            /* L160: */
                        }
                    }
                }
            } else {
                if (TransA == CblasNoTrans) {

                    /*           Form  B := alpha*B*inv( A ). */

                    if (upper) {
                        i__1 = n;
                        for (j = 1; j <= i__1; ++j) {
                            if (alpha != 1.) {
                                i__2 = m;
                                for (i__ = 1; i__ <= i__2; ++i__) {
                                    b[i__ + j * b_dim1] = alpha * b[i__ + j * b_dim1]
                                        ;
                                    /* L170: */
                                }
                            }
                            i__2 = j - 1;
                            for (k = 1; k <= i__2; ++k) {
                                if (a[k + j * a_dim1] != 0.) {
                                    i__3 = m;
                                    for (i__ = 1; i__ <= i__3; ++i__) {
                                        b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
                                            i__ + k * b_dim1];
                                        /* L180: */
                                    }
                                }
                                /* L190: */
                            }
                            if (nounit) {
                                temp = 1. / a[j + j * a_dim1];
                                i__2 = m;
                                for (i__ = 1; i__ <= i__2; ++i__) {
                                    b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
                                    /* L200: */
                                }
                            }
                            /* L210: */
                        }
                    } else {
                        for (j = n; j >= 1; --j) {
                            if (alpha != 1.) {
                                i__1 = m;
                                for (i__ = 1; i__ <= i__1; ++i__) {
                                    b[i__ + j * b_dim1] = alpha * b[i__ + j * b_dim1]
                                        ;
                                    /* L220: */
                                }
                            }
                            i__1 = n;
                            for (k = j + 1; k <= i__1; ++k) {
                                if (a[k + j * a_dim1] != 0.) {
                                    i__2 = m;
                                    for (i__ = 1; i__ <= i__2; ++i__) {
                                        b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
                                            i__ + k * b_dim1];
                                        /* L230: */
                                    }
                                }
                                /* L240: */
                            }
                            if (nounit) {
                                temp = 1. / a[j + j * a_dim1];
                                i__1 = m;
                                for (i__ = 1; i__ <= i__1; ++i__) {
                                    b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
                                    /* L250: */
                                }
                            }
                            /* L260: */
                        }
                    }
                } else {

                    /*           Form  B := alpha*B*inv( A' ). */

                    if (upper) {
                        for (k = n; k >= 1; --k) {
                            if (nounit) {
                                temp = 1. / a[k + k * a_dim1];
                                i__1 = m;
                                for (i__ = 1; i__ <= i__1; ++i__) {
                                    b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
                                    /* L270: */
                                }
                            }
                            i__1 = k - 1;
                            for (j = 1; j <= i__1; ++j) {
                                if (a[j + k * a_dim1] != 0.) {
                                    temp = a[j + k * a_dim1];
                                    i__2 = m;
                                    for (i__ = 1; i__ <= i__2; ++i__) {
                                        b[i__ + j * b_dim1] -= temp * b[i__ + k * 
                                            b_dim1];
                                        /* L280: */
                                    }
                                }
                                /* L290: */
                            }
                            if (alpha != 1.) {
                                i__1 = m;
                                for (i__ = 1; i__ <= i__1; ++i__) {
                                    b[i__ + k * b_dim1] = alpha * b[i__ + k * b_dim1]
                                        ;
                                    /* L300: */
                                }
                            }
                            /* L310: */
                        }
                    } else {
                        i__1 = n;
                        for (k = 1; k <= i__1; ++k) {
                            if (nounit) {
                                temp = 1. / a[k + k * a_dim1];
                                i__2 = m;
                                for (i__ = 1; i__ <= i__2; ++i__) {
                                    b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
                                    /* L320: */
                                }
                            }
                            i__2 = n;
                            for (j = k + 1; j <= i__2; ++j) {
                                if (a[j + k * a_dim1] != 0.) {
                                    temp = a[j + k * a_dim1];
                                    i__3 = m;
                                    for (i__ = 1; i__ <= i__3; ++i__) {
                                        b[i__ + j * b_dim1] -= temp * b[i__ + k * 
                                            b_dim1];
                                        /* L330: */
                                    }
                                }
                                /* L340: */
                            }
                            if (alpha != 1.) {
                                i__2 = m;
                                for (i__ = 1; i__ <= i__2; ++i__) {
                                    b[i__ + k * b_dim1] = alpha * b[i__ + k * b_dim1]
                                        ;
                                    /* L350: */
                                }
                            }
                            /* L360: */
                        }
                    }
                }
            }
        } 

    // ------------------------------------------------------------------------------------

        inline void cblas_trsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
                               const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,
                               const enum CBLAS_DIAG Diag, const int M, const int N,
                               const float alpha, const float *A, const int lda,
                               float *B, const int ldb)
        {
#ifdef DLIB_USE_BLAS
            if (M > 4)
            {
                cblas_strsm(Order, Side, Uplo, TransA, Diag, M, N, alpha, A, lda, B, ldb);
                return;
            }
#endif
            local_trsm(Order, Side, Uplo, TransA, Diag, M, N, alpha, A, lda, B, ldb);
        }

        inline void cblas_trsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
                               const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,
                               const enum CBLAS_DIAG Diag, const int M, const int N,
                               const double alpha, const double *A, const int lda,
                               double *B, const int ldb)
        {
#ifdef DLIB_USE_BLAS
            if (M > 4)
            {
                cblas_dtrsm(Order, Side, Uplo, TransA, Diag, M, N, alpha, A, lda, B, ldb);
                return;
            }
#endif
            local_trsm(Order, Side, Uplo, TransA, Diag, M, N, alpha, A, lda, B, ldb);
        }

        inline void cblas_trsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side,
                               const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA,
                               const enum CBLAS_DIAG Diag, const int M, const int N,
                               const long double alpha, const long double *A, const int lda,
                               long double *B, const int ldb)
        {
            local_trsm(Order, Side, Uplo, TransA, Diag, M, N, alpha, A, lda, B, ldb);
        }

    // ------------------------------------------------------------------------------------

        template <
            typename T,
            long NR1, long NR2,
            long NC1, long NC2,
            typename MM
            >
        inline void triangular_solver (
            const enum CBLAS_SIDE Side,
            const enum CBLAS_UPLO Uplo, 
            const enum CBLAS_TRANSPOSE TransA,
            const enum CBLAS_DIAG Diag,
            const matrix<T,NR1,NC1,MM,row_major_layout>& A,
            const T alpha,
            matrix<T,NR2,NC2,MM,row_major_layout>& B
        )
        {
            cblas_trsm(CblasRowMajor, Side,  Uplo, TransA, Diag, B.nr(), B.nc(),
                       alpha, &A(0,0), A.nc(), &B(0,0), B.nc());
        }

    // ------------------------------------------------------------------------------------

        template <
            typename T,
            long NR1, long NR2,
            long NC1, long NC2,
            typename MM
            >
        inline void triangular_solver (
            const enum CBLAS_SIDE Side,
            const enum CBLAS_UPLO Uplo, 
            const enum CBLAS_TRANSPOSE TransA,
            const enum CBLAS_DIAG Diag,
            const matrix<T,NR1,NC1,MM,column_major_layout>& A,
            const T alpha,
            matrix<T,NR2,NC2,MM,column_major_layout>& B
        )
        {
            cblas_trsm(CblasColMajor, Side,  Uplo, TransA, Diag, B.nr(), B.nc(),
                       alpha, &A(0,0), A.nr(), &B(0,0), B.nr());
        }

    // ------------------------------------------------------------------------------------

        template <
            typename T,
            long NR1, long NR2,
            long NC1, long NC2,
            typename MM
            >
        inline void triangular_solver (
            const enum CBLAS_SIDE Side,
            const enum CBLAS_UPLO Uplo, 
            const enum CBLAS_TRANSPOSE TransA,
            const enum CBLAS_DIAG Diag,
            const matrix<T,NR1,NC1,MM,column_major_layout>& A,
            matrix<T,NR2,NC2,MM,column_major_layout>& B,
            long rows_of_B
        )
        {
            const T alpha = 1;
            cblas_trsm(CblasColMajor, Side,  Uplo, TransA, Diag, rows_of_B, B.nc(),
                       alpha, &A(0,0), A.nr(), &B(0,0), B.nr());
        }

    // ------------------------------------------------------------------------------------

        template <
            typename T,
            long NR1, long NR2,
            long NC1, long NC2,
            typename MM,
            typename layout
            >
        inline void triangular_solver (
            const enum CBLAS_SIDE Side,
            const enum CBLAS_UPLO Uplo, 
            const enum CBLAS_TRANSPOSE TransA,
            const enum CBLAS_DIAG Diag,
            const matrix<T,NR1,NC1,MM,layout>& A,
            matrix<T,NR2,NC2,MM,layout>& B
        )
        {
            const T alpha = 1;
            triangular_solver(Side, Uplo, TransA, Diag, A, alpha, B);
        }

    // ------------------------------------------------------------------------------------

    }
}

#endif // DLIB_MATRiX_TRSM_Hh_