This file is indexed.

/usr/include/dlib/svm/assignment_function.h is in libdlib-dev 18.18-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// Copyright (C) 2011  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_ASSIGNMENT_FuNCTION_Hh_
#define DLIB_ASSIGNMENT_FuNCTION_Hh_

#include "assignment_function_abstract.h"
#include "../matrix.h"
#include <vector>
#include "../optimization/max_cost_assignment.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename feature_extractor 
        >
    class assignment_function
    {
    public:

        typedef typename feature_extractor::lhs_element lhs_element;
        typedef typename feature_extractor::rhs_element rhs_element;


        typedef std::pair<std::vector<lhs_element>, std::vector<rhs_element> > sample_type;

        typedef std::vector<long> label_type;
        typedef label_type result_type;

        assignment_function()
        {
            weights.set_size(fe.num_features());
            weights = 0;
            bias = 0;
            force_assignment = false;
        }

        explicit assignment_function(
            const matrix<double,0,1>& weights_,
            double bias_
        ) : 
            weights(weights_),
            bias(bias_),
            force_assignment(false)
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(fe.num_features() == static_cast<unsigned long>(weights_.size()),
                "\t assignment_function::assignment_function(weights_)"
                << "\n\t These sizes should match"
                << "\n\t fe.num_features(): " << fe.num_features() 
                << "\n\t weights_.size():   " << weights_.size() 
                << "\n\t this: " << this
                );

        }

        assignment_function(
            const matrix<double,0,1>& weights_,
            double bias_,
            const feature_extractor& fe_
        ) :
            fe(fe_),
            weights(weights_),
            bias(bias_),
            force_assignment(false)
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(fe_.num_features() == static_cast<unsigned long>(weights_.size()),
                "\t assignment_function::assignment_function(weights_,fe_)"
                << "\n\t These sizes should match"
                << "\n\t fe_.num_features(): " << fe_.num_features() 
                << "\n\t weights_.size():    " << weights_.size() 
                << "\n\t this: " << this
                );
        }

        assignment_function(
            const matrix<double,0,1>& weights_,
            double bias_,
            const feature_extractor& fe_,
            bool force_assignment_
        ) :
            fe(fe_),
            weights(weights_),
            bias(bias_),
            force_assignment(force_assignment_)
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(fe_.num_features() == static_cast<unsigned long>(weights_.size()),
                "\t assignment_function::assignment_function(weights_,fe_,force_assignment_)"
                << "\n\t These sizes should match"
                << "\n\t fe_.num_features(): " << fe_.num_features() 
                << "\n\t weights_.size():    " << weights_.size() 
                << "\n\t this: " << this
                );
        }

        const feature_extractor& get_feature_extractor (
        ) const { return fe; }

        const matrix<double,0,1>& get_weights (
        ) const { return weights; }

        double get_bias (
        ) const { return bias; }

        bool forces_assignment (
        ) const { return force_assignment; }

        void predict_assignments (
            const std::vector<lhs_element>& lhs,
            const std::vector<rhs_element>& rhs,
            result_type& assignment
        ) const
        {
            assignment.clear();

            matrix<double> cost;
            unsigned long size;
            if (force_assignment)
            {
                size = std::max(lhs.size(), rhs.size());
            }
            else
            {
                size = rhs.size() + lhs.size();
            }
            cost.set_size(size, size);

            typedef typename feature_extractor::feature_vector_type feature_vector_type;
            feature_vector_type feats;

            // now fill out the cost assignment matrix
            for (long r = 0; r < cost.nr(); ++r)
            {
                for (long c = 0; c < cost.nc(); ++c)
                {
                    if (r < (long)lhs.size() && c < (long)rhs.size())
                    {
                        fe.get_features(lhs[r], rhs[c], feats);
                        cost(r,c) = dot(weights, feats) + bias;
                    }
                    else
                    {
                        cost(r,c) = 0;
                    }
                }
            }


            if (cost.size() != 0)
            {
                // max_cost_assignment() only works with integer matrices, so convert from
                // double to integer.
                const double scale = (std::numeric_limits<dlib::int64>::max()/1000)/max(abs(cost));
                matrix<dlib::int64> int_cost = matrix_cast<dlib::int64>(round(cost*scale));
                assignment = max_cost_assignment(int_cost);
                assignment.resize(lhs.size());
            }

            // adjust assignment so that non-assignments have a value of -1
            for (unsigned long i = 0; i < assignment.size(); ++i)
            {
                if (assignment[i] >= (long)rhs.size())
                    assignment[i] = -1;
            }
        }

        void predict_assignments (
            const sample_type& item,
            result_type& assignment
        ) const
        {
            predict_assignments(item.first, item.second, assignment);
        }

        result_type operator()(
            const std::vector<lhs_element>& lhs,
            const std::vector<rhs_element>& rhs 
        ) const
        {
            result_type temp;
            predict_assignments(lhs,rhs,temp);
            return temp;
        }

        result_type operator() (
            const sample_type& item
        ) const
        {
            return (*this)(item.first, item.second);
        }

    private:


        feature_extractor fe;
        matrix<double,0,1> weights;
        double bias;
        bool force_assignment;
    };

// ----------------------------------------------------------------------------------------

    template <
        typename feature_extractor
        >
    void serialize (
        const assignment_function<feature_extractor>& item,
        std::ostream& out
    )
    {
        int version = 2;
        serialize(version, out);
        serialize(item.get_feature_extractor(), out);
        serialize(item.get_weights(), out);
        serialize(item.get_bias(), out);
        serialize(item.forces_assignment(), out);
    }

// ----------------------------------------------------------------------------------------

    template <
        typename feature_extractor
        >
    void deserialize (
        assignment_function<feature_extractor>& item,
        std::istream& in 
    )
    {
        feature_extractor fe;
        matrix<double,0,1> weights;
        double bias;
        bool force_assignment;
        int version = 0;
        deserialize(version, in);
        if (version != 2)
            throw serialization_error("Unexpected version found while deserializing dlib::assignment_function.");

        deserialize(fe, in);
        deserialize(weights, in);
        deserialize(bias, in);
        deserialize(force_assignment, in);

        item = assignment_function<feature_extractor>(weights, bias, fe, force_assignment);
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_ASSIGNMENT_FuNCTION_Hh_