/usr/include/dlib/svm/kcentroid.h is in libdlib-dev 18.18-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 | // Copyright (C) 2008 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_KCENTROId_
#define DLIB_KCENTROId_
#include <vector>
#include "kcentroid_abstract.h"
#include "../matrix.h"
#include "function.h"
#include "../std_allocator.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <typename kernel_type>
class kcentroid
{
/*!
This object represents a weighted sum of sample points in a kernel induced
feature space. It can be used to kernelize any algorithm that requires only
the ability to perform vector addition, subtraction, scalar multiplication,
and inner products. It uses the sparsification technique described in the
paper The Kernel Recursive Least Squares Algorithm by Yaakov Engel.
To understand the code it would also be useful to consult page 114 of the book
Kernel Methods for Pattern Analysis by Taylor and Cristianini as well as page 554
(particularly equation 18.31) of the book Learning with Kernels by Scholkopf and
Smola. Everything you really need to know is in the Engel paper. But the other
books help give more perspective on the issues involved.
INITIAL VALUE
- min_strength == 0
- min_vect_idx == 0
- K_inv.size() == 0
- K.size() == 0
- dictionary.size() == 0
- bias == 0
- bias_is_stale == false
CONVENTION
- max_dictionary_size() == my_max_dictionary_size
- get_kernel() == kernel
- K.nr() == dictionary.size()
- K.nc() == dictionary.size()
- for all valid r,c:
- K(r,c) == kernel(dictionary[r], dictionary[c])
- K_inv == inv(K)
- if (dictionary.size() == my_max_dictionary_size && my_remove_oldest_first == false) then
- for all valid 0 < i < dictionary.size():
- Let STRENGTHS[i] == the delta you would get for dictionary[i] (i.e. Approximately
Linearly Dependent value) if you removed dictionary[i] from this object and then
tried to add it back in.
- min_strength == the minimum value from STRENGTHS
- min_vect_idx == the index of the element in STRENGTHS with the smallest value
!*/
public:
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
kcentroid (
) :
my_remove_oldest_first(false),
my_tolerance(0.001),
my_max_dictionary_size(1000000),
bias(0),
bias_is_stale(false)
{
clear_dictionary();
}
explicit kcentroid (
const kernel_type& kernel_,
scalar_type tolerance_ = 0.001,
unsigned long max_dictionary_size_ = 1000000,
bool remove_oldest_first_ = false
) :
my_remove_oldest_first(remove_oldest_first_),
kernel(kernel_),
my_tolerance(tolerance_),
my_max_dictionary_size(max_dictionary_size_),
bias(0),
bias_is_stale(false)
{
// make sure requires clause is not broken
DLIB_ASSERT(tolerance_ > 0 && max_dictionary_size_ > 1,
"\tkcentroid::kcentroid()"
<< "\n\t You have to give a positive tolerance"
<< "\n\t this: " << this
<< "\n\t tolerance_: " << tolerance_
<< "\n\t max_dictionary_size_: " << max_dictionary_size_
);
clear_dictionary();
}
scalar_type tolerance() const
{
return my_tolerance;
}
unsigned long max_dictionary_size() const
{
return my_max_dictionary_size;
}
bool remove_oldest_first (
) const
{
return my_remove_oldest_first;
}
const kernel_type& get_kernel (
) const
{
return kernel;
}
void clear_dictionary ()
{
dictionary.clear();
alpha.clear();
min_strength = 0;
min_vect_idx = 0;
K_inv.set_size(0,0);
K.set_size(0,0);
samples_seen = 0;
bias = 0;
bias_is_stale = false;
}
scalar_type operator() (
const kcentroid& x
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(x.get_kernel() == get_kernel(),
"\tscalar_type kcentroid::operator()(const kcentroid& x)"
<< "\n\tYou can only compare two kcentroid objects if they use the same kernel"
<< "\n\tthis: " << this
);
// make sure the bias terms are up to date
refresh_bias();
x.refresh_bias();
scalar_type temp = x.bias + bias - 2*inner_product(x);
if (temp > 0)
return std::sqrt(temp);
else
return 0;
}
scalar_type inner_product (
const sample_type& x
) const
{
scalar_type temp = 0;
for (unsigned long i = 0; i < alpha.size(); ++i)
temp += alpha[i]*kernel(dictionary[i], x);
return temp;
}
scalar_type inner_product (
const kcentroid& x
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(x.get_kernel() == get_kernel(),
"\tscalar_type kcentroid::inner_product(const kcentroid& x)"
<< "\n\tYou can only compare two kcentroid objects if they use the same kernel"
<< "\n\tthis: " << this
);
scalar_type temp = 0;
for (unsigned long i = 0; i < alpha.size(); ++i)
{
for (unsigned long j = 0; j < x.alpha.size(); ++j)
{
temp += alpha[i]*x.alpha[j]*kernel(dictionary[i], x.dictionary[j]);
}
}
return temp;
}
scalar_type squared_norm (
) const
{
refresh_bias();
return bias;
}
scalar_type operator() (
const sample_type& x
) const
{
// make sure the bias terms are up to date
refresh_bias();
const scalar_type kxx = kernel(x,x);
scalar_type temp = kxx + bias - 2*inner_product(x);
if (temp > 0)
return std::sqrt(temp);
else
return 0;
}
scalar_type samples_trained (
) const
{
return samples_seen;
}
scalar_type test_and_train (
const sample_type& x
)
{
++samples_seen;
const scalar_type xscale = 1/samples_seen;
const scalar_type cscale = 1-xscale;
return train_and_maybe_test(x,cscale,xscale,true);
}
void train (
const sample_type& x
)
{
++samples_seen;
const scalar_type xscale = 1/samples_seen;
const scalar_type cscale = 1-xscale;
train_and_maybe_test(x,cscale,xscale,false);
}
scalar_type test_and_train (
const sample_type& x,
scalar_type cscale,
scalar_type xscale
)
{
++samples_seen;
return train_and_maybe_test(x,cscale,xscale,true);
}
void scale_by (
scalar_type cscale
)
{
for (unsigned long i = 0; i < alpha.size(); ++i)
{
alpha[i] = cscale*alpha[i];
}
}
void train (
const sample_type& x,
scalar_type cscale,
scalar_type xscale
)
{
++samples_seen;
train_and_maybe_test(x,cscale,xscale,false);
}
void swap (
kcentroid& item
)
{
exchange(min_strength, item.min_strength);
exchange(min_vect_idx, item.min_vect_idx);
exchange(my_remove_oldest_first, item.my_remove_oldest_first);
exchange(kernel, item.kernel);
dictionary.swap(item.dictionary);
alpha.swap(item.alpha);
K_inv.swap(item.K_inv);
K.swap(item.K);
exchange(my_tolerance, item.my_tolerance);
exchange(samples_seen, item.samples_seen);
exchange(bias, item.bias);
a.swap(item.a);
k.swap(item.k);
exchange(bias_is_stale, item.bias_is_stale);
exchange(my_max_dictionary_size, item.my_max_dictionary_size);
}
unsigned long dictionary_size (
) const { return dictionary.size(); }
friend void serialize(const kcentroid& item, std::ostream& out)
{
serialize(item.min_strength, out);
serialize(item.min_vect_idx, out);
serialize(item.my_remove_oldest_first, out);
serialize(item.kernel, out);
serialize(item.dictionary, out);
serialize(item.alpha, out);
serialize(item.K_inv, out);
serialize(item.K, out);
serialize(item.my_tolerance, out);
serialize(item.samples_seen, out);
serialize(item.bias, out);
serialize(item.bias_is_stale, out);
serialize(item.my_max_dictionary_size, out);
}
friend void deserialize(kcentroid& item, std::istream& in)
{
deserialize(item.min_strength, in);
deserialize(item.min_vect_idx, in);
deserialize(item.my_remove_oldest_first, in);
deserialize(item.kernel, in);
deserialize(item.dictionary, in);
deserialize(item.alpha, in);
deserialize(item.K_inv, in);
deserialize(item.K, in);
deserialize(item.my_tolerance, in);
deserialize(item.samples_seen, in);
deserialize(item.bias, in);
deserialize(item.bias_is_stale, in);
deserialize(item.my_max_dictionary_size, in);
}
distance_function<kernel_type> get_distance_function (
) const
{
refresh_bias();
return distance_function<kernel_type>(mat(alpha),
bias,
kernel,
mat(dictionary));
}
private:
void refresh_bias (
) const
{
if (bias_is_stale)
{
bias_is_stale = false;
// recompute the bias term
bias = sum(pointwise_multiply(K, mat(alpha)*trans(mat(alpha))));
}
}
scalar_type train_and_maybe_test (
const sample_type& x,
scalar_type cscale,
scalar_type xscale,
bool do_test
)
{
scalar_type test_result = 0;
const scalar_type kx = kernel(x,x);
if (alpha.size() == 0)
{
// just ignore this sample if it is the zero vector (or really close to being zero)
if (std::abs(kx) > std::numeric_limits<scalar_type>::epsilon())
{
// set initial state since this is the first training example we have seen
K_inv.set_size(1,1);
K_inv(0,0) = 1/kx;
K.set_size(1,1);
K(0,0) = kx;
alpha.push_back(xscale);
dictionary.push_back(x);
}
else
{
// the distance from an empty kcentroid and the zero vector is zero by definition.
return 0;
}
}
else
{
// fill in k
k.set_size(alpha.size());
for (long r = 0; r < k.nr(); ++r)
k(r) = kernel(x,dictionary[r]);
if (do_test)
{
refresh_bias();
test_result = std::sqrt(kx + bias - 2*trans(mat(alpha))*k);
}
// compute the error we would have if we approximated the new x sample
// with the dictionary. That is, do the ALD test from the KRLS paper.
a = K_inv*k;
scalar_type delta = kx - trans(k)*a;
// if this new vector isn't approximately linearly dependent on the vectors
// in our dictionary.
if (delta > min_strength && delta > my_tolerance)
{
bool need_to_update_min_strength = false;
if (dictionary.size() >= my_max_dictionary_size)
{
// We need to remove one of the old members of the dictionary before
// we proceed with adding a new one.
long idx_to_remove;
if (my_remove_oldest_first)
{
// remove the oldest one
idx_to_remove = 0;
}
else
{
// if we have never computed the min_strength then we should compute it
if (min_strength == 0)
recompute_min_strength();
// select the dictionary vector that is most linearly dependent for removal
idx_to_remove = min_vect_idx;
need_to_update_min_strength = true;
}
remove_dictionary_vector(idx_to_remove);
// recompute these guys since they were computed with the old
// kernel matrix
k = remove_row(k,idx_to_remove);
a = K_inv*k;
delta = kx - trans(k)*a;
}
// add x to the dictionary
dictionary.push_back(x);
// update K_inv by computing the new one in the temp matrix (equation 3.14)
matrix<scalar_type,0,0,mem_manager_type> temp(K_inv.nr()+1, K_inv.nc()+1);
// update the middle part of the matrix
set_subm(temp, get_rect(K_inv)) = K_inv + a*trans(a)/delta;
// update the right column of the matrix
set_subm(temp, 0, K_inv.nr(),K_inv.nr(),1) = -a/delta;
// update the bottom row of the matrix
set_subm(temp, K_inv.nr(), 0, 1, K_inv.nr()) = trans(-a/delta);
// update the bottom right corner of the matrix
temp(K_inv.nr(), K_inv.nc()) = 1/delta;
// put temp into K_inv
temp.swap(K_inv);
// update K (the kernel matrix)
temp.set_size(K.nr()+1, K.nc()+1);
set_subm(temp, get_rect(K)) = K;
// update the right column of the matrix
set_subm(temp, 0, K.nr(),K.nr(),1) = k;
// update the bottom row of the matrix
set_subm(temp, K.nr(), 0, 1, K.nr()) = trans(k);
temp(K.nr(), K.nc()) = kx;
// put temp into K
temp.swap(K);
// now update the alpha vector
for (unsigned long i = 0; i < alpha.size(); ++i)
{
alpha[i] *= cscale;
}
alpha.push_back(xscale);
if (need_to_update_min_strength)
{
// now we have to recompute the min_strength in this case
recompute_min_strength();
}
}
else
{
// update the alpha vector so that this new sample has been added into
// the mean vector we are accumulating
for (unsigned long i = 0; i < alpha.size(); ++i)
{
alpha[i] = cscale*alpha[i] + xscale*a(i);
}
}
}
bias_is_stale = true;
return test_result;
}
void remove_dictionary_vector (
long i
)
/*!
requires
- 0 <= i < dictionary.size()
ensures
- #dictionary.size() == dictionary.size() - 1
- #alpha.size() == alpha.size() - 1
- updates the K_inv matrix so that it is still a proper inverse of the
kernel matrix
- also removes the necessary row and column from the K matrix
- uses the this->a variable so after this function runs that variable
will contain a different value.
!*/
{
// remove the dictionary vector
dictionary.erase(dictionary.begin()+i);
// remove the i'th vector from the inverse kernel matrix. This formula is basically
// just the reverse of the way K_inv is updated by equation 3.14 during normal training.
K_inv = removerc(K_inv,i,i) - remove_row(colm(K_inv,i)/K_inv(i,i),i)*remove_col(rowm(K_inv,i),i);
// now compute the updated alpha values to take account that we just removed one of
// our dictionary vectors
a = (K_inv*remove_row(K,i)*mat(alpha));
// now copy over the new alpha values
alpha.resize(alpha.size()-1);
for (unsigned long k = 0; k < alpha.size(); ++k)
{
alpha[k] = a(k);
}
// update the K matrix as well
K = removerc(K,i,i);
}
void recompute_min_strength (
)
/*!
ensures
- recomputes the min_strength and min_vect_idx values
so that they are correct with respect to the CONVENTION
- uses the this->a variable so after this function runs that variable
will contain a different value.
!*/
{
min_strength = std::numeric_limits<scalar_type>::max();
// here we loop over each dictionary vector and compute what its delta would be if
// we were to remove it from the dictionary and then try to add it back in.
for (unsigned long i = 0; i < dictionary.size(); ++i)
{
// compute a = K_inv*k but where dictionary vector i has been removed
a = (removerc(K_inv,i,i) - remove_row(colm(K_inv,i)/K_inv(i,i),i)*remove_col(rowm(K_inv,i),i)) *
(remove_row(colm(K,i),i));
scalar_type delta = K(i,i) - trans(remove_row(colm(K,i),i))*a;
if (delta < min_strength)
{
min_strength = delta;
min_vect_idx = i;
}
}
}
typedef std_allocator<sample_type, mem_manager_type> alloc_sample_type;
typedef std_allocator<scalar_type, mem_manager_type> alloc_scalar_type;
typedef std::vector<sample_type,alloc_sample_type> dictionary_vector_type;
typedef std::vector<scalar_type,alloc_scalar_type> alpha_vector_type;
scalar_type min_strength;
unsigned long min_vect_idx;
bool my_remove_oldest_first;
kernel_type kernel;
dictionary_vector_type dictionary;
alpha_vector_type alpha;
matrix<scalar_type,0,0,mem_manager_type> K_inv;
matrix<scalar_type,0,0,mem_manager_type> K;
scalar_type my_tolerance;
unsigned long my_max_dictionary_size;
scalar_type samples_seen;
mutable scalar_type bias;
mutable bool bias_is_stale;
// temp variables here just so we don't have to reconstruct them over and over. Thus,
// they aren't really part of the state of this object.
matrix<scalar_type,0,1,mem_manager_type> a;
matrix<scalar_type,0,1,mem_manager_type> k;
};
// ----------------------------------------------------------------------------------------
template <typename kernel_type>
void swap(kcentroid<kernel_type>& a, kcentroid<kernel_type>& b)
{ a.swap(b); }
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_KCENTROId_
|