This file is indexed.

/usr/include/dlib/svm/rls.h is in libdlib-dev 18.18-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright (C) 2012  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_RLs_Hh_
#define DLIB_RLs_Hh_

#include "rls_abstract.h"
#include "../matrix.h"
#include "function.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    class rls
    {

    public:


        explicit rls(
            double forget_factor_,
            double C_ = 1000
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(0 < forget_factor_ && forget_factor_ <= 1 &&
                        0 < C_,
                "\t rls::rls()"
                << "\n\t invalid arguments were given to this function"
                << "\n\t forget_factor_: " << forget_factor_ 
                << "\n\t C_:   " << C_ 
                << "\n\t this: " << this
                );


            C = C_;
            forget_factor = forget_factor_;
        }

        rls(
        )
        {
            C = 1000;
            forget_factor = 1;
        }

        double get_c(
        ) const
        {
            return C;
        }

        double get_forget_factor(
        ) const
        {
            return forget_factor;
        }

        template <typename EXP>
        void train (
            const matrix_exp<EXP>& x,
            double y
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(is_col_vector(x) &&
                        (get_w().size() == 0 || get_w().size() == x.size()),
                "\t void rls::train()"
                << "\n\t invalid arguments were given to this function"
                << "\n\t is_col_vector(x): " << is_col_vector(x) 
                << "\n\t x.size():         " << x.size() 
                << "\n\t get_w().size():   " << get_w().size() 
                << "\n\t this: " << this
                );

            if (R.size() == 0)
            {
                R = identity_matrix<double>(x.size())*C;
                w.set_size(x.size());
                w = 0;
            }

            // multiply by forget factor and incorporate x*trans(x) into R.
            const double l = 1.0/forget_factor;
            const double temp = 1 + l*trans(x)*R*x;
            matrix<double,0,1> tmp = R*x;
            R = l*R - l*l*(tmp*trans(tmp))/temp;

            // Since we multiplied by the forget factor, we need to add (1-forget_factor) of the
            // identity matrix back in to keep the regularization alive.  
            add_eye_to_inv(R, (1-forget_factor)/C);

            // R should always be symmetric.  This line improves numeric stability of this algorithm.
            R = 0.5*(R + trans(R));

            w = w + R*x*(y - trans(x)*w);

        }

        const matrix<double,0,1>& get_w(
        ) const
        {
            return w;
        }

        template <typename EXP>
        double operator() (
            const matrix_exp<EXP>& x
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(is_col_vector(x) && get_w().size() == x.size(),
                "\t double rls::operator()()"
                << "\n\t invalid arguments were given to this function"
                << "\n\t is_col_vector(x): " << is_col_vector(x) 
                << "\n\t x.size():         " << x.size() 
                << "\n\t get_w().size():   " << get_w().size() 
                << "\n\t this: " << this
                );

            return dot(x,w);
        }

        decision_function<linear_kernel<matrix<double,0,1> > > get_decision_function (
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(get_w().size() != 0,
                "\t decision_function rls::get_decision_function()"
                << "\n\t invalid arguments were given to this function"
                << "\n\t get_w().size():   " << get_w().size() 
                << "\n\t this: " << this
                );

            decision_function<linear_kernel<matrix<double,0,1> > > df;
            df.alpha.set_size(1);
            df.basis_vectors.set_size(1);
            df.b = 0;
            df.alpha = 1;
            df.basis_vectors(0) = w;

            return df;
        }

        friend inline void serialize(const rls& item, std::ostream& out)
        {
            int version = 1;
            serialize(version, out);
            serialize(item.w, out);
            serialize(item.R, out);
            serialize(item.C, out);
            serialize(item.forget_factor, out);
        }

        friend inline void deserialize(rls& item, std::istream& in)
        {
            int version = 0;
            deserialize(version, in);
            if (version != 1)
                throw dlib::serialization_error("Unknown version number found while deserializing rls object.");

            deserialize(item.w, in);
            deserialize(item.R, in);
            deserialize(item.C, in);
            deserialize(item.forget_factor, in);
        }

    private:

        void add_eye_to_inv(
            matrix<double>& m,
            double C
        )
        /*!
            ensures
                - Let m == inv(M)
                - this function returns inv(M + C*identity_matrix<double>(m.nr()))
        !*/
        {
            for (long r = 0; r < m.nr(); ++r)
            {
                m = m - colm(m,r)*trans(colm(m,r))/(1/C + m(r,r));
            }
        }


        matrix<double,0,1> w;
        matrix<double> R;
        double C;
        double forget_factor;
    };

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_RLs_Hh_