This file is indexed.

/usr/include/dlib/svm/rvm.h is in libdlib-dev 18.18-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
// Copyright (C) 2008  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_RVm_
#define DLIB_RVm_

#include "rvm_abstract.h"
#include <cmath>
#include <limits>
#include "../matrix.h"
#include "../algs.h"
#include "function.h"
#include "kernel.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    namespace rvm_helpers
    {

    // ------------------------------------------------------------------------------------

        template <typename scalar_vector_type, typename mem_manager_type>
        long find_next_best_alpha_to_update (
            const scalar_vector_type& S,
            const scalar_vector_type& Q,
            const scalar_vector_type& alpha,
            const matrix<long,0,1,mem_manager_type>& active_bases,
            const bool search_all_alphas,
            typename scalar_vector_type::type eps
        ) 
        /*!
            ensures
                - if (we can find another alpha to update) then
                    - returns the index of said alpha 
                - else
                    - returns -1
        !*/
        {
            typedef typename scalar_vector_type::type scalar_type;
            // now use S and Q to find next alpha to update.  What
            // we want to do here is select the alpha to update that gives us
            // the greatest improvement in marginal likelihood.
            long selected_idx = -1;
            scalar_type greatest_improvement = -1;
            for (long i = 0; i < S.nr(); ++i)
            {
                scalar_type value = -1;

                // if i is currently in the active set
                if (active_bases(i) >= 0)
                {
                    const long idx = active_bases(i);
                    const scalar_type s = alpha(idx)*S(i)/(alpha(idx) - S(i));
                    const scalar_type q = alpha(idx)*Q(i)/(alpha(idx) - S(i));

                    if (q*q-s > 0)
                    {
                        // only update an existing alpha if this is a narrow search
                        if (search_all_alphas == false)
                        {
                            // choosing this sample would mean doing an update of an 
                            // existing alpha value.
                            scalar_type new_alpha = s*s/(q*q-s);
                            scalar_type cur_alpha = alpha(idx);
                            new_alpha = 1/new_alpha;
                            cur_alpha = 1/cur_alpha;

                            // from equation 32 in the Tipping paper 
                            value = Q(i)*Q(i)/(S(i) +  1/(new_alpha - cur_alpha) ) - 
                                std::log(1 + S(i)*(new_alpha - cur_alpha));
                        }

                    }
                    // we only pick an alpha to remove if this is a wide search and it wasn't one of the recently added ones 
                    else if (search_all_alphas && idx+2 < alpha.size() )  
                    {
                        // choosing this sample would mean the alpha value is infinite 
                        // so we would remove the selected sample from our model.

                        // from equation 37 in the Tipping paper 
                        value = Q(i)*Q(i)/(S(i) - alpha(idx)) - 
                            std::log(1-S(i)/alpha(idx));

                    }
                }
                else if (search_all_alphas)
                {
                    const scalar_type s = S(i);
                    const scalar_type q = Q(i);

                    if (q*q-s > 0)
                    {
                        // choosing this sample would mean we would add the selected 
                        // sample to our model.

                        // from equation 27 in the Tipping paper 
                        value = (Q(i)*Q(i)-S(i))/S(i) + std::log(S(i)/(Q(i)*Q(i)));
                    }
                }

                if (value > greatest_improvement)
                {
                    greatest_improvement = value;
                    selected_idx = i;
                }
            }

            // If the greatest_improvement in marginal likelihood we would get is less
            // than our epsilon then report that there isn't anything else to do.  But
            // if it is big enough then return the selected_idx.
            if (greatest_improvement > eps)
                return selected_idx;
            else
                return -1;
        }

    } // end namespace rvm_helpers

    // ------------------------------------------------------------------------------------


    template <
        typename kern_type 
        >
    class rvm_trainer 
    {
        /*!
            This is an implementation of the binary classifier version of the
            relevance vector machine algorithm described in the paper:
                Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximisation 
                for sparse Bayesian models. In C. M. Bishop and B. J. Frey (Eds.), Proceedings 
                of the Ninth International Workshop on Artificial Intelligence and Statistics, 
                Key West, FL, Jan 3-6.

            This code mostly does what is described in the above paper with the exception 
            that here we use a different stopping condition as well as a modified alpha
            selection rule.  See the code for the exact details.
        !*/

    public:
        typedef kern_type kernel_type;
        typedef typename kernel_type::scalar_type scalar_type;
        typedef typename kernel_type::sample_type sample_type;
        typedef typename kernel_type::mem_manager_type mem_manager_type;
        typedef decision_function<kernel_type> trained_function_type;

        rvm_trainer (
        ) : eps(0.001), max_iterations(2000)
        {
        }

        void set_max_iterations (
            unsigned long max_iterations_
        )
        {
            max_iterations = max_iterations_;
        }

        unsigned long get_max_iterations (
        ) const
        { 
            return max_iterations;
        }

        void set_epsilon (
            scalar_type eps_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(eps_ > 0,
                "\tvoid rvm_trainer::set_epsilon(eps_)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t eps: " << eps_ 
                );
            eps = eps_;
        }

        const scalar_type get_epsilon (
        ) const
        { 
            return eps;
        }

        void set_kernel (
            const kernel_type& k
        )
        {
            kernel = k;
        }

        const kernel_type& get_kernel (
        ) const
        {
            return kernel;
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const
        {
            return do_train(mat(x), mat(y));
        }

        void swap (
            rvm_trainer& item
        )
        {
            exchange(kernel, item.kernel);
            exchange(eps, item.eps);
        }

    private:

    // ------------------------------------------------------------------------------------

        typedef matrix<scalar_type,0,1,mem_manager_type> scalar_vector_type;
        typedef matrix<scalar_type,0,0,mem_manager_type> scalar_matrix_type;

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> do_train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const
        {

            // make sure requires clause is not broken
            DLIB_ASSERT(is_binary_classification_problem(x,y) == true,
                "\tdecision_function rvm_trainer::train(x,y)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t x.nr(): " << x.nr() 
                << "\n\t y.nr(): " << y.nr() 
                << "\n\t x.nc(): " << x.nc() 
                << "\n\t y.nc(): " << y.nc() 
                << "\n\t is_binary_classification_problem(x,y): " << ((is_binary_classification_problem(x,y))? "true":"false")
                );

            // make a target vector where +1 examples have value 1 and -1 examples
            // have a value of 0.
            scalar_vector_type t(y.size());
            for (long i = 0; i < y.size(); ++i)
            {
                if (y(i) == 1)
                    t(i) = 1;
                else
                    t(i) = 0;
            }

            /*! This is the convention for the active_bases variable in the function:
                - if (active_bases(i) >= 0) then
                    - alpha(active_bases(i)) == the alpha value associated with sample x(i)
                    - weights(active_bases(i)) == the weight value associated with sample x(i)
                    - colm(phi, active_bases(i)) == the column of phi associated with sample x(i)
                    - colm(phi, active_bases(i)) == kernel column i (from get_kernel_colum()) 
                - else
                    - the i'th sample isn't in the model and notionally has an alpha of infinity and
                      a weight of 0.
            !*/
            matrix<long,0,1,mem_manager_type> active_bases(x.nr());
            scalar_matrix_type phi(x.nr(),1);
            scalar_vector_type alpha(1), prev_alpha;
            scalar_vector_type weights(1), prev_weights;

            scalar_vector_type tempv, K_col; 

            // set the initial values of these guys
            set_all_elements(active_bases, -1);
            long first_basis = pick_initial_vector(x,t);
            get_kernel_colum(first_basis, x, K_col);
            active_bases(first_basis) = 0;
            set_colm(phi,0) = K_col;
            alpha(0) = compute_initial_alpha(phi, t);
            weights(0) = 1;


            // now declare a bunch of other variables we will be using below
            scalar_vector_type mu, t_hat, Q, S; 
            scalar_matrix_type sigma;
            
            matrix<scalar_type,1,0,mem_manager_type> tempv2, tempv3;
            scalar_matrix_type tempm;

            scalar_vector_type t_estimate;
            scalar_vector_type beta;


            Q.set_size(x.nr());
            S.set_size(x.nr());

            bool recompute_beta = true;

            bool search_all_alphas = false;
            unsigned long ticker = 0;
            const unsigned long rounds_of_narrow_search = 100;
            unsigned long iterations = 0;

            while (iterations != max_iterations)
            {
                iterations++;
                if (recompute_beta)
                {
                    // calculate the current t_estimate. (this is the predicted t value for each sample according to the
                    // current state of the classifier)
                    t_estimate = phi*weights;

                    // calculate the current beta
                    beta = sigmoid(t_estimate);
                    beta = pointwise_multiply(beta,(uniform_matrix<scalar_type>(beta.nr(),beta.nc(),1)-beta));
                    recompute_beta = false;
                }

                // Compute optimal weights and sigma for current alpha using IRLS.  This is the same
                // technique documented in the paper by equations 12-14. 
                scalar_type weight_delta = std::numeric_limits<scalar_type>::max();
                int count = 0;
                while (weight_delta > 0.0001)
                {
                    // This is a sanity check to make sure we never get stuck in this
                    // loop to do some degenerate numerical condition 
                    ++count;
                    if (count > 100)
                    {
                        // jump us to where search_all_alphas will be set to true 
                        ticker = rounds_of_narrow_search;
                        break;
                    }

                    // compute the updated sigma matrix
                    sigma = scale_columns(trans(phi),beta)*phi;
                    for (long r = 0; r < alpha.nr(); ++r)
                        sigma(r,r) += alpha(r);
                    sigma = inv(sigma);


                    // compute the updated weights vector (t_hat = phi*mu_mp + inv(B)*(t-y))
                    t_hat = t_estimate + trans(scale_columns(trans(t-sigmoid(t_estimate)),reciprocal(beta))); 

                    // mu = sigma*trans(phi)*b*t_hat
                    mu = sigma*tmp(trans(phi)* trans(scale_columns(trans(t_hat), beta)));  

                    // now compute how much the weights vector changed during this iteration
                    // through this loop.
                    weight_delta = max(abs(mu-weights));

                    // put mu into the weights vector
                    mu.swap(weights);

                    // calculate the current t_estimate
                    t_estimate = phi*weights;

                    // calculate the current beta
                    beta = sigmoid(t_estimate);
                    beta = pointwise_multiply(beta, uniform_matrix<scalar_type>(beta.nr(),beta.nc(),1)-beta);

                }

                // check if we should do a full search for the best alpha to optimize
                if (ticker >= rounds_of_narrow_search)
                {
                    // if the current alpha and weights are equal to what they were
                    // at the last time we were about to start a wide search then
                    // we are done.
                    if (equal(prev_alpha, alpha, eps) && equal(prev_weights, weights, eps))
                        break;


                    prev_alpha = alpha;
                    prev_weights = weights;
                    search_all_alphas = true;
                    ticker = 0;
                }
                else
                {
                    search_all_alphas = false;
                }
                ++ticker;

                // compute S and Q using equations 24 and 25 (tempv = phi*sigma*trans(phi)*B*t_hat)
                tempv = phi*tmp(sigma*tmp(trans(phi)*trans(scale_columns(trans(t_hat),beta)))); 
                for (long i = 0; i < S.size(); ++i)
                {
                    // if we are currently limiting the search for the next alpha to update
                    // to the set in the active set then skip a non-active vector.
                    if (search_all_alphas == false && active_bases(i) == -1)
                        continue;

                    // get the column for this sample out of the kernel matrix.  If it is 
                    // something in the active set then just get it right out of phi, otherwise 
                    // we have to calculate it.
                    if (active_bases(i) != -1)
                        K_col = colm(phi,active_bases(i));
                    else
                        get_kernel_colum(i, x, K_col);

                    // tempv2 = trans(phi_m)*B
                    tempv2 = scale_columns(trans(K_col), beta);  
                    tempv3 = tempv2*phi;
                    S(i) = tempv2*K_col - tempv3*sigma*trans(tempv3);
                    Q(i) = tempv2*t_hat - tempv2*tempv; 
                }

                const long selected_idx = rvm_helpers::find_next_best_alpha_to_update(S,Q,alpha,active_bases, search_all_alphas, eps);


                // if find_next_best_alpha_to_update didn't find any good alpha to update
                if (selected_idx == -1)
                {
                    if (search_all_alphas == false)
                    {
                        // jump us to where search_all_alphas will be set to true and try again
                        ticker = rounds_of_narrow_search;
                        continue;
                    }
                    else
                    {
                        // we are really done so quit the main loop
                        break;
                    }
                }


                // next we update the selected alpha.

                // if the selected alpha is in the active set
                if (active_bases(selected_idx) >= 0)
                {
                    const long idx = active_bases(selected_idx);
                    const scalar_type s = alpha(idx)*S(selected_idx)/(alpha(idx) - S(selected_idx));
                    const scalar_type q = alpha(idx)*Q(selected_idx)/(alpha(idx) - S(selected_idx));

                    if (q*q-s > 0)
                    {
                        // reestimate the value of alpha
                        alpha(idx) = s*s/(q*q-s);

                    }
                    else 
                    {
                        // the new alpha value is infinite so remove the selected alpha from our model
                        active_bases(selected_idx) = -1; 
                        phi = remove_col(phi, idx);
                        weights = remove_row(weights, idx);
                        alpha = remove_row(alpha, idx);

                        // fix the index values in active_bases
                        for (long i = 0; i < active_bases.size(); ++i)
                        {
                            if (active_bases(i) > idx)
                            {
                                active_bases(i) -= 1;
                            }
                        }

                        // we changed the number of weights so we need to remember to 
                        // recompute the beta vector next time around the main loop.
                        recompute_beta = true;
                    }
                }
                else
                {
                    const scalar_type s = S(selected_idx);
                    const scalar_type q = Q(selected_idx);

                    if (q*q-s > 0)
                    {
                        // add the selected alpha to our model
                        
                        active_bases(selected_idx) = phi.nc();
                        
                        // update alpha
                        tempv.set_size(alpha.size()+1);
                        set_subm(tempv, get_rect(alpha)) = alpha;
                        tempv(phi.nc()) = s*s/(q*q-s);
                        tempv.swap(alpha);

                        // update weights 
                        tempv.set_size(weights.size()+1);
                        set_subm(tempv, get_rect(weights)) = weights;
                        tempv(phi.nc()) = 0;
                        tempv.swap(weights);

                        // update phi by adding the new sample's kernel matrix column in as one of phi's columns
                        tempm.set_size(phi.nr(), phi.nc()+1);
                        set_subm(tempm, get_rect(phi)) = phi;
                        get_kernel_colum(selected_idx, x, K_col);
                        set_colm(tempm, phi.nc()) = K_col;
                        tempm.swap(phi);


                        // we changed the number of weights so we need to remember to 
                        // recompute the beta vector next time around the main loop.
                        recompute_beta = true;
                    }
                }

            } // end while(true).  So we have converged on the final answer.


            // now put everything into a decision_function object and return it
            std_vector_c<sample_type> dictionary;
            std_vector_c<scalar_type> final_weights;
            for (long i = 0; i < active_bases.size(); ++i)
            {
                if (active_bases(i) >= 0)
                {
                    dictionary.push_back(x(i));
                    final_weights.push_back(weights(active_bases(i)));
                }
            }

            return decision_function<kernel_type> ( mat(final_weights),
                                                    -sum(mat(final_weights))*tau, 
                                                    kernel,
                                                    mat(dictionary));

        }

    // ------------------------------------------------------------------------------------

        template <typename M1, typename M2>
        long pick_initial_vector (
            const M1& x,
            const M2& t
        ) const
        {
            scalar_vector_type K_col;
            double max_projection = -std::numeric_limits<scalar_type>::infinity();
            long max_idx = 0;
            // find the row in the kernel matrix that has the biggest normalized projection onto the t vector
            for (long r = 0; r < x.nr(); ++r)
            {
                get_kernel_colum(r,x,K_col);
                double temp = trans(K_col)*t;
                temp = temp*temp/length_squared(K_col);

                if (temp > max_projection)
                {
                    max_projection = temp;
                    max_idx = r;
                }
            }

            return max_idx;
        }

    // ------------------------------------------------------------------------------------

        template <typename T>
        void get_kernel_colum (
            long idx,
            const T& x,
            scalar_vector_type& col
        ) const
        {
            col.set_size(x.nr());
            for (long i = 0; i < col.size(); ++i)
            {
                col(i) = kernel(x(idx), x(i)) + tau;
            }
        }

    // ------------------------------------------------------------------------------------

        template <typename M1, typename M2>
        scalar_type compute_initial_alpha (
            const M1& phi,
            const M2& t
        ) const
        {
            const double temp = length_squared(phi);
            const double temp2 = trans(phi)*t;

            return temp/( temp2*temp2/temp + variance(t)*0.1);
        }

    // ------------------------------------------------------------------------------------

    // private member variables
        kernel_type kernel;
        scalar_type eps;
        unsigned long max_iterations;

        const static scalar_type tau;

    }; // end of class rvm_trainer 

    template <typename kernel_type>
    const typename kernel_type::scalar_type rvm_trainer<kernel_type>::tau = static_cast<typename kernel_type::scalar_type>(0.001);

// ----------------------------------------------------------------------------------------

    template <typename K>
    void swap (
        rvm_trainer<K>& a,
        rvm_trainer<K>& b
    ) { a.swap(b); }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        typename kern_type 
        >
    class rvm_regression_trainer 
    {
        /*!
            This is an implementation of the regression version of the
            relevance vector machine algorithm described in the paper:
                Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximisation 
                for sparse Bayesian models. In C. M. Bishop and B. J. Frey (Eds.), Proceedings 
                of the Ninth International Workshop on Artificial Intelligence and Statistics, 
                Key West, FL, Jan 3-6.

            This code mostly does what is described in the above paper with the exception 
            that here we use a different stopping condition as well as a modified alpha
            selection rule.  See the code for the exact details.
        !*/

    public:
        typedef kern_type kernel_type;
        typedef typename kernel_type::scalar_type scalar_type;
        typedef typename kernel_type::sample_type sample_type;
        typedef typename kernel_type::mem_manager_type mem_manager_type;
        typedef decision_function<kernel_type> trained_function_type;

        rvm_regression_trainer (
        ) : eps(0.001)
        {
        }

        void set_epsilon (
            scalar_type eps_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(eps_ > 0,
                "\tvoid rvm_regression_trainer::set_epsilon(eps_)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t eps: " << eps_ 
                );
            eps = eps_;
        }

        const scalar_type get_epsilon (
        ) const
        { 
            return eps;
        }

        void set_kernel (
            const kernel_type& k
        )
        {
            kernel = k;
        }

        const kernel_type& get_kernel (
        ) const
        {
            return kernel;
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& t
        ) const
        {
            return do_train(mat(x), mat(t));
        }

        void swap (
            rvm_regression_trainer& item
        )
        {
            exchange(kernel, item.kernel);
            exchange(eps, item.eps);
        }

    private:

    // ------------------------------------------------------------------------------------

        typedef matrix<scalar_type,0,1,mem_manager_type> scalar_vector_type;
        typedef matrix<scalar_type,0,0,mem_manager_type> scalar_matrix_type;

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> do_train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& t
        ) const
        {

            // make sure requires clause is not broken
            DLIB_ASSERT(is_learning_problem(x,t) && x.size() > 0,
                "\tdecision_function rvm_regression_trainer::train(x,t)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t x.nr(): " << x.nr() 
                << "\n\t t.nr(): " << t.nr() 
                << "\n\t x.nc(): " << x.nc() 
                << "\n\t t.nc(): " << t.nc() 
                );


            /*! This is the convention for the active_bases variable in the function:
                - if (active_bases(i) >= 0) then
                    - alpha(active_bases(i)) == the alpha value associated with sample x(i)
                    - weights(active_bases(i)) == the weight value associated with sample x(i)
                    - colm(phi, active_bases(i)) == the column of phi associated with sample x(i)
                    - colm(phi, active_bases(i)) == kernel column i (from get_kernel_colum()) 
                - else
                    - the i'th sample isn't in the model and notionally has an alpha of infinity and
                      a weight of 0.
            !*/
            matrix<long,0,1,mem_manager_type> active_bases(x.nr());
            scalar_matrix_type phi(x.nr(),1);
            scalar_vector_type alpha(1), prev_alpha;
            scalar_vector_type weights(1), prev_weights;

            scalar_vector_type tempv, K_col; 
            scalar_type var = variance(t)*0.1;

            // set the initial values of these guys
            set_all_elements(active_bases, -1);
            long first_basis = pick_initial_vector(x,t);
            get_kernel_colum(first_basis, x, K_col);
            active_bases(first_basis) = 0;
            set_colm(phi,0) = K_col;
            alpha(0) = compute_initial_alpha(phi, t, var);
            weights(0) = 1;


            // now declare a bunch of other variables we will be using below
            scalar_vector_type Q, S; 
            scalar_matrix_type sigma;
            
            matrix<scalar_type,1,0,mem_manager_type> tempv2, tempv3;
            scalar_matrix_type tempm;


            Q.set_size(x.nr());
            S.set_size(x.nr());


            bool search_all_alphas = false;
            unsigned long ticker = 0;
            const unsigned long rounds_of_narrow_search = 100;

            while (true)
            {
                // Compute optimal weights and sigma for current alpha using equation 6. 
                sigma = trans(phi)*phi/var;
                for (long r = 0; r < alpha.nr(); ++r)
                    sigma(r,r) += alpha(r);
                sigma = inv(sigma);
                weights = sigma*trans(phi)*t/var;  



                // check if we should do a full search for the best alpha to optimize
                if (ticker == rounds_of_narrow_search)
                {
                    // if the current alpha and weights are equal to what they were
                    // at the last time we were about to start a wide search then
                    // we are done.
                    if (equal(prev_alpha, alpha, eps) && equal(prev_weights, weights, eps))
                        break;

                    prev_alpha = alpha;
                    prev_weights = weights;
                    search_all_alphas = true;
                    ticker = 0;
                }
                else
                {
                    search_all_alphas = false;
                }
                ++ticker;

                // compute S and Q using equations 24 and 25 (tempv = phi*sigma*trans(phi)*B*t)
                tempv = phi*tmp(sigma*tmp(trans(phi)*t/var)); 
                for (long i = 0; i < S.size(); ++i)
                {
                    // if we are currently limiting the search for the next alpha to update
                    // to the set in the active set then skip a non-active vector.
                    if (search_all_alphas == false && active_bases(i) == -1)
                        continue;

                    // get the column for this sample out of the kernel matrix.  If it is 
                    // something in the active set then just get it right out of phi, otherwise 
                    // we have to calculate it.
                    if (active_bases(i) != -1)
                        K_col = colm(phi,active_bases(i));
                    else
                        get_kernel_colum(i, x, K_col);

                    // tempv2 = trans(phi_m)*B
                    tempv2 = trans(K_col)/var;  
                    tempv3 = tempv2*phi;
                    S(i) = tempv2*K_col - tempv3*sigma*trans(tempv3);
                    Q(i) = tempv2*t - tempv2*tempv; 
                }

                const long selected_idx = rvm_helpers::find_next_best_alpha_to_update(S,Q,alpha,active_bases, search_all_alphas, eps);

                // if find_next_best_alpha_to_update didn't find any good alpha to update
                if (selected_idx == -1)
                {
                    if (search_all_alphas == false)
                    {
                        // jump us to where search_all_alphas will be set to true and try again
                        ticker = rounds_of_narrow_search;
                        continue;
                    }
                    else
                    {
                        // we are really done so quit the main loop
                        break;
                    }
                }

                // recompute the variance
                var = length_squared(t - phi*weights)/(x.nr() - weights.size() + trans(alpha)*diag(sigma));

                // next we update the selected alpha.

                // if the selected alpha is in the active set
                if (active_bases(selected_idx) >= 0)
                {
                    const long idx = active_bases(selected_idx);
                    const scalar_type s = alpha(idx)*S(selected_idx)/(alpha(idx) - S(selected_idx));
                    const scalar_type q = alpha(idx)*Q(selected_idx)/(alpha(idx) - S(selected_idx));

                    if (q*q-s > 0)
                    {
                        // reestimate the value of alpha
                        alpha(idx) = s*s/(q*q-s);

                    }
                    else 
                    {
                        // the new alpha value is infinite so remove the selected alpha from our model
                        active_bases(selected_idx) = -1; 
                        phi = remove_col(phi, idx);
                        weights = remove_row(weights, idx);
                        alpha = remove_row(alpha, idx);

                        // fix the index values in active_bases
                        for (long i = 0; i < active_bases.size(); ++i)
                        {
                            if (active_bases(i) > idx)
                            {
                                active_bases(i) -= 1;
                            }
                        }
                    }
                }
                else
                {
                    const scalar_type s = S(selected_idx);
                    const scalar_type q = Q(selected_idx);

                    if (q*q-s > 0)
                    {
                        // add the selected alpha to our model
                        
                        active_bases(selected_idx) = phi.nc();
                        
                        // update alpha
                        tempv.set_size(alpha.size()+1);
                        set_subm(tempv, get_rect(alpha)) = alpha;
                        tempv(phi.nc()) = s*s/(q*q-s);
                        tempv.swap(alpha);

                        // update weights 
                        tempv.set_size(weights.size()+1);
                        set_subm(tempv, get_rect(weights)) = weights;
                        tempv(phi.nc()) = 0;
                        tempv.swap(weights);

                        // update phi by adding the new sample's kernel matrix column in as one of phi's columns
                        tempm.set_size(phi.nr(), phi.nc()+1);
                        set_subm(tempm, get_rect(phi)) = phi;
                        get_kernel_colum(selected_idx, x, K_col);
                        set_colm(tempm, phi.nc()) = K_col;
                        tempm.swap(phi);

                    }
                }



            } // end while(true).  So we have converged on the final answer.

       
            // now put everything into a decision_function object and return it
            std_vector_c<sample_type> dictionary;
            std_vector_c<scalar_type> final_weights;
            for (long i = 0; i < active_bases.size(); ++i)
            {
                if (active_bases(i) >= 0)
                {
                    dictionary.push_back(x(i));
                    final_weights.push_back(weights(active_bases(i)));
                }
            }

            return decision_function<kernel_type> ( mat(final_weights),
                                                    -sum(mat(final_weights))*tau, 
                                                    kernel,
                                                    mat(dictionary));

        }

    // ------------------------------------------------------------------------------------

        template <typename T>
        void get_kernel_colum (
            long idx,
            const T& x,
            scalar_vector_type& col
        ) const
        {
            col.set_size(x.nr());
            for (long i = 0; i < col.size(); ++i)
            {
                col(i) = kernel(x(idx), x(i)) + tau;
            }
        }

    // ------------------------------------------------------------------------------------

        template <typename M1, typename M2>
        scalar_type compute_initial_alpha (
            const M1& phi,
            const M2& t,
            const scalar_type& var
        ) const
        {
            const double temp = length_squared(phi);
            const double temp2 = trans(phi)*t;

            return temp/( temp2*temp2/temp + var);
        }

    // ------------------------------------------------------------------------------------

        template <typename M1, typename M2>
        long pick_initial_vector (
            const M1& x,
            const M2& t
        ) const
        {
            scalar_vector_type K_col;
            double max_projection = -std::numeric_limits<scalar_type>::infinity();
            long max_idx = 0;
            // find the row in the kernel matrix that has the biggest normalized projection onto the t vector
            for (long r = 0; r < x.nr(); ++r)
            {
                get_kernel_colum(r,x,K_col);
                double temp = trans(K_col)*t;
                temp = temp*temp/length_squared(K_col);

                if (temp > max_projection)
                {
                    max_projection = temp;
                    max_idx = r;
                }
            }

            return max_idx;
        }

    // ------------------------------------------------------------------------------------

    // private member variables
        kernel_type kernel;
        scalar_type eps;

        const static scalar_type tau;

    }; // end of class rvm_regression_trainer 

    template <typename kernel_type>
    const typename kernel_type::scalar_type rvm_regression_trainer<kernel_type>::tau = static_cast<typename kernel_type::scalar_type>(0.001);

// ----------------------------------------------------------------------------------------

    template <typename K>
    void swap (
        rvm_regression_trainer<K>& a,
        rvm_regression_trainer<K>& b
    ) { a.swap(b); }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_RVm_