This file is indexed.

/usr/include/dlib/svm/svm_abstract.h is in libdlib-dev 18.18-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
// Copyright (C) 2007  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#undef DLIB_SVm_ABSTRACT_
#ifdef DLIB_SVm_ABSTRACT_

#include <cmath>
#include <limits>
#include <sstream>
#include "../matrix/matrix_abstract.h"
#include "../algs.h"
#include "../serialize.h"
#include "function_abstract.h"
#include "kernel_abstract.h"
#include "svm_nu_trainer_abstract.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        typename T,
        typename U
        >
    bool is_learning_problem (
        const T& x,
        const U& x_labels
    );
    /*!
        requires
            - T == a matrix or something convertible to a matrix via mat()
            - U == a matrix or something convertible to a matrix via mat()
        ensures
            - returns true if all of the following are true and false otherwise:
                - is_col_vector(x) == true
                - is_col_vector(x_labels) == true
                - x.size() == x_labels.size() 
                - x.size() > 0
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename T,
        typename U
        >
    bool is_binary_classification_problem (
        const T& x,
        const U& x_labels
    );
    /*!
        requires
            - T == a matrix or something convertible to a matrix via mat()
            - U == a matrix or something convertible to a matrix via mat()
        ensures
            - returns true if all of the following are true and false otherwise:
                - is_learning_problem(x, x_labels) == true
                - x.size() > 1
                - there exists at least one sample from both the +1 and -1 classes.
                  (i.e. all samples can't have the same label)
                - for all valid i:
                    - x_labels(i) == -1 or +1
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename sequence_type 
        >
    bool is_sequence_labeling_problem (
        const std::vector<sequence_type>& samples,
        const std::vector<std::vector<unsigned long> >& labels
    );
    /*!
        ensures
            - returns true if all of the following are true and false otherwise:
                - is_learning_problem(samples, labels) == true
                - for all valid i:
                    - samples[i].size() == labels[i].size()
                      (i.e. The size of a label sequence need to match the size of 
                      its corresponding sample sequence)
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename sequence_type 
        >
    bool is_sequence_segmentation_problem (
        const std::vector<sequence_type>& samples,
        const std::vector<std::vector<std::pair<unsigned long,unsigned long> > >& segments
    );
    /*!
        ensures
            - Note that a sequence segmentation problem is a task where you are given a
              sequence of objects (e.g. words in a sentence) and your task is to find
              certain types of sub-sequences (e.g. proper names).
            - returns true if all of the following are true and false otherwise:
                - is_learning_problem(samples, segments) == true
                - for all valid i and j:
                    - We interpret segments[i][j] as defining a half open range starting
                      with segments[i][j].first and ending just before segments[i][j].second.
                    - segments[i][j].first < segments[i][j].second
                    - segments[i][j].second <= samples[i].size()
                      (i.e. Each segment must be contained within its associated sequence)
                    - segments[i][j] does not overlap with any of the other ranges in
                      segments[i].
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename lhs_type, 
        typename rhs_type
        >
    bool is_assignment_problem (
        const std::vector<std::pair<std::vector<lhs_type>, std::vector<rhs_type> > >& samples,
        const std::vector<std::vector<long> >& labels
    );
    /*!
        ensures
            - Note that an assignment problem is a task to associate each element of samples[i].first
              to an element of samples[i].second, or to indicate that the element doesn't associate 
              with anything.  Therefore, labels[i] should contain the association information for
              samples[i].
            - This function returns true if all of the following are true and false otherwise:
                - is_learning_problem(samples, labels) == true
                - for all valid i:
                    - samples[i].first.size() == labels[i].size()
                    - for all valid j:
                        -1 <= labels[i][j] < samples[i].second.size()
                        (A value of -1 indicates that samples[i].first[j] isn't associated with anything.
                        All other values indicate the associating element of samples[i].second)
                    - All elements of labels[i] which are not equal to -1 are unique.  That is,
                      multiple elements of samples[i].first can't associate to the same element
                      in samples[i].second.
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename lhs_type, 
        typename rhs_type
        >
    bool is_forced_assignment_problem (
        const std::vector<std::pair<std::vector<lhs_type>, std::vector<rhs_type> > >& samples,
        const std::vector<std::vector<long> >& labels
    );
    /*!
        ensures
            - A regular assignment problem is allowed to indicate that all elements of 
              samples[i].first don't associate to anything.  However, a forced assignment
              problem is required to always associate an element of samples[i].first to 
              something in samples[i].second if there is an element of samples[i].second
              that hasn't already been associated to something.  
            - This function returns true if all of the following are true and false otherwise:
                - is_assignment_problem(samples, labels) == true
                - for all valid i:
                    - let N denote the number of elements in labels[i] that are not equal to -1.
                    - min(samples[i].first.size(), samples[i].second.size()) == N
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename detection_type_,
        typename label_type_ = long
        >
    struct labeled_detection
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is a simple object, like std::pair, it just holds two objects.  It
                serves the same purpose as std::pair except that it has informative names
                describing its two members and is intended for use with track association
                problems.
        !*/

        typedef detection_type_ detection_type;
        typedef label_type_ label_type;

        detection_type det;
        label_type label;
    };

    template <
        typename detection_type_,
        typename label_type_ 
        >
    void serialize (const labeled_detection<detection_type_,label_type_>& item, std::ostream& out);
    /*!
        provides serialization support
    !*/

    template <
        typename detection_type_,
        typename label_type_ 
        >
    void deserialize (labeled_detection<detection_type_,label_type_>& item, std::istream& in);
    /*!
        provides deserialization support
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename detection_type, 
        typename label_type 
        >
    bool is_track_association_problem (
        const std::vector<std::vector<labeled_detection<detection_type,label_type> > >& samples
    );
    /*!
        ensures
            - In this tracking model you get a set of detections at each time step and are
              expected to associate each detection with a track or have it spawn a new
              track.  Therefore, a track association problem is a machine learning problem
              where you are given a dataset of example input detections and are expected to
              learn to perform the proper detection to track association.  
            - This function checks if samples can form a valid dataset for this machine
              learning problem and returns true if this is the case.  This means we should
              interpret samples in the following way:
                - samples is a track history and for each valid i:
                    - samples[i] is a set of labeled detections from the i-th time step.
                      Each detection has been labeled with its "true object identity".
                      That is, all the detection throughout the history with the same
                      label_type value are detections from the same object and therefore
                      should be associated to the same track.
              Putting this all together, samples is a valid track association learning
              problem if and only if the following are all true:
                - samples.size() > 0
                - There are at least two values, i and j such that:
                    - i != j
                    - samples[i].size() > 0
                    - samples[j].size() > 0
                  Or in other words, there needs to be some detections in samples somewhere
                  or it is impossible to learn anything.
                - for all valid i:
                    - for all valid j and k where j!=k:
                        - samples[i][j].label != samples[i][k].label
                          (i.e. the label_type values must be unique within each time step.
                          Or in other words, you can't have two detections on the same
                          object in a single time step.)
    !*/

    template <
        typename detection_type, 
        typename label_type 
        >
    bool is_track_association_problem (
        const std::vector<std::vector<std::vector<labeled_detection<detection_type,label_type> > > >& samples
    );
    /*!
        ensures
            - returns true if is_track_association_problem(samples[i]) == true for all
              valid i and false otherwise.
    !*/

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    double platt_scale (
        const std::pair<double,double>& params,
        const double score
    );
    /*!
        ensures
            - returns 1/(1 + std::exp(params.first*score + params.second))
    !*/

// ----------------------------------------------------------------------------------------

    template <typename T, typename alloc>
    std::pair<double,double> learn_platt_scaling (
        const std::vector<T,alloc>& scores,
        const std::vector<T,alloc>& labels
    );
    /*!
        requires
            - T should be either float, double, or long double 
            - is_binary_classification_problem(scores,labels) == true
        ensures
            - This function learns to map scalar values into well calibrated probabilities
              using Platt scaling.  In particular, it returns a params object such that, 
              for all valid i:
                - platt_scale(params,scores[i]) == the scaled version of the scalar value
                  scores[i].  That is, the output is a number between 0 and 1.  In
                  particular, platt_scale(params,scores[i]) is meant to represent the
                  probability that labels[i] == +1.
            - This function is an implementation of the algorithm described in the following
              papers: 
                Probabilistic Outputs for Support Vector Machines and Comparisons to
                Regularized Likelihood Methods by John C. Platt.  March 26, 1999

                A Note on Platt's Probabilistic Outputs for Support Vector Machines
                by Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename trainer_type,
        typename sample_vector_type,
        typename label_vector_type
        >
    const probabilistic_function<typename trainer_type::trained_function_type> 
    train_probabilistic_decision_function (
        const trainer_type& trainer,
        const sample_vector_type& x,
        const label_vector_type& y,
        const long folds
    );
    /*!
        requires
            - 1 < folds <= x.size()
            - is_binary_classification_problem(x,y) == true
            - x and y must be std::vector objects or types with a compatible interface.
            - trainer_type == some kind of batch trainer object (e.g. svm_nu_trainer)
        ensures
            - trains a classifier given the training samples in x and labels in y.  
            - returns a probabilistic_decision_function that represents the trained classifier.
            - The parameters of the probability model are estimated by performing k-fold 
              cross validation. 
            - The number of folds used is given by the folds argument.
            - This function is implemented using learn_platt_scaling()
        throws
            - any exceptions thrown by trainer.train()
            - std::bad_alloc
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename trainer_type
        >
    trainer_adapter_probabilistic<trainer_type> probabilistic (
        const trainer_type& trainer,
        const long folds
    );
    /*!
        requires
            - 1 < folds <= x.size()
            - trainer_type == some kind of batch trainer object (e.g. svm_nu_trainer)
        ensures
            - returns a trainer adapter TA such that calling TA.train(samples, labels)
              returns the same object as calling train_probabilistic_decision_function(trainer,samples,labels,folds).
    !*/

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
//                                  Miscellaneous functions
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        typename trainer_type,
        typename in_sample_vector_type,
        typename in_scalar_vector_type
        >
    const matrix<double,1,2> cross_validate_trainer (
        const trainer_type& trainer,
        const in_sample_vector_type& x,
        const in_scalar_vector_type& y,
        const long folds
    );
    /*!
        requires
            - is_binary_classification_problem(x,y) == true
            - 1 < folds <= std::min(sum(y>0),sum(y<0))
              (e.g. There must be at least as many examples of each class as there are folds)
            - trainer_type == some kind of binary classification trainer object (e.g. svm_nu_trainer)
        ensures
            - performs k-fold cross validation by using the given trainer to solve the
              given binary classification problem for the given number of folds.
              Each fold is tested using the output of the trainer and the average 
              classification accuracy from all folds is returned.  
            - The average accuracy is computed by running test_binary_decision_function()
              on each fold and its output is averaged and returned.
            - The number of folds used is given by the folds argument.
        throws
            - any exceptions thrown by trainer.train()
            - std::bad_alloc
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename dec_funct_type,
        typename in_sample_vector_type,
        typename in_scalar_vector_type
        >
    const matrix<double,1,2> test_binary_decision_function (
        const dec_funct_type& dec_funct,
        const in_sample_vector_type& x_test,
        const in_scalar_vector_type& y_test
    );
    /*!
        requires
            - is_binary_classification_problem(x_test,y_test) == true
            - dec_funct_type == some kind of decision function object (e.g. decision_function)
        ensures
            - Tests the given decision function by calling it on the x_test and y_test samples.
              The output of dec_funct is interpreted as a prediction for the +1 class
              if its output is >= 0 and as a prediction for the -1 class otherwise.
            - The test accuracy is returned in a row vector, let us call it R.  Both 
              quantities in R are numbers between 0 and 1 which represent the fraction 
              of examples correctly classified.  R(0) is the fraction of +1 examples 
              correctly classified and R(1) is the fraction of -1 examples correctly 
              classified.
        throws
            - std::bad_alloc
    !*/

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        typename T,
        typename U
        >
    void randomize_samples (
        T& samples,
        U& labels 
    );
    /*!
        requires
            - T == a matrix object or an object compatible with std::vector that contains 
              a swappable type.
            - U == a matrix object or an object compatible with std::vector that contains 
              a swappable type.
            - if samples or labels are matrix objects then is_vector(samples) == true and
              is_vector(labels) == true
            - samples.size() == labels.size()
        ensures
            - randomizes the order of the samples and labels but preserves
              the pairing between each sample and its label
            - A default initialized random number generator is used to perform the randomizing.
              Note that this means that each call this this function does the same thing.  
              That is, the random number generator always uses the same seed.
            - for all valid i:
                - let r == the random index samples(i) was moved to.  then:
                    - #labels(r) == labels(i)
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename T,
        typename U,
        typename rand_type
        >
    void randomize_samples (
        T& samples,
        U& labels,
        rand_type& rnd
    );
    /*!
        requires
            - T == a matrix object or an object compatible with std::vector that contains 
              a swappable type.
            - U == a matrix object or an object compatible with std::vector that contains 
              a swappable type.
            - if samples or labels are matrix objects then is_vector(samples) == true and
              is_vector(labels) == true
            - samples.size() == labels.size()
            - rand_type == a type that implements the dlib/rand/rand_kernel_abstract.h interface
        ensures
            - randomizes the order of the samples and labels but preserves
              the pairing between each sample and its label
            - the given rnd random number generator object is used to do the randomizing
            - for all valid i:
                - let r == the random index samples(i) was moved to.  then:
                    - #labels(r) == labels(i)
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename T
        >
    void randomize_samples (
        T& samples
    );
    /*!
        requires
            - T == a matrix object or an object compatible with std::vector that contains 
              a swappable type.
            - if (samples is a matrix) then 
                - is_vector(samples) == true 
        ensures
            - randomizes the order of the elements inside samples 
            - A default initialized random number generator is used to perform the randomizing.
              Note that this means that each call this this function does the same thing.  
              That is, the random number generator always uses the same seed.
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename T,
        typename rand_type
        >
    void randomize_samples (
        T& samples,
        rand_type& rnd
    );
    /*!
        requires
            - T == a matrix object or an object compatible with std::vector that contains 
              a swappable type.
            - rand_type == a type that implements the dlib/rand/rand_kernel_abstract.h interface
            - if (samples is a matrix) then 
                - is_vector(samples) == true 
        ensures
            - randomizes the order of the elements inside samples 
            - the given rnd random number generator object is used to do the randomizing
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename T,
        typename U,
        typename V
        >
    void randomize_samples (
        T& samples,
        U& labels,
        V& auxiliary
    );
    /*!
        requires
            - T == a matrix object or an object compatible with std::vector that contains 
              a swappable type.
            - U == a matrix object or an object compatible with std::vector that contains 
              a swappable type.
            - V == a matrix object or an object compatible with std::vector that contains 
              a swappable type.
            - if (samples, labels, or auxiliary are matrix objects) then 
                - is_vector(samples) == true 
                - is_vector(labels) == true
                - is_vector(auxiliary) == true
            - samples.size() == labels.size() == auxiliary.size()
        ensures
            - randomizes the order of the samples, labels, and auxiliary but preserves the
              pairing between each sample, its label, and its auxiliary value.
            - A default initialized random number generator is used to perform the
              randomizing.  Note that this means that each call this this function does the
              same thing.  That is, the random number generator always uses the same seed.
            - for all valid i:
                - let r == the random index samples(i) was moved to.  then:
                    - #labels(r) == labels(i)
                    - #auxiliary(r) == auxiliary(i)
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename T,
        typename U,
        typename V,
        typename rand_type
        >
    void randomize_samples (
        T& samples,
        U& labels,
        V& auxiliary,
        rand_type& rnd
    );
    /*!
        requires
            - T == a matrix object or an object compatible with std::vector that contains 
              a swappable type.
            - U == a matrix object or an object compatible with std::vector that contains 
              a swappable type.
            - V == a matrix object or an object compatible with std::vector that contains 
              a swappable type.
            - if (samples, labels, or auxiliary are matrix objects) then 
                - is_vector(samples) == true 
                - is_vector(labels) == true
                - is_vector(auxiliary) == true
            - samples.size() == labels.size() == auxiliary.size()
            - rand_type == a type that implements the dlib/rand/rand_kernel_abstract.h interface
        ensures
            - randomizes the order of the samples, labels, and auxiliary but preserves the
              pairing between each sample, its label, and its auxiliary value.
            - the given rnd random number generator object is used to do the randomizing
            - for all valid i:
                - let r == the random index samples(i) was moved to.  then:
                    - #labels(r) == labels(i)
                    - #auxiliary(r) == auxiliary(i)
    !*/

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

}

#endif // DLIB_SVm_ABSTRACT_