This file is indexed.

/usr/include/dune/common/densematrix.hh is in libdune-common-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_DENSEMATRIX_HH
#define DUNE_DENSEMATRIX_HH

#include <cmath>
#include <cstddef>
#include <iostream>
#include <type_traits>
#include <vector>

#include <dune/common/boundschecking.hh>
#include <dune/common/exceptions.hh>
#include <dune/common/fvector.hh>
#include <dune/common/precision.hh>
#include <dune/common/classname.hh>
#include <dune/common/math.hh>
#include <dune/common/typetraits.hh>
#include <dune/common/unused.hh>


namespace Dune
{

  template<typename M> class DenseMatrix;

  template<typename M>
  struct FieldTraits< DenseMatrix<M> >
  {
    typedef const typename FieldTraits< typename DenseMatVecTraits<M>::value_type >::field_type field_type;
    typedef const typename FieldTraits< typename DenseMatVecTraits<M>::value_type >::real_type real_type;
  };

  /*
     work around a problem of FieldMatrix/FieldVector,
     there is no unique way to obtain the size of a class
   */
  template<class K, int N, int M> class FieldMatrix;
  template<class K, int N> class FieldVector;
  namespace {
    template<class V>
    struct VectorSize
    {
      static typename V::size_type size(const V & v) { return v.size(); }
    };

    template<class K, int N>
    struct VectorSize< const FieldVector<K,N> >
    {
      typedef FieldVector<K,N> V;
      static typename V::size_type size(const V & v) { return N; }
    };
  }

  /**
      @addtogroup DenseMatVec
      @{
   */

  /*! \file

     \brief  Implements a matrix constructed from a given type
     representing a field and a compile-time given number of rows and columns.
   */



  /**
     \brief you have to specialize this structure for any type that should be assignable to a DenseMatrix
     \tparam DenseMatrix Some type implementing the dense matrix interface
     \tparam RHS Right hand side type
   */
  template< class DenseMatrix, class RHS >
  struct DenseMatrixAssigner;

#ifndef DOXYGEN
  namespace Impl
  {

    template< class DenseMatrix, class RHS, class = void >
    class DenseMatrixAssigner
    {};

    template< class DenseMatrix, class RHS >
    class DenseMatrixAssigner< DenseMatrix, RHS, std::enable_if_t< Dune::IsNumber< RHS >::value > >
    {
    public:
      static void apply ( DenseMatrix &denseMatrix, const RHS &rhs )
      {
        typedef typename DenseMatrix::field_type field_type;
        std::fill( denseMatrix.begin(), denseMatrix.end(), static_cast< field_type >( rhs ) );
      }
    };

    template< class DenseMatrix, class RHS >
    class DenseMatrixAssigner< DenseMatrix, RHS, std::enable_if_t< !std::is_same< typename RHS::const_iterator, void >::value > >
    {
    public:
      static void apply ( DenseMatrix &denseMatrix, const RHS &rhs )
      {
        DUNE_ASSERT_BOUNDS(rhs.N() == denseMatrix.N());
        DUNE_ASSERT_BOUNDS(rhs.M() == denseMatrix.M());
        typename DenseMatrix::iterator tIt = std::begin(denseMatrix);
        typename RHS::const_iterator sIt = std::begin(rhs);
        for(; sIt != std::end(rhs); ++tIt, ++sIt)
          std::copy(std::begin(*sIt), std::end(*sIt), std::begin(*tIt));
      }
    };

  } // namespace Impl



  template< class DenseMatrix, class RHS >
  struct DenseMatrixAssigner
    : public Impl::DenseMatrixAssigner< DenseMatrix, RHS >
  {};


  namespace Impl
  {

    template< class DenseMatrix, class RHS >
    std::true_type hasDenseMatrixAssigner ( DenseMatrix &, const RHS &, decltype( Dune::DenseMatrixAssigner< DenseMatrix, RHS >::apply( std::declval< DenseMatrix & >(), std::declval< const RHS & >() ) ) * = nullptr );

    std::false_type hasDenseMatrixAssigner ( ... );

  } // namespace Impl

  template< class DenseMatrix, class RHS >
  struct HasDenseMatrixAssigner
    : public decltype( Impl::hasDenseMatrixAssigner( std::declval< DenseMatrix & >(), std::declval< const RHS & >() ) )
  {};

#endif // #ifndef DOXYGEN



  /** @brief Error thrown if operations of a FieldMatrix fail. */
  class FMatrixError : public MathError {};

  /**
      @brief A dense n x m matrix.

      Matrices represent linear maps from a vector space V to a vector space W.
      This class represents such a linear map by storing a two-dimensional
      %array of numbers of a given field type K. The number of rows and
      columns is given at compile time.

      \tparam MAT type of the matrix implementation
   */
  template<typename MAT>
  class DenseMatrix
  {
    typedef DenseMatVecTraits<MAT> Traits;

    // Curiously recurring template pattern
    MAT & asImp() { return static_cast<MAT&>(*this); }
    const MAT & asImp() const { return static_cast<const MAT&>(*this); }

  public:
    //===== type definitions and constants

    //! type of derived matrix class
    typedef typename Traits::derived_type derived_type;

    //! export the type representing the field
    typedef typename Traits::value_type value_type;

    //! export the type representing the field
    typedef typename Traits::value_type field_type;

    //! export the type representing the components
    typedef typename Traits::value_type block_type;

    //! The type used for the index access and size operation
    typedef typename Traits::size_type size_type;

    //! The type used to represent a row (must fulfill the Dune::DenseVector interface)
    typedef typename Traits::row_type row_type;

    //! The type used to represent a reference to a row (usually row_type &)
    typedef typename Traits::row_reference row_reference;

    //! The type used to represent a reference to a constant row (usually const row_type &)
    typedef typename Traits::const_row_reference const_row_reference;

    //! We are at the leaf of the block recursion
    enum {
      //! The number of block levels we contain. This is 1.
      blocklevel = 1
    };

    //===== access to components

    //! random access
    row_reference operator[] ( size_type i )
    {
      return asImp().mat_access(i);
    }

    const_row_reference operator[] ( size_type i ) const
    {
      return asImp().mat_access(i);
    }

    //! size method (number of rows)
    size_type size() const
    {
      return rows();
    }

    //===== iterator interface to rows of the matrix
    //! Iterator class for sequential access
    typedef DenseIterator<DenseMatrix,row_type,row_reference> Iterator;
    //! typedef for stl compliant access
    typedef Iterator iterator;
    //! rename the iterators for easier access
    typedef Iterator RowIterator;
    //! rename the iterators for easier access
    typedef typename std::remove_reference<row_reference>::type::Iterator ColIterator;

    //! begin iterator
    Iterator begin ()
    {
      return Iterator(*this,0);
    }

    //! end iterator
    Iterator end ()
    {
      return Iterator(*this,rows());
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the vector, i.e. at the last entry.
    Iterator beforeEnd ()
    {
      return Iterator(*this,rows()-1);
    }

    //! @returns an iterator that is positioned before
    //! the first entry of the vector.
    Iterator beforeBegin ()
    {
      return Iterator(*this,-1);
    }

    //! Iterator class for sequential access
    typedef DenseIterator<const DenseMatrix,const row_type,const_row_reference> ConstIterator;
    //! typedef for stl compliant access
    typedef ConstIterator const_iterator;
    //! rename the iterators for easier access
    typedef ConstIterator ConstRowIterator;
    //! rename the iterators for easier access
    typedef typename std::remove_reference<const_row_reference>::type::ConstIterator ConstColIterator;

    //! begin iterator
    ConstIterator begin () const
    {
      return ConstIterator(*this,0);
    }

    //! end iterator
    ConstIterator end () const
    {
      return ConstIterator(*this,rows());
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the vector. i.e. at the last element
    ConstIterator beforeEnd () const
    {
      return ConstIterator(*this,rows()-1);
    }

    //! @returns an iterator that is positioned before
    //! the first entry of the vector.
    ConstIterator beforeBegin () const
    {
      return ConstIterator(*this,-1);
    }

    //===== assignment

    template< class RHS, class = std::enable_if_t< HasDenseMatrixAssigner< MAT, RHS >::value > >
    DenseMatrix &operator= ( const RHS &rhs )
    {
      DenseMatrixAssigner< MAT, RHS >::apply( asImp(), rhs );
      return *this;
    }

    //===== vector space arithmetic

    //! vector space addition
    template <class Other>
    DenseMatrix& operator+= (const DenseMatrix<Other>& y)
    {
      DUNE_ASSERT_BOUNDS(rows() == y.rows());
      for (size_type i=0; i<rows(); i++)
        (*this)[i] += y[i];
      return *this;
    }

    //! vector space subtraction
    template <class Other>
    DenseMatrix& operator-= (const DenseMatrix<Other>& y)
    {
      DUNE_ASSERT_BOUNDS(rows() == y.rows());
      for (size_type i=0; i<rows(); i++)
        (*this)[i] -= y[i];
      return *this;
    }

    //! vector space multiplication with scalar
    DenseMatrix& operator*= (const field_type& k)
    {
      for (size_type i=0; i<rows(); i++)
        (*this)[i] *= k;
      return *this;
    }

    //! vector space division by scalar
    DenseMatrix& operator/= (const field_type& k)
    {
      for (size_type i=0; i<rows(); i++)
        (*this)[i] /= k;
      return *this;
    }

    //! vector space axpy operation (*this += k y)
    template <class Other>
    DenseMatrix &axpy (const field_type &k, const DenseMatrix<Other> &y )
    {
      DUNE_ASSERT_BOUNDS(rows() == y.rows());
      for( size_type i = 0; i < rows(); ++i )
        (*this)[ i ].axpy( k, y[ i ] );
      return *this;
    }

    //! Binary matrix comparison
    template <class Other>
    bool operator== (const DenseMatrix<Other>& y) const
    {
      DUNE_ASSERT_BOUNDS(rows() == y.rows());
      for (size_type i=0; i<rows(); i++)
        if ((*this)[i]!=y[i])
          return false;
      return true;
    }
    //! Binary matrix incomparison
    template <class Other>
    bool operator!= (const DenseMatrix<Other>& y) const
    {
      return !operator==(y);
    }


    //===== linear maps

    //! y = A x
    template<class X, class Y>
    void mv (const X& x, Y& y) const
    {
      DUNE_ASSERT_BOUNDS((void*)(&x) != (void*)(&y));
      DUNE_ASSERT_BOUNDS(x.N() == M());
      DUNE_ASSERT_BOUNDS(y.N() == N());

      using field_type = typename FieldTraits<Y>::field_type;
      for (size_type i=0; i<rows(); ++i)
      {
        y[i] = field_type(0);
        for (size_type j=0; j<cols(); j++)
          y[i] += (*this)[i][j] * x[j];
      }
    }

    //! y = A^T x
    template< class X, class Y >
    void mtv ( const X &x, Y &y ) const
    {
      DUNE_ASSERT_BOUNDS((void*)(&x) != (void*)(&y));
      DUNE_ASSERT_BOUNDS(x.N() == N());
      DUNE_ASSERT_BOUNDS(y.N() == M());

      using field_type = typename FieldTraits<Y>::field_type;
      for(size_type i = 0; i < cols(); ++i)
      {
        y[i] = field_type(0);
        for(size_type j = 0; j < rows(); ++j)
          y[i] += (*this)[j][i] * x[j];
      }
    }

    //! y += A x
    template<class X, class Y>
    void umv (const X& x, Y& y) const
    {
      DUNE_ASSERT_BOUNDS(x.N() == M());
      DUNE_ASSERT_BOUNDS(y.N() == N());
      for (size_type i=0; i<rows(); i++)
        for (size_type j=0; j<cols(); j++)
          y[i] += (*this)[i][j] * x[j];
    }

    //! y += A^T x
    template<class X, class Y>
    void umtv (const X& x, Y& y) const
    {
      DUNE_ASSERT_BOUNDS(x.N() == N());
      DUNE_ASSERT_BOUNDS(y.N() == M());
      for (size_type i=0; i<rows(); i++)
        for (size_type j=0; j<cols(); j++)
          y[j] += (*this)[i][j]*x[i];
    }

    //! y += A^H x
    template<class X, class Y>
    void umhv (const X& x, Y& y) const
    {
      DUNE_ASSERT_BOUNDS(x.N() == N());
      DUNE_ASSERT_BOUNDS(y.N() == M());
      for (size_type i=0; i<rows(); i++)
        for (size_type j=0; j<cols(); j++)
          y[j] += conjugateComplex((*this)[i][j])*x[i];
    }

    //! y -= A x
    template<class X, class Y>
    void mmv (const X& x, Y& y) const
    {
      DUNE_ASSERT_BOUNDS(x.N() == M());
      DUNE_ASSERT_BOUNDS(y.N() == N());
      for (size_type i=0; i<rows(); i++)
        for (size_type j=0; j<cols(); j++)
          y[i] -= (*this)[i][j] * x[j];
    }

    //! y -= A^T x
    template<class X, class Y>
    void mmtv (const X& x, Y& y) const
    {
      DUNE_ASSERT_BOUNDS(x.N() == N());
      DUNE_ASSERT_BOUNDS(y.N() == M());
      for (size_type i=0; i<rows(); i++)
        for (size_type j=0; j<cols(); j++)
          y[j] -= (*this)[i][j]*x[i];
    }

    //! y -= A^H x
    template<class X, class Y>
    void mmhv (const X& x, Y& y) const
    {
      DUNE_ASSERT_BOUNDS(x.N() == N());
      DUNE_ASSERT_BOUNDS(y.N() == M());
      for (size_type i=0; i<rows(); i++)
        for (size_type j=0; j<cols(); j++)
          y[j] -= conjugateComplex((*this)[i][j])*x[i];
    }

    //! y += alpha A x
    template<class X, class Y>
    void usmv (const typename FieldTraits<Y>::field_type & alpha,
      const X& x, Y& y) const
    {
      DUNE_ASSERT_BOUNDS(x.N() == M());
      DUNE_ASSERT_BOUNDS(y.N() == N());
      for (size_type i=0; i<rows(); i++)
        for (size_type j=0; j<cols(); j++)
          y[i] += alpha * (*this)[i][j] * x[j];
    }

    //! y += alpha A^T x
    template<class X, class Y>
    void usmtv (const typename FieldTraits<Y>::field_type & alpha,
      const X& x, Y& y) const
    {
      DUNE_ASSERT_BOUNDS(x.N() == N());
      DUNE_ASSERT_BOUNDS(y.N() == M());
      for (size_type i=0; i<rows(); i++)
        for (size_type j=0; j<cols(); j++)
          y[j] += alpha*(*this)[i][j]*x[i];
    }

    //! y += alpha A^H x
    template<class X, class Y>
    void usmhv (const typename FieldTraits<Y>::field_type & alpha,
      const X& x, Y& y) const
    {
      DUNE_ASSERT_BOUNDS(x.N() == N());
      DUNE_ASSERT_BOUNDS(y.N() == M());
      for (size_type i=0; i<rows(); i++)
        for (size_type j=0; j<cols(); j++)
          y[j] += alpha*conjugateComplex((*this)[i][j])*x[i];
    }

    //===== norms

    //! frobenius norm: sqrt(sum over squared values of entries)
    typename FieldTraits<value_type>::real_type frobenius_norm () const
    {
      typename FieldTraits<value_type>::real_type sum=(0.0);
      for (size_type i=0; i<rows(); ++i) sum += (*this)[i].two_norm2();
      return fvmeta::sqrt(sum);
    }

    //! square of frobenius norm, need for block recursion
    typename FieldTraits<value_type>::real_type frobenius_norm2 () const
    {
      typename FieldTraits<value_type>::real_type sum=(0.0);
      for (size_type i=0; i<rows(); ++i) sum += (*this)[i].two_norm2();
      return sum;
    }

    //! infinity norm (row sum norm, how to generalize for blocks?)
    template <typename vt = value_type,
              typename std::enable_if<!has_nan<vt>::value, int>::type = 0>
    typename FieldTraits<vt>::real_type infinity_norm() const {
      using real_type = typename FieldTraits<vt>::real_type;
      using std::max;

      real_type norm = 0;
      for (auto const &x : *this) {
        real_type const a = x.one_norm();
        norm = max(a, norm);
      }
      return norm;
    }

    //! simplified infinity norm (uses Manhattan norm for complex values)
    template <typename vt = value_type,
              typename std::enable_if<!has_nan<vt>::value, int>::type = 0>
    typename FieldTraits<vt>::real_type infinity_norm_real() const {
      using real_type = typename FieldTraits<vt>::real_type;
      using std::max;

      real_type norm = 0;
      for (auto const &x : *this) {
        real_type const a = x.one_norm_real();
        norm = max(a, norm);
      }
      return norm;
    }

    //! infinity norm (row sum norm, how to generalize for blocks?)
    template <typename vt = value_type,
              typename std::enable_if<has_nan<vt>::value, int>::type = 0>
    typename FieldTraits<vt>::real_type infinity_norm() const {
      using real_type = typename FieldTraits<vt>::real_type;
      using std::max;

      real_type norm = 0;
      real_type isNaN = 1;
      for (auto const &x : *this) {
        real_type const a = x.one_norm();
        norm = max(a, norm);
        isNaN += a;
      }
      isNaN /= isNaN;
      return norm * isNaN;
    }

    //! simplified infinity norm (uses Manhattan norm for complex values)
    template <typename vt = value_type,
              typename std::enable_if<has_nan<vt>::value, int>::type = 0>
    typename FieldTraits<vt>::real_type infinity_norm_real() const {
      using real_type = typename FieldTraits<vt>::real_type;
      using std::max;

      real_type norm = 0;
      real_type isNaN = 1;
      for (auto const &x : *this) {
        real_type const a = x.one_norm_real();
        norm = max(a, norm);
        isNaN += a;
      }
      isNaN /= isNaN;
      return norm * isNaN;
    }

    //===== solve

    /** \brief Solve system A x = b
     *
     * \exception FMatrixError if the matrix is singular
     */
    template <class V>
    void solve (V& x, const V& b) const;

    /** \brief Compute inverse
     *
     * \exception FMatrixError if the matrix is singular
     */
    void invert();

    //! calculates the determinant of this matrix
    field_type determinant () const;

    //! Multiplies M from the left to this matrix
    template<typename M2>
    MAT& leftmultiply (const DenseMatrix<M2>& M)
    {
      DUNE_ASSERT_BOUNDS(M.rows() == M.cols());
      DUNE_ASSERT_BOUNDS(M.rows() == rows());
      MAT C(asImp());

      for (size_type i=0; i<rows(); i++)
        for (size_type j=0; j<cols(); j++) {
          (*this)[i][j] = 0;
          for (size_type k=0; k<rows(); k++)
            (*this)[i][j] += M[i][k]*C[k][j];
        }

      return asImp();
    }

    //! Multiplies M from the right to this matrix
    template<typename M2>
    MAT& rightmultiply (const DenseMatrix<M2>& M)
    {
      DUNE_ASSERT_BOUNDS(M.rows() == M.cols());
      DUNE_ASSERT_BOUNDS(M.cols() == cols());
      MAT C(asImp());

      for (size_type i=0; i<rows(); i++)
        for (size_type j=0; j<cols(); j++) {
          (*this)[i][j] = 0;
          for (size_type k=0; k<cols(); k++)
            (*this)[i][j] += C[i][k]*M[k][j];
        }
      return asImp();
    }

#if 0
    //! Multiplies M from the left to this matrix, this matrix is not modified
    template<int l>
    DenseMatrix<K,l,cols> leftmultiplyany (const FieldMatrix<K,l,rows>& M) const
    {
      FieldMatrix<K,l,cols> C;

      for (size_type i=0; i<l; i++) {
        for (size_type j=0; j<cols(); j++) {
          C[i][j] = 0;
          for (size_type k=0; k<rows(); k++)
            C[i][j] += M[i][k]*(*this)[k][j];
        }
      }
      return C;
    }

    //! Multiplies M from the right to this matrix, this matrix is not modified
    template<int l>
    FieldMatrix<K,rows,l> rightmultiplyany (const FieldMatrix<K,cols,l>& M) const
    {
      FieldMatrix<K,rows,l> C;

      for (size_type i=0; i<rows(); i++) {
        for (size_type j=0; j<l; j++) {
          C[i][j] = 0;
          for (size_type k=0; k<cols(); k++)
            C[i][j] += (*this)[i][k]*M[k][j];
        }
      }
      return C;
    }
#endif

    //===== sizes

    //! number of rows
    size_type N () const
    {
      return rows();
    }

    //! number of columns
    size_type M () const
    {
      return cols();
    }

    //! number of rows
    size_type rows() const
    {
      return asImp().mat_rows();
    }

    //! number of columns
    size_type cols() const
    {
      return asImp().mat_cols();
    }

    //===== query

    //! return true when (i,j) is in pattern
    bool exists (size_type i, size_type j) const
    {
      DUNE_UNUSED_PARAMETER(i);
      DUNE_UNUSED_PARAMETER(j);
      DUNE_ASSERT_BOUNDS(i >= 0 && i < rows());
      DUNE_ASSERT_BOUNDS(j >= 0 && j < cols());
      return true;
    }

  private:

#ifndef DOXYGEN
    struct ElimPivot
    {
      ElimPivot(std::vector<size_type> & pivot);

      void swap(int i, int j);

      template<typename T>
      void operator()(const T&, int, int)
      {}

      std::vector<size_type> & pivot_;
    };

    template<typename V>
    struct Elim
    {
      Elim(V& rhs);

      void swap(int i, int j);

      void operator()(const typename V::field_type& factor, int k, int i);

      V* rhs_;
    };

    struct ElimDet
    {
      ElimDet(field_type& sign) : sign_(sign)
      { sign_ = 1; }

      void swap(int, int)
      { sign_ *= -1; }

      void operator()(const field_type&, int, int)
      {}

      field_type& sign_;
    };
#endif // DOXYGEN

    template<class Func>
    void luDecomposition(DenseMatrix<MAT>& A, Func func) const;
  };

#ifndef DOXYGEN
  template<typename MAT>
  DenseMatrix<MAT>::ElimPivot::ElimPivot(std::vector<size_type> & pivot)
    : pivot_(pivot)
  {
    typedef typename std::vector<size_type>::size_type size_type;
    for(size_type i=0; i < pivot_.size(); ++i) pivot_[i]=i;
  }

  template<typename MAT>
  void DenseMatrix<MAT>::ElimPivot::swap(int i, int j)
  {
    pivot_[i]=j;
  }

  template<typename MAT>
  template<typename V>
  DenseMatrix<MAT>::Elim<V>::Elim(V& rhs)
    : rhs_(&rhs)
  {}

  template<typename MAT>
  template<typename V>
  void DenseMatrix<MAT>::Elim<V>::swap(int i, int j)
  {
    std::swap((*rhs_)[i], (*rhs_)[j]);
  }

  template<typename MAT>
  template<typename V>
  void DenseMatrix<MAT>::
  Elim<V>::operator()(const typename V::field_type& factor, int k, int i)
  {
    (*rhs_)[k] -= factor*(*rhs_)[i];
  }
  template<typename MAT>
  template<typename Func>
  inline void DenseMatrix<MAT>::luDecomposition(DenseMatrix<MAT>& A, Func func) const
  {
    typedef typename FieldTraits<value_type>::real_type
    real_type;
    real_type norm = A.infinity_norm_real(); // for relative thresholds
    real_type pivthres = std::max( FMatrixPrecision< real_type >::absolute_limit(), norm * FMatrixPrecision< real_type >::pivoting_limit() );
    real_type singthres = std::max( FMatrixPrecision< real_type >::absolute_limit(), norm * FMatrixPrecision< real_type >::singular_limit() );

    // LU decomposition of A in A
    for (size_type i=0; i<rows(); i++)  // loop over all rows
    {
      typename FieldTraits<value_type>::real_type pivmax=fvmeta::absreal(A[i][i]);

      // pivoting ?
      if (pivmax<pivthres)
      {
        // compute maximum of column
        size_type imax=i;
        typename FieldTraits<value_type>::real_type abs(0.0);
        for (size_type k=i+1; k<rows(); k++)
          if ((abs=fvmeta::absreal(A[k][i]))>pivmax)
          {
            pivmax = abs; imax = k;
          }
        // swap rows
        if (imax!=i) {
          for (size_type j=0; j<rows(); j++)
            std::swap(A[i][j],A[imax][j]);
          func.swap(i, imax); // swap the pivot or rhs
        }
      }

      // singular ?
      if (pivmax<singthres)
        DUNE_THROW(FMatrixError,"matrix is singular");

      // eliminate
      for (size_type k=i+1; k<rows(); k++)
      {
        field_type factor = A[k][i]/A[i][i];
        A[k][i] = factor;
        for (size_type j=i+1; j<rows(); j++)
          A[k][j] -= factor*A[i][j];
        func(factor, k, i);
      }
    }
  }

  template<typename MAT>
  template <class V>
  inline void DenseMatrix<MAT>::solve(V& x, const V& b) const
  {
    // never mind those ifs, because they get optimized away
    if (rows()!=cols())
      DUNE_THROW(FMatrixError, "Can't solve for a " << rows() << "x" << cols() << " matrix!");

    if (rows()==1) {

#ifdef DUNE_FMatrix_WITH_CHECKING
      if (fvmeta::absreal((*this)[0][0])<FMatrixPrecision<>::absolute_limit())
        DUNE_THROW(FMatrixError,"matrix is singular");
#endif
      x[0] = b[0]/(*this)[0][0];

    }
    else if (rows()==2) {

      field_type detinv = (*this)[0][0]*(*this)[1][1]-(*this)[0][1]*(*this)[1][0];
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (fvmeta::absreal(detinv)<FMatrixPrecision<>::absolute_limit())
        DUNE_THROW(FMatrixError,"matrix is singular");
#endif
      detinv = 1.0/detinv;

      x[0] = detinv*((*this)[1][1]*b[0]-(*this)[0][1]*b[1]);
      x[1] = detinv*((*this)[0][0]*b[1]-(*this)[1][0]*b[0]);

    }
    else if (rows()==3) {

      field_type d = determinant();
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (fvmeta::absreal(d)<FMatrixPrecision<>::absolute_limit())
        DUNE_THROW(FMatrixError,"matrix is singular");
#endif

      x[0] = (b[0]*(*this)[1][1]*(*this)[2][2] - b[0]*(*this)[2][1]*(*this)[1][2]
              - b[1] *(*this)[0][1]*(*this)[2][2] + b[1]*(*this)[2][1]*(*this)[0][2]
              + b[2] *(*this)[0][1]*(*this)[1][2] - b[2]*(*this)[1][1]*(*this)[0][2]) / d;

      x[1] = ((*this)[0][0]*b[1]*(*this)[2][2] - (*this)[0][0]*b[2]*(*this)[1][2]
              - (*this)[1][0] *b[0]*(*this)[2][2] + (*this)[1][0]*b[2]*(*this)[0][2]
              + (*this)[2][0] *b[0]*(*this)[1][2] - (*this)[2][0]*b[1]*(*this)[0][2]) / d;

      x[2] = ((*this)[0][0]*(*this)[1][1]*b[2] - (*this)[0][0]*(*this)[2][1]*b[1]
              - (*this)[1][0] *(*this)[0][1]*b[2] + (*this)[1][0]*(*this)[2][1]*b[0]
              + (*this)[2][0] *(*this)[0][1]*b[1] - (*this)[2][0]*(*this)[1][1]*b[0]) / d;

    }
    else {

      V& rhs = x; // use x to store rhs
      rhs = b; // copy data
      Elim<V> elim(rhs);
      MAT A(asImp());

      luDecomposition(A, elim);

      // backsolve
      for(int i=rows()-1; i>=0; i--) {
        for (size_type j=i+1; j<rows(); j++)
          rhs[i] -= A[i][j]*x[j];
        x[i] = rhs[i]/A[i][i];
      }
    }
  }

  template<typename MAT>
  inline void DenseMatrix<MAT>::invert()
  {
    // never mind those ifs, because they get optimized away
    if (rows()!=cols())
      DUNE_THROW(FMatrixError, "Can't invert a " << rows() << "x" << cols() << " matrix!");

    if (rows()==1) {

#ifdef DUNE_FMatrix_WITH_CHECKING
      if (fvmeta::absreal((*this)[0][0])<FMatrixPrecision<>::absolute_limit())
        DUNE_THROW(FMatrixError,"matrix is singular");
#endif
      (*this)[0][0] = field_type( 1 ) / (*this)[0][0];

    }
    else if (rows()==2) {

      field_type detinv = (*this)[0][0]*(*this)[1][1]-(*this)[0][1]*(*this)[1][0];
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (fvmeta::absreal(detinv)<FMatrixPrecision<>::absolute_limit())
        DUNE_THROW(FMatrixError,"matrix is singular");
#endif
      detinv = field_type( 1 ) / detinv;

      field_type temp=(*this)[0][0];
      (*this)[0][0] =  (*this)[1][1]*detinv;
      (*this)[0][1] = -(*this)[0][1]*detinv;
      (*this)[1][0] = -(*this)[1][0]*detinv;
      (*this)[1][1] =  temp*detinv;

    }
    else if (rows()==3)
    {
      using K = field_type;
      // code generated by maple
      K t4  = (*this)[0][0] * (*this)[1][1];
      K t6  = (*this)[0][0] * (*this)[1][2];
      K t8  = (*this)[0][1] * (*this)[1][0];
      K t10 = (*this)[0][2] * (*this)[1][0];
      K t12 = (*this)[0][1] * (*this)[2][0];
      K t14 = (*this)[0][2] * (*this)[2][0];

      K det = (t4*(*this)[2][2]-t6*(*this)[2][1]-t8*(*this)[2][2]+
               t10*(*this)[2][1]+t12*(*this)[1][2]-t14*(*this)[1][1]);
      K t17 = K(1.0)/det;

      K matrix01 = (*this)[0][1];
      K matrix00 = (*this)[0][0];
      K matrix10 = (*this)[1][0];
      K matrix11 = (*this)[1][1];

      (*this)[0][0] =  ((*this)[1][1] * (*this)[2][2] - (*this)[1][2] * (*this)[2][1])*t17;
      (*this)[0][1] = -((*this)[0][1] * (*this)[2][2] - (*this)[0][2] * (*this)[2][1])*t17;
      (*this)[0][2] =  (matrix01 * (*this)[1][2] - (*this)[0][2] * (*this)[1][1])*t17;
      (*this)[1][0] = -((*this)[1][0] * (*this)[2][2] - (*this)[1][2] * (*this)[2][0])*t17;
      (*this)[1][1] =  (matrix00 * (*this)[2][2] - t14) * t17;
      (*this)[1][2] = -(t6-t10) * t17;
      (*this)[2][0] =  (matrix10 * (*this)[2][1] - matrix11 * (*this)[2][0]) * t17;
      (*this)[2][1] = -(matrix00 * (*this)[2][1] - t12) * t17;
      (*this)[2][2] =  (t4-t8) * t17;
    }
    else {

      MAT A(asImp());
      std::vector<size_type> pivot(rows());
      luDecomposition(A, ElimPivot(pivot));
      DenseMatrix<MAT>& L=A;
      DenseMatrix<MAT>& U=A;

      // initialize inverse
      *this=field_type();

      for(size_type i=0; i<rows(); ++i)
        (*this)[i][i]=1;

      // L Y = I; multiple right hand sides
      for (size_type i=0; i<rows(); i++)
        for (size_type j=0; j<i; j++)
          for (size_type k=0; k<rows(); k++)
            (*this)[i][k] -= L[i][j]*(*this)[j][k];

      // U A^{-1} = Y
      for (size_type i=rows(); i>0;) {
        --i;
        for (size_type k=0; k<rows(); k++) {
          for (size_type j=i+1; j<rows(); j++)
            (*this)[i][k] -= U[i][j]*(*this)[j][k];
          (*this)[i][k] /= U[i][i];
        }
      }

      for(size_type i=rows(); i>0; ) {
        --i;
        if(i!=pivot[i])
          for(size_type j=0; j<rows(); ++j)
            std::swap((*this)[j][pivot[i]], (*this)[j][i]);
      }
    }
  }

  // implementation of the determinant
  template<typename MAT>
  inline typename DenseMatrix<MAT>::field_type
  DenseMatrix<MAT>::determinant() const
  {
    // never mind those ifs, because they get optimized away
    if (rows()!=cols())
      DUNE_THROW(FMatrixError, "There is no determinant for a " << rows() << "x" << cols() << " matrix!");

    if (rows()==1)
      return (*this)[0][0];

    if (rows()==2)
      return (*this)[0][0]*(*this)[1][1] - (*this)[0][1]*(*this)[1][0];

    if (rows()==3) {
      // code generated by maple
      field_type t4  = (*this)[0][0] * (*this)[1][1];
      field_type t6  = (*this)[0][0] * (*this)[1][2];
      field_type t8  = (*this)[0][1] * (*this)[1][0];
      field_type t10 = (*this)[0][2] * (*this)[1][0];
      field_type t12 = (*this)[0][1] * (*this)[2][0];
      field_type t14 = (*this)[0][2] * (*this)[2][0];

      return (t4*(*this)[2][2]-t6*(*this)[2][1]-t8*(*this)[2][2]+
              t10*(*this)[2][1]+t12*(*this)[1][2]-t14*(*this)[1][1]);

    }

    MAT A(asImp());
    field_type det;
    try
    {
      luDecomposition(A, ElimDet(det));
    }
    catch (FMatrixError&)
    {
      return 0;
    }
    for (size_type i = 0; i < rows(); ++i)
      det *= A[i][i];
    return det;
  }

#endif // DOXYGEN

  namespace DenseMatrixHelp {

    //! calculates ret = matrix * x
    template <typename MAT, typename V1, typename V2>
    static inline void multAssign(const DenseMatrix<MAT> &matrix, const DenseVector<V1> & x, DenseVector<V2> & ret)
    {
      DUNE_ASSERT_BOUNDS(x.size() == matrix.cols());
      DUNE_ASSERT_BOUNDS(ret.size() == matrix.rows());
      typedef typename DenseMatrix<MAT>::size_type size_type;

      for(size_type i=0; i<matrix.rows(); ++i)
      {
        ret[i] = 0.0;
        for(size_type j=0; j<matrix.cols(); ++j)
        {
          ret[i] += matrix[i][j]*x[j];
        }
      }
    }

#if 0
    //! calculates ret = matrix^T * x
    template <typename K, int rows, int cols>
    static inline void multAssignTransposed( const FieldMatrix<K,rows,cols> &matrix, const FieldVector<K,rows> & x, FieldVector<K,cols> & ret)
    {
      typedef typename FieldMatrix<K,rows,cols>::size_type size_type;

      for(size_type i=0; i<cols(); ++i)
      {
        ret[i] = 0.0;
        for(size_type j=0; j<rows(); ++j)
          ret[i] += matrix[j][i]*x[j];
      }
    }

    //! calculates ret = matrix * x
    template <typename K, int rows, int cols>
    static inline FieldVector<K,rows> mult(const FieldMatrix<K,rows,cols> &matrix, const FieldVector<K,cols> & x)
    {
      FieldVector<K,rows> ret;
      multAssign(matrix,x,ret);
      return ret;
    }

    //! calculates ret = matrix^T * x
    template <typename K, int rows, int cols>
    static inline FieldVector<K,cols> multTransposed(const FieldMatrix<K,rows,cols> &matrix, const FieldVector<K,rows> & x)
    {
      FieldVector<K,cols> ret;
      multAssignTransposed( matrix, x, ret );
      return ret;
    }
#endif

  } // end namespace DenseMatrixHelp

  /** \brief Sends the matrix to an output stream */
  template<typename MAT>
  std::ostream& operator<< (std::ostream& s, const DenseMatrix<MAT>& a)
  {
    for (typename DenseMatrix<MAT>::size_type i=0; i<a.rows(); i++)
      s << a[i] << std::endl;
    return s;
  }

  /** @} end documentation */

} // end namespace Dune

#endif