This file is indexed.

/usr/include/dune/common/fmatrixev.hh is in libdune-common-dev 2.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_FMATRIXEIGENVALUES_HH
#define DUNE_FMATRIXEIGENVALUES_HH

/** \file
 * \brief Eigenvalue computations for the FieldMatrix class
 */

#include <iostream>
#include <cmath>
#include <cassert>

#include <dune/common/exceptions.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>

namespace Dune {

  /**
     @addtogroup DenseMatVec
     @{
   */

  namespace FMatrixHelp {

    // defined in fmatrixev.cc
    extern void eigenValuesLapackCall(
      const char* jobz, const char* uplo, const long
      int* n, double* a, const long int* lda, double* w,
      double* work, const long int* lwork, long int* info);

    extern void eigenValuesNonsymLapackCall(
      const char* jobvl, const char* jobvr, const long
      int* n, double* a, const long int* lda, double* wr, double* wi, double* vl,
      const long int* ldvl, double* vr, const long int* ldvr, double* work,
      const long int* lwork, const long int* info);

    /** \brief calculates the eigenvalues of a symmetric field matrix
        \param[in]  matrix matrix eigenvalues are calculated for
        \param[out] eigenvalues FieldVector that contains eigenvalues in
                    ascending order
     */
    template <typename K>
    static void eigenValues(const FieldMatrix<K, 1, 1>& matrix,
                            FieldVector<K, 1>& eigenvalues)
    {
      eigenvalues[0] = matrix[0][0];
    }

    /** \brief calculates the eigenvalues of a symmetric field matrix
        \param[in]  matrix matrix eigenvalues are calculated for
        \param[out] eigenvalues FieldVector that contains eigenvalues in
                    ascending order
     */
    template <typename K>
    static void eigenValues(const FieldMatrix<K, 2, 2>& matrix,
                            FieldVector<K, 2>& eigenvalues)
    {
      const K detM = matrix[0][0] * matrix[1][1] - matrix[1][0] * matrix[0][1];
      const K p = 0.5 * (matrix[0][0] + matrix [1][1]);
      K q = p * p - detM;
      if( q < 0 && q > -1e-14 ) q = 0;
      if (q < 0)
      {
        std::cout << matrix << std::endl;
        // Complex eigenvalues are either caused by non-symmetric matrices or by round-off errors
        DUNE_THROW(MathError, "Complex eigenvalue detected (which this implementation cannot handle).");
      }

      // get square root
      q = std :: sqrt(q);

      // store eigenvalues in ascending order
      eigenvalues[0] = p - q;
      eigenvalues[1] = p + q;
    }

    /** \brief Calculates the eigenvalues of a symmetric 3x3 field matrix
        \param[in]  matrix matrix eigenvalues are calculated for
        \param[out] eigenvalues Eigenvalues in ascending order

        \note If the input matrix is not symmetric the behavior of this method is undefined.

        This implementation was adapted from the pseudo-code (Python?) implementation found on
        http://en.wikipedia.org/wiki/Eigenvalue_algorithm  (retrieved late August 2014).
        Wikipedia claims to have taken it from
          Smith, Oliver K. (April 1961), Eigenvalues of a symmetric 3 × 3 matrix.,
          Communications of the ACM 4 (4): 168, doi:10.1145/355578.366316
     */
    template <typename K>
    static void eigenValues(const FieldMatrix<K, 3, 3>& matrix,
                            FieldVector<K, 3>& eigenvalues)
    {
      K p1 = matrix[0][1]*matrix[0][1] + matrix[0][2]*matrix[0][2] + matrix[1][2]*matrix[1][2];

      if (p1 <= 1e-8)
      {
        // A is diagonal.
        eigenvalues[0] = matrix[0][0];
        eigenvalues[1] = matrix[1][1];
        eigenvalues[2] = matrix[2][2];
      }
      else
      {
        // q = trace(A)/3
        K q = 0;
        for (int i=0; i<3; i++)
          q += matrix[i][i]/3.0;

        K p2 = (matrix[0][0] - q)*(matrix[0][0] - q) + (matrix[1][1] - q)*(matrix[1][1] - q) + (matrix[2][2] - q)*(matrix[2][2] - q) + 2 * p1;
        K p = std::sqrt(p2 / 6);
        // B = (1 / p) * (A - q * I);       // I is the identity matrix
        FieldMatrix<K,3,3> B;
        for (int i=0; i<3; i++)
          for (int j=0; j<3; j++)
            B[i][j] = (1/p) * (matrix[i][j] - q*(i==j));

        K r = B.determinant() / 2.0;

        // In exact arithmetic for a symmetric matrix  -1 <= r <= 1
        // but computation error can leave it slightly outside this range.
        K phi;
        if (r <= -1)
          phi = M_PI / 3.0;
        else if (r >= 1)
          phi = 0;
        else
          phi = std::acos(r) / 3;

        // the eigenvalues satisfy eig[2] <= eig[1] <= eig[0]
        eigenvalues[2] = q + 2 * p * cos(phi);
        eigenvalues[0] = q + 2 * p * cos(phi + (2*M_PI/3));
        eigenvalues[1] = 3 * q - eigenvalues[0] - eigenvalues[2];     // since trace(matrix) = eig1 + eig2 + eig3
      }
    }

    /** \brief calculates the eigenvalues of a symmetric field matrix
        \param[in]  matrix matrix eigenvalues are calculated for
        \param[out] eigenvalues FieldVector that contains eigenvalues in
                    ascending order

        \note LAPACK::dsyev is used to calculate the eigenvalues
     */
    template <int dim, typename K>
    static void eigenValues(const FieldMatrix<K, dim, dim>& matrix,
                            FieldVector<K, dim>& eigenvalues)
    {
      {
        const long int N = dim ;
        const char jobz = 'n'; // only calculate eigenvalues
        const char uplo = 'u'; // use upper triangular matrix

        // length of matrix vector
        const long int w = N * N ;

        // matrix to put into dsyev
        double matrixVector[dim * dim];

        // copy matrix
        int row = 0;
        for(int i=0; i<dim; ++i)
        {
          for(int j=0; j<dim; ++j, ++row)
          {
            matrixVector[ row ] = matrix[ i ][ j ];
          }
        }

        // working memory
        double workSpace[dim * dim];

        // return value information
        long int info = 0;

        // call LAPACK routine (see fmatrixev.cc)
        eigenValuesLapackCall(&jobz, &uplo, &N, &matrixVector[0], &N,
                              &eigenvalues[0], &workSpace[0], &w, &info);

        if( info != 0 )
        {
          std::cerr << "For matrix " << matrix << " eigenvalue calculation failed! " << std::endl;
          DUNE_THROW(InvalidStateException,"eigenValues: Eigenvalue calculation failed!");
        }
      }
    }
    /** \brief calculates the eigenvalues of a symmetric field matrix
        \param[in]  matrix matrix eigenvalues are calculated for
        \param[out] eigenValues FieldVector that contains eigenvalues in
                    ascending order

        \note LAPACK::dgeev is used to calculate the eigen values
     */
    template <int dim, typename K, class C>
    static void eigenValuesNonSym(const FieldMatrix<K, dim, dim>& matrix,
                                  FieldVector<C, dim>& eigenValues)
    {
      {
        const long int N = dim ;
        const char jobvl = 'n';
        const char jobvr = 'n';

        // matrix to put into dgeev
        double matrixVector[dim * dim];

        // copy matrix
        int row = 0;
        for(int i=0; i<dim; ++i)
        {
          for(int j=0; j<dim; ++j, ++row)
          {
            matrixVector[ row ] = matrix[ i ][ j ];
          }
        }

        // working memory
        double eigenR[dim];
        double eigenI[dim];
        double work[3*dim];

        // return value information
        long int info = 0;
        long int lwork = 3*dim;

        // call LAPACK routine (see fmatrixev_ext.cc)
        eigenValuesNonsymLapackCall(&jobvl, &jobvr, &N, &matrixVector[0], &N,
                                    &eigenR[0], &eigenI[0], 0, &N, 0, &N, &work[0],
                                    &lwork, &info);

        if( info != 0 )
        {
          std::cerr << "For matrix " << matrix << " eigenvalue calculation failed! " << std::endl;
          DUNE_THROW(InvalidStateException,"eigenValues: Eigenvalue calculation failed!");
        }
        for (int i=0; i<N; ++i) {
          eigenValues[i].real = eigenR[i];
          eigenValues[i].imag = eigenI[i];
        }
      }

    }

  } // end namespace FMatrixHelp

  /** @} end documentation */

} // end namespace Dune
#endif