/usr/include/Field3D/DenseField.h is in libfield3d-dev 1.7.2-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 | //----------------------------------------------------------------------------//
/*
* Copyright (c) 2009 Sony Pictures Imageworks Inc
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution. Neither the name of Sony Pictures Imageworks nor the
* names of its contributors may be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//----------------------------------------------------------------------------//
/*! \file DenseField.h
\brief Contains the DenseField class.
*/
//----------------------------------------------------------------------------//
#ifndef _INCLUDED_Field3D_DenseField_H_
#define _INCLUDED_Field3D_DenseField_H_
#include <vector>
#include <boost/lexical_cast.hpp>
#include "Field.h"
//----------------------------------------------------------------------------//
#include "ns.h"
FIELD3D_NAMESPACE_OPEN
//----------------------------------------------------------------------------//
// Forward declarations
//----------------------------------------------------------------------------//
template <class Field_T>
class LinearGenericFieldInterp;
template <class Field_T>
class CubicGenericFieldInterp;
//----------------------------------------------------------------------------//
// DenseField
//----------------------------------------------------------------------------//
/*! \class DenseField
\ingroup field
\brief This subclass of Field stores data in a contiguous std::vector.
Regarding threading granularity - DenseField considers each scanline
(i.e. continuous X coords) to be one grain. Thus, numGrains is res.y * res.z.
Refer to \ref using_fields for examples of how to use this in your code.
*/
//----------------------------------------------------------------------------//
template <class Data_T>
class DenseField
: public ResizableField<Data_T>
{
public:
// Typedefs ------------------------------------------------------------------
typedef boost::intrusive_ptr<DenseField> Ptr;
typedef std::vector<Ptr> Vec;
typedef LinearGenericFieldInterp<DenseField<Data_T> > LinearInterp;
typedef CubicGenericFieldInterp<DenseField<Data_T> > CubicInterp;
typedef ResizableField<Data_T> base;
// Constructors --------------------------------------------------------------
//! \name Constructors & destructor
//! \{
//! Constructs an empty buffer
DenseField();
// \}
// Main methods --------------------------------------------------------------
//! Clears all the voxels in the storage
virtual void clear(const Data_T &value);
// Threading-related ---------------------------------------------------------
//! Number of 'grains' to use with threaded access
size_t numGrains() const;
//! Bounding box of the given 'grain'
bool getGrainBounds(const size_t idx, Box3i &vsBounds) const;
// From Field base class -----------------------------------------------------
//! \name From Field
//! \{
virtual Data_T value(int i, int j, int k) const;
virtual long long int memSize() const;
//! \}
// RTTI replacement ----------------------------------------------------------
typedef DenseField<Data_T> class_type;
DEFINE_FIELD_RTTI_CONCRETE_CLASS
static const char *staticClassName()
{
return "DenseField";
}
static const char *staticClassType()
{
return DenseField<Data_T>::ms_classType.name();
}
// From WritableField base class ---------------------------------------------
//! \name From WritableField
//! \{
virtual Data_T& lvalue(int i, int j, int k);
//! \}
// Concrete voxel access -----------------------------------------------------
//! Read access to voxel. Notice that this is non-virtual.
const Data_T& fastValue(int i, int j, int k) const;
//! Write access to voxel. Notice that this is non-virtual.
Data_T& fastLValue(int i, int j, int k);
// Iterators -----------------------------------------------------------------
//! \name Iterators
//! \{
//! Const iterator for traversing the values in a Field object.
class const_iterator;
//! Non-const iterator for traversing the values in a Field object.
class iterator;
//! Const iterator to first element. "cbegin" matches the tr1 c++ standard.
const_iterator cbegin() const;
//! Const iterator to first element of specific subset
const_iterator cbegin(const Box3i &subset) const;
//! Const iterator pointing one element past the last valid one.
const_iterator cend() const;
//! Const iterator pointing one element past the last valid one (for a
//! subset)
const_iterator cend(const Box3i &subset) const;
//! Iterator to first element.
iterator begin();
//! Iterator to first element of specific subset
iterator begin(const Box3i &subset);
//! Iterator pointing one element past the last valid one.
iterator end();
//! Iterator pointing one element past the last valid one (for a
//! subset)
iterator end(const Box3i &subset);
//! \}
// Utility methods -----------------------------------------------------------
//! Returns the internal memory size in each dimension. This is used for
//! example in LinearInterpolator, where it optimizes random access to
//! voxels.
const FIELD3D_VEC3_T<size_t> &internalMemSize() const
{ return m_memSize; }
// From FieldBase ------------------------------------------------------------
//! \name From FieldBase
//! \{
FIELD3D_CLASSNAME_CLASSTYPE_IMPLEMENTATION;
virtual FieldBase::Ptr clone() const
{ return Ptr(new DenseField(*this)); }
//! \}
protected:
// From ResizableField class -------------------------------------------------
virtual void sizeChanged();
// Data members --------------------------------------------------------------
//! Memory allocation size in each dimension
FIELD3D_VEC3_T<size_t> m_memSize;
//! X scanline * Y scanline size
size_t m_memSizeXY;
//! Field storage
std::vector<Data_T> m_data;
private:
// Static data members -------------------------------------------------------
static TemplatedFieldType<DenseField<Data_T> > ms_classType;
// Direct access to memory for iterators -------------------------------------
//! Returns a pointer to a given element. Used by the iterators mainly.
inline Data_T* ptr(int i, int j, int k);
//! Returns a pointer to a given element. Used by the iterators mainly.
inline const Data_T* ptr(int i, int j, int k) const;
};
//----------------------------------------------------------------------------//
// Typedefs
//----------------------------------------------------------------------------//
typedef DenseField<half> DenseFieldh;
typedef DenseField<float> DenseFieldf;
typedef DenseField<double> DenseFieldd;
typedef DenseField<V3h> DenseField3h;
typedef DenseField<V3f> DenseField3f;
typedef DenseField<V3d> DenseField3d;
//----------------------------------------------------------------------------//
// DenseField::const_iterator
//----------------------------------------------------------------------------//
template <class Data_T>
class DenseField<Data_T>::const_iterator
{
public:
#if defined(WIN32) || __MAC_OS_X_VERSION_MIN_REQUIRED >= 1090
typedef std::forward_iterator_tag iterator_category;
typedef Data_T value_type;
typedef ptrdiff_t difference_type;
typedef ptrdiff_t distance_type;
typedef const Data_T *pointer;
typedef const Data_T& reference;
#endif
// Typedefs ------------------------------------------------------------------
typedef DenseField<Data_T> class_type;
// Constructors --------------------------------------------------------------
const_iterator(const class_type &field, const Box3i &window,
const V3i ¤tPos)
: x(currentPos.x), y(currentPos.y), z(currentPos.z),
m_window(window), m_field(field)
{
if (window.intersects(currentPos))
m_p = m_field.ptr(x, y, z);
else
m_p = 0;
}
// Operators -----------------------------------------------------------------
const const_iterator& operator ++ ()
{
if (x == m_window.max.x) {
if (y == m_window.max.y) {
if (z == m_window.max.z) {
m_p = 0;
} else {
m_p = m_field.ptr(x = m_window.min.x, y = m_window.min.y, ++z);
}
} else {
m_p = m_field.ptr(x = m_window.min.x, ++y, z);
}
} else {
++x;
++m_p;
}
return *this;
}
template <class Iter_T>
inline bool operator == (const Iter_T &rhs) const
{
return m_p == &(*rhs);
}
template <class Iter_T>
inline bool operator != (const Iter_T &rhs) const
{
return m_p != &(*rhs);
}
inline const Data_T& operator * () const
{
return *m_p;
}
inline const Data_T* operator -> () const
{
return m_p;
}
// Public data members -------------------------------------------------------
//! Current position
int x, y, z;
private:
// Private data members ------------------------------------------------------
//! Pointer to current element
const Data_T *m_p;
//! Window to traverse
Box3i m_window;
//! Reference to field being iterated over
const class_type &m_field;
};
//----------------------------------------------------------------------------//
// DenseField::iterator
//----------------------------------------------------------------------------//
template <class Data_T>
class DenseField<Data_T>::iterator
{
public:
#if defined(WIN32) || __MAC_OS_X_VERSION_MIN_REQUIRED >= 1090
typedef std::forward_iterator_tag iterator_category;
typedef Data_T value_type;
typedef ptrdiff_t difference_type;
typedef ptrdiff_t distance_type;
typedef Data_T *pointer;
typedef Data_T& reference;
#endif
// Typedefs ------------------------------------------------------------------
typedef DenseField<Data_T> class_type;
// Constructors --------------------------------------------------------------
iterator(class_type &field, const Box3i &window,
const V3i ¤tPos)
: x(currentPos.x), y(currentPos.y), z(currentPos.z),
m_window(window), m_field(field)
{
if (window.intersects(currentPos))
m_p = m_field.ptr(x, y, z);
else
m_p = 0;
}
// Operators -----------------------------------------------------------------
const iterator& operator ++ ()
{
if (x == m_window.max.x) {
if (y == m_window.max.y) {
if (z == m_window.max.z) {
m_p = 0;
} else {
m_p = m_field.ptr(x = m_window.min.x, y = m_window.min.y, ++z);
}
} else {
m_p = m_field.ptr(x = m_window.min.x, ++y, z);
}
} else {
++x;
++m_p;
}
return *this;
}
template <class Iter_T>
inline bool operator == (const Iter_T &rhs) const
{
return m_p == &(*rhs);
}
template <class Iter_T>
inline bool operator != (const Iter_T &rhs) const
{
return m_p != &(*rhs);
}
inline Data_T& operator * () const
{
return *m_p;
}
inline Data_T* operator -> () const
{
return m_p;
}
// Public data members -------------------------------------------------------
//! Current position
int x, y, z;
private:
// Private data members ------------------------------------------------------
//! Pointer to current element
Data_T *m_p;
//! Window to traverse
Box3i m_window;
//! Reference to field being iterated over
class_type &m_field;
};
//----------------------------------------------------------------------------//
// DenseField implementations
//----------------------------------------------------------------------------//
template <class Data_T>
DenseField<Data_T>::DenseField()
: base(),
m_memSize(0), m_memSizeXY(0)
{
// Empty
}
//----------------------------------------------------------------------------//
template <class Data_T>
void DenseField<Data_T>::clear(const Data_T &value)
{
std::fill(m_data.begin(), m_data.end(), value);
}
//----------------------------------------------------------------------------//
template <class Data_T>
size_t DenseField<Data_T>::numGrains() const
{
// Grain resolution
const V3i res = base::m_dataWindow.size() + V3i(1);
// Num grains is Y * Z
return res.y * res.z;
}
//----------------------------------------------------------------------------//
template <class Data_T>
bool DenseField<Data_T>::getGrainBounds(const size_t idx, Box3i &bounds) const
{
// Grain resolution
const V3i res = base::m_dataWindow.size() + V3i(1);
// Compute coordinate
const int y = idx % res.y;
const int z = idx / res.y;
// Build bbox
const V3i start = base::m_dataWindow.min + V3i(0, y, z);
const V3i end = base::m_dataWindow.min + V3i(res.x, y, z);
bounds = Field3D::clipBounds(Box3i(start, end), base::m_dataWindow);
// Done
return true;
}
//----------------------------------------------------------------------------//
template <class Data_T>
Data_T DenseField<Data_T>::value(int i, int j, int k) const
{
return fastValue(i, j, k);
}
//----------------------------------------------------------------------------//
template <class Data_T>
long long int DenseField<Data_T>::memSize() const
{
long long int superClassMemSize = base::memSize();
long long int vectorMemSize = m_data.capacity() * sizeof(Data_T);
return sizeof(*this) + vectorMemSize + superClassMemSize;
}
//----------------------------------------------------------------------------//
template <class Data_T>
Data_T& DenseField<Data_T>::lvalue(int i, int j, int k)
{
return fastLValue(i, j, k);
}
//----------------------------------------------------------------------------//
template <class Data_T>
const Data_T& DenseField<Data_T>::fastValue(int i, int j, int k) const
{
assert (i >= base::m_dataWindow.min.x);
assert (i <= base::m_dataWindow.max.x);
assert (j >= base::m_dataWindow.min.y);
assert (j <= base::m_dataWindow.max.y);
assert (k >= base::m_dataWindow.min.z);
assert (k <= base::m_dataWindow.max.z);
// Add crop window offset
i -= base::m_dataWindow.min.x;
j -= base::m_dataWindow.min.y;
k -= base::m_dataWindow.min.z;
// Access data
return m_data[i + j * m_memSize.x + k * m_memSizeXY];
}
//----------------------------------------------------------------------------//
template <class Data_T>
Data_T& DenseField<Data_T>::fastLValue(int i, int j, int k)
{
assert (i >= base::m_dataWindow.min.x);
assert (i <= base::m_dataWindow.max.x);
assert (j >= base::m_dataWindow.min.y);
assert (j <= base::m_dataWindow.max.y);
assert (k >= base::m_dataWindow.min.z);
assert (k <= base::m_dataWindow.max.z);
// Add crop window offset
i -= base::m_dataWindow.min.x;
j -= base::m_dataWindow.min.y;
k -= base::m_dataWindow.min.z;
// Access data
return m_data[i + j * m_memSize.x + k * m_memSizeXY];
}
//----------------------------------------------------------------------------//
template <class Data_T>
typename DenseField<Data_T>::const_iterator
DenseField<Data_T>::cbegin() const
{
if (FieldRes::dataResolution() == V3i(0))
return cend();
return const_iterator(*this, base::m_dataWindow, base::m_dataWindow.min);
}
//----------------------------------------------------------------------------//
template <class Data_T>
typename DenseField<Data_T>::const_iterator
DenseField<Data_T>::cbegin(const Box3i &subset) const
{
if (subset.isEmpty())
return cend(subset);
return const_iterator(*this, subset, subset.min);
}
//----------------------------------------------------------------------------//
template <class Data_T>
typename DenseField<Data_T>::const_iterator
DenseField<Data_T>::cend() const
{
return const_iterator(*this, base::m_dataWindow,
V3i(base::m_dataWindow.min.x,
base::m_dataWindow.min.y,
base::m_dataWindow.max.z + 1));
}
//----------------------------------------------------------------------------//
template <class Data_T>
typename DenseField<Data_T>::const_iterator
DenseField<Data_T>::cend(const Box3i &subset) const
{
return const_iterator(*this, subset,
V3i(subset.min.x, subset.min.y, subset.max.z + 1));
}
//----------------------------------------------------------------------------//
template <class Data_T>
typename DenseField<Data_T>::iterator
DenseField<Data_T>::begin()
{
if (FieldRes::dataResolution() == V3i(0))
return end();
return iterator(*this, base::m_dataWindow, base::m_dataWindow.min); }
//----------------------------------------------------------------------------//
template <class Data_T>
typename DenseField<Data_T>::iterator
DenseField<Data_T>::begin(const Box3i &subset)
{
if (subset.isEmpty())
return end(subset);
return iterator(*this, subset, subset.min);
}
//----------------------------------------------------------------------------//
template <class Data_T>
typename DenseField<Data_T>::iterator
DenseField<Data_T>::end()
{
return iterator(*this, base::m_dataWindow,
V3i(base::m_dataWindow.min.x,
base::m_dataWindow.min.y,
base::m_dataWindow.max.z + 1));
}
//----------------------------------------------------------------------------//
template <class Data_T>
typename DenseField<Data_T>::iterator
DenseField<Data_T>::end(const Box3i &subset)
{
return iterator(*this, subset,
V3i(subset.min.x, subset.min.y, subset.max.z + 1));
}
//----------------------------------------------------------------------------//
template <class Data_T>
void DenseField<Data_T>::sizeChanged()
{
// Call base class
base::sizeChanged();
// Calculate offsets
m_memSize = base::m_dataWindow.max - base::m_dataWindow.min + V3i(1);
m_memSizeXY = m_memSize.x * m_memSize.y;
// Check that mem size is >= 0 in all dimensions
if (base::m_dataWindow.max.x < base::m_dataWindow.min.x ||
base::m_dataWindow.max.y < base::m_dataWindow.min.y ||
base::m_dataWindow.max.z < base::m_dataWindow.min.z)
throw Exc::ResizeException("Attempt to resize ResizableField object "
"using negative size. Data window was: " +
boost::lexical_cast<std::string>(
base::m_dataWindow.min) + " - " +
boost::lexical_cast<std::string>(
base::m_dataWindow.max));
// Allocate memory
try {
std::vector<Data_T>().swap(m_data);
m_data.resize(m_memSize.x * m_memSize.y * m_memSize.z);
}
catch (std::bad_alloc &) {
throw Exc::MemoryException("Couldn't allocate DenseField of size " +
boost::lexical_cast<std::string>(m_memSize));
}
}
//----------------------------------------------------------------------------//
template <class Data_T>
inline Data_T* DenseField<Data_T>::ptr(int i, int j, int k)
{
// Add crop window offset
i -= base::m_dataWindow.min.x;
j -= base::m_dataWindow.min.y;
k -= base::m_dataWindow.min.z;
// Access data
return &m_data[i + j * m_memSize.x + k * m_memSizeXY];
}
//----------------------------------------------------------------------------//
template <class Data_T>
inline const Data_T* DenseField<Data_T>::ptr(int i, int j, int k) const
{
// Add crop window offset
i -= base::m_dataWindow.min.x;
j -= base::m_dataWindow.min.y;
k -= base::m_dataWindow.min.z;
// Access data
return &m_data[i + j * m_memSize.x + k * m_memSizeXY];
}
//----------------------------------------------------------------------------//
// Static data member instantiation
//----------------------------------------------------------------------------//
FIELD3D_CLASSTYPE_TEMPL_INSTANTIATION(DenseField);
//----------------------------------------------------------------------------//
FIELD3D_NAMESPACE_HEADER_CLOSE
//----------------------------------------------------------------------------//
#endif // Include guard
|