/usr/include/model.h is in libfpga-dev 0.0+201212-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 | //
// Author: Wolfgang Spraul
//
// This is free and unencumbered software released into the public domain.
// For details see the UNLICENSE file at the root of the source tree.
//
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <assert.h>
#include <errno.h>
#include <sys/stat.h>
#include "helper.h"
#include "parts.h"
#define LEFT_SIDE_MAJOR 1
struct fpga_model
{
int rc; // if rc != 0, all function calls will immediately return
const struct xc_die *die;
const struct xc6_pkg_info *pkg;
int x_width, y_height;
int center_x;
int center_y;
// Left and right gclk separators will be located on
// the device column (+1 or +2) of the logic or dsp/macc
// column as indicated in the chip's cfg_columns with a 'g'.
int left_gclk_sep_x, right_gclk_sep_x;
// x_major is an array of column indices for each x coordinate,
// starting with column 1 for the left side, and incrementing
// through the configuration columns. This corresponds to the
// 'majors' in the bitstream.
int x_major[512];
struct xc6_routing_bitpos* sw_bitpos;
int num_bitpos;
struct fpga_tile* tiles;
struct hashed_strarray str;
int nets_array_size;
int highest_used_net; // 1-based net_idx_t
struct fpga_net* nets;
// tmp_str will be allocated to hold max(x_width, y_height)
// pointers, useful for string seeding when running wires.
const char** tmp_str;
};
enum fpga_tile_type
{
NA = 0,
ROUTING, ROUTING_BRK, ROUTING_VIA,
HCLK_ROUTING_XM, HCLK_ROUTING_XL, HCLK_LOGIC_XM, HCLK_LOGIC_XL,
LOGIC_XM, LOGIC_XL,
REGH_ROUTING_XM, REGH_ROUTING_XL, REGH_LOGIC_XM, REGH_LOGIC_XL,
BRAM_ROUTING, BRAM_ROUTING_BRK,
BRAM,
BRAM_ROUTING_TERM_T, BRAM_ROUTING_TERM_B, BRAM_ROUTING_VIA_TERM_T, BRAM_ROUTING_VIA_TERM_B,
BRAM_TERM_LT, BRAM_TERM_RT, BRAM_TERM_LB, BRAM_TERM_RB,
HCLK_BRAM_ROUTING, HCLK_BRAM_ROUTING_VIA, HCLK_BRAM,
REGH_BRAM_ROUTING, REGH_BRAM_ROUTING_VIA, REGH_BRAM_L, REGH_BRAM_R,
MACC,
HCLK_MACC_ROUTING, HCLK_MACC_ROUTING_VIA, HCLK_MACC,
REGH_MACC_ROUTING, REGH_MACC_ROUTING_VIA, REGH_MACC_L,
PLL_T, DCM_T, PLL_B, DCM_B, REG_T,
REG_TERM_T, REG_TERM_B, REG_B,
REGV_TERM_T, REGV_TERM_B,
HCLK_REGV,
REGV, REGV_BRK, REGV_T, REGV_B, REGV_MIDBUF_T, REGV_HCLKBUF_T, REGV_HCLKBUF_B, REGV_MIDBUF_B,
REGC_ROUTING, REGC_LOGIC, REGC_CMT,
CENTER, // unique center tile in the middle of the chip
IO_T, IO_B, IO_TERM_T, IO_TERM_B, IO_ROUTING, IO_LOGIC_TERM_T, IO_LOGIC_TERM_B,
IO_OUTER_T, IO_INNER_T, IO_OUTER_B, IO_INNER_B,
IO_BUFPLL_TERM_T, IO_LOGIC_REG_TERM_T, IO_BUFPLL_TERM_B, IO_LOGIC_REG_TERM_B,
LOGIC_ROUTING_TERM_B, LOGIC_NOIO_TERM_B,
MACC_ROUTING_TERM_T, MACC_ROUTING_TERM_B, MACC_VIA_TERM_T,
MACC_TERM_TL, MACC_TERM_TR, MACC_TERM_BL, MACC_TERM_BR,
ROUTING_VIA_REGC, ROUTING_VIA_IO, ROUTING_VIA_IO_DCM, ROUTING_VIA_CARRY,
CORNER_TERM_L, CORNER_TERM_R,
IO_TERM_L_UPPER_TOP, IO_TERM_L_UPPER_BOT, IO_TERM_L_LOWER_TOP, IO_TERM_L_LOWER_BOT,
IO_TERM_R_UPPER_TOP, IO_TERM_R_UPPER_BOT, IO_TERM_R_LOWER_TOP, IO_TERM_R_LOWER_BOT,
IO_TERM_L, IO_TERM_R,
HCLK_TERM_L, HCLK_TERM_R,
REGH_IO_TERM_L, REGH_IO_TERM_R,
REG_L, REG_R,
IO_PCI_L, IO_PCI_R, IO_RDY_L, IO_RDY_R,
IO_L, IO_R,
IO_PCI_CONN_L, IO_PCI_CONN_R,
CORNER_TERM_T, CORNER_TERM_B,
ROUTING_IO_L,
HCLK_ROUTING_IO_L, HCLK_ROUTING_IO_R, REGH_ROUTING_IO_L, REGH_ROUTING_IO_R,
ROUTING_IO_L_BRK, ROUTING_GCLK,
REGH_IO_L, REGH_IO_R, REGH_MCB, HCLK_MCB,
ROUTING_IO_VIA_L, ROUTING_IO_VIA_R, ROUTING_IO_PCI_CE_L, ROUTING_IO_PCI_CE_R,
CORNER_TL, CORNER_BL,
CORNER_TR_UPPER, CORNER_TR_LOWER, CORNER_BR_UPPER, CORNER_BR_LOWER,
HCLK_IO_TOP_UP_L, HCLK_IO_TOP_UP_R,
HCLK_IO_TOP_SPLIT_L, HCLK_IO_TOP_SPLIT_R,
HCLK_IO_TOP_DN_L, HCLK_IO_TOP_DN_R,
HCLK_IO_BOT_UP_L, HCLK_IO_BOT_UP_R,
HCLK_IO_BOT_SPLIT_L, HCLK_IO_BOT_SPLIT_R,
HCLK_IO_BOT_DN_L, HCLK_IO_BOT_DN_R,
};
// Some macros to make the code more readable
#define LEFT_OUTER_COL 0
#define LEFT_INNER_COL 1
#define LEFT_IO_ROUTING 2
#define LEFT_IO_DEVS 3
#define LEFT_MCB_COL 4
#define LEFT_SIDE_WIDTH 5
#define RIGHT_SIDE_WIDTH 5
#define LEFT_LOCAL_HEIGHT 1
#define RIGHT_LOCAL_HEIGHT 2
#define TOP_IO_TILES 2
#define TOPBOT_IO_ROWS 2 // OUTER and INNER IO
// todo: maybe rename TOP_OUTER_ROW to TOP_OUTER_TERM and
// TOP_INNER_ROW to TOP_INNER_TERM?
#define TOP_OUTER_ROW 0
#define TOP_INNER_ROW 1
#define TOP_FIRST_REGULAR 2
#define TOP_OUTER_IO 2
#define TOP_INNER_IO 3
#define HALF_ROW 8
#define HCLK_POS 8 // hclk pos in row
#define LAST_POS_IN_ROW 16 // including hclk at 8
#define ROW_SIZE (HALF_ROW+1+HALF_ROW)
#define CENTER_X_PLUS_1 1 // routing col adjacent to center
#define CENTER_X_PLUS_2 2 // logic col adjacent to center
#define CENTER_Y_PLUS_1 1
#define CENTER_Y_PLUS_2 2
#define CENTER_Y_MINUS_1 1
#define CENTER_Y_MINUS_2 2
#define CENTER_Y_MINUS_3 3
#define CENTER_Y_MINUS_4 4
#define CENTER_TOP_IOB_O 3 // deduct from center_y
#define CENTER_BOT_IOB_O 1 // add to center_y
// Some offsets that are being deducted from their origin
#define BOT_IO_TILES 2
// todo: rename BOT_OUTER_ROW to BOT_OUTER_TERM and BOT_INNER_ROW
// to BOT_INNER_TERM?
#define BOT_OUTER_ROW 1
#define BOT_INNER_ROW 2
#define BOT_LAST_REGULAR_O 3
#define BOT_OUTER_IO 3
#define BOT_INNER_IO 4
#define RIGHT_OUTER_O 1
#define RIGHT_INNER_O 2
#define RIGHT_MCB_O 3
#define RIGHT_IO_DEVS_O 4
#define RIGHT_IO_ROUTING_O 5
#define CENTER_CMTPLL_O 1
#define CENTER_LOGIC_O 2
#define CENTER_ROUTING_O 3
#define YX_TILE(model, y, x) (&(model)->tiles[(y)*(model)->x_width+(x)])
// tile flags
#define TF_FABRIC_ROUTING_COL 0x00000001 // only set in y==0, not for left and right IO routing or center
#define TF_FABRIC_LOGIC_XM_COL 0x00000002 // only set in y==0
#define TF_FABRIC_LOGIC_XL_COL 0x00000004 // only set in y==0
#define TF_FABRIC_BRAM_VIA_COL 0x00000008 // only set in y==0
#define TF_FABRIC_MACC_VIA_COL 0x00000010 // only set in y==0
#define TF_FABRIC_BRAM_COL 0x00000020 // only set in y==0
#define TF_FABRIC_MACC_COL 0x00000040 // only set in y==0
// TF_ROUTING_NO_IO is only set in y==0 - automatically for BRAM and MACC
// routing, and manually for logic routing with the noio flag in the column
// configuration string
#define TF_ROUTING_NO_IO 0x00000080
#define TF_BRAM_DEV 0x00000100
#define TF_MACC_DEV 0x00000200
#define TF_LOGIC_XL_DEV 0x00000400
#define TF_LOGIC_XM_DEV 0x00000800
#define TF_IOLOGIC_DELAY_DEV 0x00001000
#define TF_DCM_DEV 0x00002000
#define TF_PLL_DEV 0x00004000
// TF_WIRED is only set for x==0 on the left side or x==x_width-1
// on the right side.
#define TF_WIRED 0x00008000
#define TF_CENTER_MIDBUF 0x00010000
#define Y_OUTER_TOP 0x0001
#define Y_INNER_TOP 0x0002
#define Y_INNER_BOTTOM 0x0004
#define Y_OUTER_BOTTOM 0x0008
#define Y_CHIP_HORIZ_REGS 0x0010
#define Y_ROW_HORIZ_AXSYMM 0x0020
#define Y_BOTTOM_OF_ROW 0x0040
#define Y_LEFT_WIRED 0x0080
#define Y_RIGHT_WIRED 0x0100
// Y_TOPBOT_IO_RANGE checks if y points to the top or bottom outer or
// inner rows. todo: same as TOP_OUTER|TOP_INNER|BOT_INNER|BOT_OUTER?
#define Y_TOPBOT_IO_RANGE 0x0200
#define Y_TOP_OUTER_IO 0x0400
#define Y_TOP_INNER_IO 0x0800
#define Y_BOT_INNER_IO 0x1000
#define Y_BOT_OUTER_IO 0x2000
#define Y_TOP_FIRST_REGULAR Y_TOP_OUTER_IO
#define Y_BOT_LAST_REGULAR Y_BOT_OUTER_IO
#define Y_REGULAR_ROW 0x4000
// multiple checks are combined with OR logic
int is_aty(int check, struct fpga_model* model, int y);
#define X_FABRIC_LOGIC_COL (X_FABRIC_LOGIC_XM_COL \
|X_FABRIC_LOGIC_XL_COL)
#define X_FABRIC_LOGIC_ROUTING_COL (X_FABRIC_LOGIC_XM_ROUTING_COL \
|X_FABRIC_LOGIC_XL_ROUTING_COL)
#define X_FABRIC_ROUTING_COL (X_FABRIC_LOGIC_XM_ROUTING_COL \
|X_FABRIC_LOGIC_XL_ROUTING_COL \
|X_FABRIC_BRAM_ROUTING_COL \
|X_FABRIC_MACC_ROUTING_COL)
#define X_ROUTING_COL (X_FABRIC_ROUTING_COL \
|X_CENTER_ROUTING_COL \
|X_LEFT_IO_ROUTING_COL \
|X_RIGHT_IO_ROUTING_COL)
#define X_CENTER_MAJOR (X_CENTER_ROUTING_COL \
|X_CENTER_LOGIC_COL \
|X_CENTER_CMTPLL_COL \
|X_CENTER_REGS_COL)
// todo and realizations:
// * is_at() which combines X_ Y_ and YX_ into 64-bit and adds a AT_AND
// to enable AND logic. then #define is_atx() and is_aty() onto is_at()
// * maybe the many special cases for bram are better
// tied to no-io columns?
#define X_OUTER_LEFT 0x00000001
#define X_INNER_LEFT 0x00000002
#define X_INNER_RIGHT 0x00000004
#define X_OUTER_RIGHT 0x00000008
#define X_ROUTING_NO_IO 0x00000010
#define X_FABRIC_LOGIC_XM_ROUTING_COL 0x00000020 // logic-xm only
//X_FABRIC_LOGIC_XL_ROUTING_IO
//X_FABRIC_LOGIC_XL_ROUTING_NO_IO
//X_FABRIC_LOGIC_XL_IO
//X_FABRIC_LOGIC_XL_NO_IO
#define X_FABRIC_LOGIC_XL_ROUTING_COL 0x00000040 // logic-xl only
#define X_FABRIC_LOGIC_XM_COL 0x00000080
#define X_FABRIC_LOGIC_XL_COL 0x00000100
#define X_FABRIC_BRAM_ROUTING_COL 0x00000200 // BRAM only
#define X_FABRIC_MACC_ROUTING_COL 0x00000400 // MACC only
#define X_FABRIC_BRAM_VIA_COL 0x00000800 // second routing col for BRAM
#define X_FABRIC_MACC_VIA_COL 0x00001000 // second routing col for MACC
#define X_FABRIC_BRAM_COL 0x00002000
#define X_FABRIC_MACC_COL 0x00004000
#define X_CENTER_ROUTING_COL 0x00008000
#define X_CENTER_LOGIC_COL 0x00010000
#define X_CENTER_CMTPLL_COL 0x00020000
#define X_CENTER_REGS_COL 0x00040000
#define X_LEFT_IO_ROUTING_COL 0x00080000
#define X_LEFT_IO_DEVS_COL 0x00100000
#define X_RIGHT_IO_ROUTING_COL 0x00200000
#define X_RIGHT_IO_DEVS_COL 0x00400000
#define X_LEFT_SIDE 0x00800000 // true for anything left of the center (not including center)
#define X_LEFT_MCB 0x01000000
#define X_RIGHT_MCB 0x02000000
#define IS_TOP_ROW(row, model) ((row) == (model)->cfg_rows-1)
#define IS_BOTTOM_ROW(row, model) ((row) == 0)
#define IS_CENTER_Y(row, model) ((row) == (model)->center_y)
#define BOT_TERM(model) ((model)->y_height-BOT_INNER_ROW)
#define TOP_TERM(model) (TOP_INNER_ROW)
// multiple checks are combined with OR logic
int is_atx(int check, struct fpga_model* model, int x);
// True for all tiles that are in the regular 0..15 row tiles of a routing col
#define YX_ROUTING_TILE 0x0001
#define YX_IO_ROUTING 0x0002
#define YX_ROUTING_TO_FABLOGIC 0x0004 // left of a regular fabric logic device
#define YX_DEV_ILOGIC 0x0008
#define YX_DEV_OLOGIC 0x0010
#define YX_DEV_LOGIC 0x0020
#define YX_DEV_IOB 0x0040
#define YX_CENTER_MIDBUF 0x0080
#define YX_OUTER_TERM 0x0100
#define YX_INNER_TERM 0x0200
// outside_of_routing is true for anything outside of the outer
// boundary of the regular routing area.
#define YX_OUTSIDE_OF_ROUTING 0x0400
#define YX_X_CENTER_CMTPLL 0x0800
#define YX_Y_CENTER 0x1000
#define YX_CENTER 0x2000
int is_atyx(int check, struct fpga_model* model, int y, int x);
// if not in row, both return values (if given) will
// be set to -1. the row_pos is 0..7 for the upper half,
// 8 for the hclk, and 9..16 for the lower half.
void is_in_row(const struct fpga_model* model, int y,
int* row_num, int* row_pos);
// which_row() and pos_in_row() return -1 if y is outside of a row
int which_row(int y, struct fpga_model *model);
int pos_in_row(int y, struct fpga_model *model);
// regular_row_pos() returns the index (0..15) without hclk, or -1 if y is a hclk.
int regular_row_pos(int y, struct fpga_model *model);
int row_to_hclk(int row, struct fpga_model *model);
int y_to_hclk(int y, struct fpga_model *model);
// returns -1 if we are at TOP_FIRST_REGULAR
int regular_row_up(int y, struct fpga_model *model);
const char* logicin_s(int wire, int routing_io);
enum fpgadev_type
{ DEV_NONE = 0,
DEV_LOGIC, DEV_TIEOFF, DEV_MACC, DEV_IOB,
DEV_ILOGIC, DEV_OLOGIC, DEV_IODELAY, DEV_BRAM16, DEV_BRAM8,
DEV_BUFH, DEV_BUFIO, DEV_BUFIO_FB, DEV_BUFPLL, DEV_BUFPLL_MCB,
DEV_BUFGMUX, DEV_BSCAN, DEV_DCM, DEV_PLL, DEV_ICAP,
DEV_POST_CRC_INTERNAL, DEV_STARTUP, DEV_SLAVE_SPI,
DEV_SUSPEND_SYNC, DEV_OCT_CALIBRATE, DEV_SPI_ACCESS,
DEV_DNA, DEV_PMV, DEV_PCILOGIC_SE, DEV_MCB };
#define FPGA_DEV_STR \
{ 0, \
"LOGIC", "TIEOFF", "MACC", "IOB", \
"ILOGIC", "OLOGIC", "IODELAY", "BRAM16", "BRAM8", \
"BUFH", "BUFIO", "BUFIO_FB", "BUFPLL", "BUFPLL_MCB", \
"BUFGMUX", "BSCAN", "DCM", "PLL", "ICAP", \
"POST_CRC_INTERNAL", "STARTUP", "SLAVE_SPI", \
"SUSPEND_SYNC", "OCT_CALIBRATE", "SPI_ACCESS", \
"DNA", "PMV", "PCILOGIC_SE", "MCB" }
// We use two types of device indices, one is a flat index
// into the tile->devs array (dev_idx_t), the other
// one counts up from 0 through devices of one particular
// type in the tile. The first logic device has type_idx == 0,
// the second logic device has type_idx == 1, etc, no matter
// at which index they are in the device array. The type indices
// are used in the floorplan, the flat array indices internally
// in memory.
typedef int dev_idx_t;
typedef int dev_type_idx_t;
#define NO_DEV -1
#define FPGA_DEV(model, y, x, dev_idx) \
(((dev_idx) == NO_DEV) ? 0 : (&YX_TILE(model, y, x)->devs[dev_idx]))
//
// DEV_LOGIC
//
// M and L device is always at type index 0, X device
// is always at type index 1.
#define DEV_LOG_M_OR_L 0
#define DEV_LOG_X 1
// All device configuration is structured so that the value
// 0 is never a valid configured setting. That way all config
// data can safely be initialized to 0 meaning unconfigured.
enum { LOGIC_M = 1, LOGIC_L, LOGIC_X };
// LD1 stands for logic device 1 and can be OR'ed to the LI_A1
// or LO_A values to indicate the second logic device in a tile,
// either an M or L device.
#define LD1 0x100
// All LOGICIN_IN A..D sequences must be exactly sequential as
// here to match initialization in model_devices.c:init_logic()
// and control.c:fdev_set_required_pins().
enum {
// input:
LI_FIRST = 0,
LI_A1 = LI_FIRST, LI_A2, LI_A3, LI_A4, LI_A5, LI_A6,
LI_B1, LI_B2, LI_B3, LI_B4, LI_B5, LI_B6,
LI_C1, LI_C2, LI_C3, LI_C4, LI_C5, LI_C6,
LI_D1, LI_D2, LI_D3, LI_D4, LI_D5, LI_D6,
LI_AX, LI_BX, LI_CX, LI_DX,
LI_CLK, LI_CE, LI_SR,
// only for L and M:
LI_CIN,
// only for M:
LI_WE, LI_AI, LI_BI, LI_CI, LI_DI,
LI_LAST = LI_DI,
// output:
LO_FIRST,
LO_A = LO_FIRST, LO_B, LO_C, LO_D,
LO_AMUX, LO_BMUX, LO_CMUX, LO_DMUX,
LO_AQ, LO_BQ, LO_CQ, LO_DQ,
LO_COUT, // only some L and M devs have this
LO_LAST = LO_COUT };
#define LOGIC_PINW_STR \
{ "A1", "A2", "A3", "A4", "A5", "A6", \
"B1", "B2", "B3", "B4", "B5", "B6", \
"C1", "C2", "C3", "C4", "C5", "C6", \
"D1", "D2", "D3", "D4", "D5", "D6", \
"AX", "BX", "CX", "DX", \
"CLK", "CE", "SR", \
"CIN", \
"WE", "AI", "BI", "CI", "DI", \
"A", "B", "C", "D", \
"AMUX", "BMUX", "CMUX", "DMUX", \
"AQ", "BQ", "CQ", "DQ", \
"COUT" }
enum { LUT_A = 0, LUT_B, LUT_C, LUT_D }; // offset into a2d[]
enum { FF_SRINIT0 = 1, FF_SRINIT1 };
enum { MUX_O6 = 1, MUX_O5, MUX_5Q, MUX_X, MUX_CY, MUX_XOR, MUX_F7, MUX_F8, MUX_MC31 };
enum { FF_OR2L = 1, FF_AND2L, FF_LATCH, FF_FF };
enum { CY0_X = 1, CY0_O5 };
enum { CLKINV_B = 1, CLKINV_CLK };
enum { SYNCATTR_SYNC = 1, SYNCATTR_ASYNC };
enum { WEMUX_WE = 1, WEMUX_CE };
enum { PRECYINIT_0 = 1, PRECYINIT_1, PRECYINIT_AX };
#define MAX_LUT_LEN 2048
#define NUM_LUTS 4
struct fpgadev_logic_a2d
{
int out_used;
char* lut6;
char* lut5;
int ff_mux; // O6, O5, X, F7(a/c), F8(b), MC31(d), CY, XOR
int ff_srinit; // SRINIT0, SRINIT1
int ff5_srinit; // SRINIT0, SRINIT1
int out_mux; // O6, O5, 5Q, F7(a/c), F8(b), MC31(d), CY, XOR
int ff; // OR2L, AND2L, LATCH, FF
int cy0; // X, O5
};
struct fpgadev_logic
{
struct fpgadev_logic_a2d a2d[NUM_LUTS];
int clk_inv; // CLKINV_B, CLKINV_CLK
int sync_attr; // SYNCATTR_SYNC, SYNCATTR_ASYNC
int ce_used;
int sr_used;
int we_mux; // WEMUX_WE, WEMUX_CE
int cout_used;
int precyinit; // PRECYINIT_0, PRECYINIT_1, PRECYINIT_AX
};
//
// DEV_IOB
//
enum { IOBM = 1, IOBS };
typedef char IOSTANDARD[32];
#define IO_LVTTL "LVTTL"
#define IO_LVCMOS33 "LVCMOS33"
#define IO_LVCMOS25 "LVCMOS25"
#define IO_LVCMOS18 "LVCMOS18"
#define IO_LVCMOS18_JEDEC "LVCMOS18_JEDEC"
#define IO_LVCMOS15 "LVCMOS15"
#define IO_LVCMOS15_JEDEC "LVCMOS15_JEDEC"
#define IO_LVCMOS12 "LVCMOS12"
#define IO_LVCMOS12_JEDEC "LVCMOS12_JEDEC"
#define IO_SSTL2_I "SSTL2_I" // TODO: sstl not fully supported
enum { BYPASS_MUX_I = 1, BYPASS_MUX_O, BYPASS_MUX_T };
enum { IMUX_I_B = 1, IMUX_I };
enum { SLEW_SLOW = 1, SLEW_FAST, SLEW_QUIETIO };
enum { SUSP_LAST_VAL = 1, SUSP_3STATE, SUSP_3STATE_PULLUP,
SUSP_3STATE_PULLDOWN, SUSP_3STATE_KEEPER, SUSP_3STATE_OCT_ON };
enum { ITERM_NONE = 1, ITERM_UNTUNED_25, ITERM_UNTUNED_50,
ITERM_UNTUNED_75 };
enum { OTERM_NONE = 1, OTERM_UNTUNED_25, OTERM_UNTUNED_50,
OTERM_UNTUNED_75 };
enum { // input:
IOB_IN_O = 0, IOB_IN_T, IOB_IN_DIFFI_IN, IOB_IN_DIFFO_IN,
// output:
IOB_OUT_I, IOB_OUT_PADOUT, IOB_OUT_PCI_RDY, IOB_OUT_DIFFO_OUT };
#define IOB_LAST_INPUT_PINW IOB_IN_DIFFO_IN
#define IOB_LAST_OUTPUT_PINW IOB_OUT_DIFFO_OUT
#define IOB_PINW_STR \
{ "O", "T", "DIFFI_IN", "DIFFO_IN", \
"I", "PADOUT", "PCI_RDY", "DIFFO_OUT" }
struct fpgadev_iob
{
IOSTANDARD istandard;
IOSTANDARD ostandard;
int bypass_mux;
int I_mux;
int drive_strength; // supports 2,4,6,8,12,16 and 24
int slew;
int O_used;
int suspend;
int in_term;
int out_term;
};
//
// DEV_BUFGMUX
//
enum { BUFG_CLK_ASYNC = 1, BUFG_CLK_SYNC };
enum { BUFG_DISATTR_LOW = 1, BUFG_DISATTR_HIGH };
enum { BUFG_SINV_N = 1, BUFG_SINV_Y };
struct fpgadev_bufgmux
{
int clk;
int disable_attr;
int s_inv;
};
//
// DEV_BUFIO
//
enum { BUFIO_DIVIDEBP_N = 1, BUFIO_DIVIDEBP_Y };
enum { BUFIO_IINV_N = 1, BUFIO_IINV_Y };
struct fpgadev_bufio
{
int divide;
int divide_bypass;
int i_inv;
};
//
// DEV_BSCAN
//
enum { BSCAN_JTAG_TEST_N = 1, BSCAN_JTAG_TEST_Y };
struct fpgadev_bscan
{
int jtag_chain; // 1-4
int jtag_test;
};
//
// DEV_BRAM
//
// B8_0 or B8_1 can be or'ed into the BI/BO values
// to designate the first and second BRAM8 device,
// instead of the default BRAM16 device.
#define B8_0 0x100
#define B8_1 0x200
#define BW_FLAGS (B8_0|B8_1)
enum {
// input:
BI_FIRST = 0,
// port A
BI_ADDRA0 = BI_FIRST, BI_ADDRA1, BI_ADDRA2, BI_ADDRA3, BI_ADDRA4, BI_ADDRA5,
BI_ADDRA6, BI_ADDRA7, BI_ADDRA8, BI_ADDRA9, BI_ADDRA10, BI_ADDRA11,
BI_ADDRA12, BI_ADDRA13,
BI_DIA0, BI_DIA1, BI_DIA2, BI_DIA3, BI_DIA4, BI_DIA5,
BI_DIA6, BI_DIA7, BI_DIA8, BI_DIA9, BI_DIA10, BI_DIA11,
BI_DIA12, BI_DIA13, BI_DIA14, BI_DIA15, BI_DIA16, BI_DIA17,
BI_DIA18, BI_DIA19, BI_DIA20, BI_DIA21, BI_DIA22, BI_DIA23,
BI_DIA24, BI_DIA25, BI_DIA26, BI_DIA27, BI_DIA28, BI_DIA29,
BI_DIA30, BI_DIA31,
BI_DIPA0, BI_DIPA1, BI_DIPA2, BI_DIPA3,
BI_WEA0, BI_WEA1, BI_WEA2, BI_WEA3,
BI_REGCEA,
BI_ENA,
// port B
BI_ADDRB0, BI_ADDRB1, BI_ADDRB2, BI_ADDRB3, BI_ADDRB4, BI_ADDRB5,
BI_ADDRB6, BI_ADDRB7, BI_ADDRB8, BI_ADDRB9, BI_ADDRB10, BI_ADDRB11,
BI_ADDRB12, BI_ADDRB13,
BI_DIB0, BI_DIB1, BI_DIB2, BI_DIB3, BI_DIB4, BI_DIB5,
BI_DIB6, BI_DIB7, BI_DIB8, BI_DIB9, BI_DIB10, BI_DIB11,
BI_DIB12, BI_DIB13, BI_DIB14, BI_DIB15, BI_DIB16, BI_DIB17,
BI_DIB18, BI_DIB19, BI_DIB20, BI_DIB21, BI_DIB22, BI_DIB23,
BI_DIB24, BI_DIB25, BI_DIB26, BI_DIB27, BI_DIB28, BI_DIB29,
BI_DIB30, BI_DIB31,
BI_DIPB0, BI_DIPB1, BI_DIPB2, BI_DIPB3,
BI_WEB0, BI_WEB1, BI_WEB2, BI_WEB3,
BI_REGCEB,
BI_ENB,
BI_LAST = BI_ENB,
// output:
BO_FIRST,
// port A
BO_DOA0 = BO_FIRST, BO_DOA1, BO_DOA2, BO_DOA3, BO_DOA4, BO_DOA5,
BO_DOA6, BO_DOA7, BO_DOA8, BO_DOA9, BO_DOA10, BO_DOA11,
BO_DOA12, BO_DOA13, BO_DOA14, BO_DOA15, BO_DOA16, BO_DOA17,
BO_DOA18, BO_DOA19, BO_DOA20, BO_DOA21, BO_DOA22, BO_DOA23,
BO_DOA24, BO_DOA25, BO_DOA26, BO_DOA27, BO_DOA28, BO_DOA29,
BO_DOA30, BO_DOA31,
BO_DOPA0, BO_DOPA1, BO_DOPA2, BO_DOPA3,
// port B
BO_DOB0, BO_DOB1, BO_DOB2, BO_DOB3, BO_DOB4, BO_DOB5,
BO_DOB6, BO_DOB7, BO_DOB8, BO_DOB9, BO_DOB10, BO_DOB11,
BO_DOB12, BO_DOB13, BO_DOB14, BO_DOB15, BO_DOB16, BO_DOB17,
BO_DOB18, BO_DOB19, BO_DOB20, BO_DOB21, BO_DOB22, BO_DOB23,
BO_DOB24, BO_DOB25, BO_DOB26, BO_DOB27, BO_DOB28, BO_DOB29,
BO_DOB30, BO_DOB31,
BO_DOPB0, BO_DOPB1, BO_DOPB2, BO_DOPB3,
BO_LAST = BO_DOPB3
};
//
// DEV_MACC
//
enum {
// input:
MI_FIRST = 0,
MI_CEA = MI_FIRST, MI_CEB, MI_CEC, MI_CED, MI_CEM, MI_CEP,
MI_CE_OPMODE, MI_CE_CARRYIN,
MI_OPMODE0, MI_OPMODE1, MI_OPMODE2, MI_OPMODE3,
MI_OPMODE4, MI_OPMODE5, MI_OPMODE6, MI_OPMODE7,
MI_A0, MI_A1, MI_A2, MI_A3, MI_A4, MI_A5, MI_A6, MI_A7,
MI_A8, MI_A9, MI_A10, MI_A11, MI_A12, MI_A13, MI_A14, MI_A15,
MI_A16, MI_A17,
MI_B0, MI_B1, MI_B2, MI_B3, MI_B4, MI_B5, MI_B6, MI_B7,
MI_B8, MI_B9, MI_B10, MI_B11, MI_B12, MI_B13, MI_B14, MI_B15,
MI_B16, MI_B17,
MI_C0, MI_C1, MI_C2, MI_C3, MI_C4, MI_C5, MI_C6, MI_C7,
MI_C8, MI_C9, MI_C10, MI_C11, MI_C12, MI_C13, MI_C14, MI_C15,
MI_C16, MI_C17, MI_C18, MI_C19, MI_C20, MI_C21, MI_C22, MI_C23,
MI_C24, MI_C25, MI_C26, MI_C27, MI_C28, MI_C29, MI_C30, MI_C31,
MI_C32, MI_C33, MI_C34, MI_C35, MI_C36, MI_C37, MI_C38, MI_C39,
MI_C40, MI_C41, MI_C42, MI_C43, MI_C44, MI_C45, MI_C46, MI_C47,
MI_D0, MI_D1, MI_D2, MI_D3, MI_D4, MI_D5, MI_D6, MI_D7,
MI_D8, MI_D9, MI_D10, MI_D11, MI_D12, MI_D13, MI_D14, MI_D15,
MI_D16, MI_D17,
MI_LAST = MI_D17,
// output:
MO_FIRST,
MO_CARRYOUT = MO_FIRST,
MO_P0, MO_P1, MO_P2, MO_P3, MO_P4, MO_P5, MO_P6, MO_P7,
MO_P8, MO_P9, MO_P10, MO_P11, MO_P12, MO_P13, MO_P14, MO_P15,
MO_P16, MO_P17, MO_P18, MO_P19, MO_P20, MO_P21, MO_P22, MO_P23,
MO_P24, MO_P25, MO_P26, MO_P27, MO_P28, MO_P29, MO_P30, MO_P31,
MO_P32, MO_P33, MO_P34, MO_P35, MO_P36, MO_P37, MO_P38, MO_P39,
MO_P40, MO_P41, MO_P42, MO_P43, MO_P44, MO_P45, MO_P46, MO_P47,
MO_M0, MO_M1, MO_M2, MO_M3, MO_M4, MO_M5, MO_M6, MO_M7,
MO_M8, MO_M9, MO_M10, MO_M11, MO_M12, MO_M13, MO_M14, MO_M15,
MO_M16, MO_M17, MO_M18, MO_M19, MO_M20, MO_M21, MO_M22, MO_M23,
MO_M24, MO_M25, MO_M26, MO_M27, MO_M28, MO_M29, MO_M30, MO_M31,
MO_M32, MO_M33, MO_M34, MO_M35,
MO_LAST = MO_M35
};
//
// fpga_device
//
typedef int pinw_idx_t; // index into pinw array
// A bram dev has about 190 pinwires (input and output
// combined), macc about 350, mcb about 1200.
#define MAX_NUM_PINW 2048
struct fpga_device
{
enum fpgadev_type type;
// subtypes:
// IOB: IOBM, IOBS
// LOGIC: LOGIC_M, LOGIC_L, LOGIC_X
int subtype;
int instantiated;
int num_pinw_total, num_pinw_in;
// The array holds first the input wires, then the output wires.
// Unused members are set to STRIDX_NO_ENTRY.
str16_t* pinw;
// required pinwires depend on the given config and will
// be deleted/invalidated on any config change.
int pinw_req_total, pinw_req_in;
pinw_idx_t* pinw_req_for_cfg;
// the rest will be memset to 0 on any device removal/uninstantiation
union {
struct fpgadev_logic logic;
struct fpgadev_iob iob;
struct fpgadev_bufgmux bufgmux;
struct fpgadev_bufio bufio;
struct fpgadev_bscan bscan;
} u;
};
#define SWITCH_USED 0x80000000
#define SWITCH_BIDIRECTIONAL 0x40000000
#define SWITCH_MAX_CONNPT_O 0x7FFF // 15 bits
#define SW_FROM_I(u32) (((u32) >> 15) & SWITCH_MAX_CONNPT_O)
#define SW_TO_I(u32) ((u32) & SWITCH_MAX_CONNPT_O)
#define SW_I(u32, from_to) ((from_to) ? SW_FROM_I(u32) : SW_TO_I(u32))
// SW_FROM and SW_TO values are chosen such that ! inverts them,
// and swf() assumes that SW_FROM is positive.
#define SW_FROM 1
#define SW_TO 0
#define NO_SWITCH -1
// FIRST_SW must be high enough to be above switch indices or
// connpt or str16.
#define FIRST_SW 0x80000
#define NO_CONN -1
typedef int connpt_t; // index into conn_point_names (not yet *2)
#define CONNPT_STR16(tile, connpt) ((tile)->conn_point_names[(connpt)*2+1])
struct fpga_tile
{
enum fpga_tile_type type;
int flags;
// expect up to 64 devices per tile
int num_devs;
struct fpga_device* devs;
// expect up to 5k connection point names per tile
// 2*16 bit per entry
// - index into conn_point_dests (not multiplied by 3) (16bit)
// - hashed string array index (16 bit)
// each conn point name exists only once in the array
int num_conn_point_names; // conn_point_names is 2*num_conn_point_names 16-bit words
uint16_t* conn_point_names; // num_conn_point_names*2 16-bit-words: 16(conn)-16(str)
// expect up to 28k connection point destinations to other tiles per tile
// 3*16 bit per destination:
// - x coordinate of other tile (16bit)
// - y coordinate of other tile (16bit)
// - hashed string array index for conn_point_names name in other tile (16bit)
int num_conn_point_dests; // conn_point_dests array is 3*num_conn_point_dests 16-bit words
uint16_t* conn_point_dests; // num_conn_point_dests*3 16-bit words: 16(x)-16(y)-16(conn_name)
// expect up to 4k switches per tile
// 32bit: 31 off: no connection on: connected
// 30 off: unidirectional on: bidirectional
// 29:15 from, index into conn_point_names (not yet *2)
// 14:0 to, index into conn_point_names (not yet *2)
int num_switches;
uint32_t* switches;
};
int fpga_build_model(struct fpga_model* model, int idcode, enum xc6_pkg pkg);
// returns model->rc (model itself will be memset to 0)
int fpga_free_model(struct fpga_model* model);
const char* fpga_tiletype_str(enum fpga_tile_type type);
int init_tiles(struct fpga_model* model);
int init_devices(struct fpga_model* model);
void free_devices(struct fpga_model* model);
int init_ports(struct fpga_model* model, int dup_warn);
int init_conns(struct fpga_model* model);
int init_switches(struct fpga_model* model, int routing_sw);
// replicate_routing_switches() is a high-speed optimized way to
// initialize the routing switches, will only work before ports,
// connections or other switches.
int replicate_routing_switches(struct fpga_model* model);
const char* pf(const char* fmt, ...);
const char* wpref(struct fpga_model* model, int y, int x, const char* wire_name);
char next_non_whitespace(const char* s);
char last_major(const char* str, int cur_o);
int has_connpt(struct fpga_model* model, int y, int x, const char* name);
// add_connpt_name(): name_i and conn_point_o can be 0
int add_connpt_name(struct fpga_model* model, int y, int x,
const char* connpt_name, int warn_if_duplicate, uint16_t* name_i,
int* conn_point_o);
// has_device() and has_device_type() return the number of devices
// for the given type or type/subtype.
int has_device(struct fpga_model* model, int y, int x, int dev);
int has_device_type(struct fpga_model* model, int y, int x, int dev, int subtype);
int add_connpt_2(struct fpga_model* model, int y, int x,
const char* connpt_name, const char* suffix1, const char* suffix2,
int dup_warn);
typedef int (*add_conn_f)(struct fpga_model* model,
int y1, int x1, const char* name1,
int y2, int x2, const char* name2);
#define NOPREF_BI_F add_conn_bi
#define PREF_BI_F add_conn_bi_pref
int add_conn_bi(struct fpga_model* model,
int y1, int x1, const char* name1,
int y2, int x2, const char* name2);
int add_conn_bi_pref(struct fpga_model* model,
int y1, int x1, const char* name1,
int y2, int x2, const char* name2);
int add_conn_range(struct fpga_model* model, add_conn_f add_conn_func,
int y1, int x1, const char* name1, int start1, int last1,
int y2, int x2, const char* name2, int start2);
//
// switches
//
int add_switch(struct fpga_model* model, int y, int x, const char* from,
const char* to, int is_bidirectional);
int add_switch_set(struct fpga_model* model, int y, int x, const char* prefix,
const char** pairs, int suffix_inc);
// This will replicate the entire conn_point_names and switches arrays
// from one tile to another, assuming that all of conn_point_names,
// switches and conn_point_dests in the destination tile are empty.
int replicate_switches_and_names(struct fpga_model* model,
int y_from, int x_from, int y_to, int x_to);
struct seed_data
{
int flags;
const char* str;
};
void seed_strx(struct fpga_model *model, const struct seed_data *data);
void seed_stry(struct fpga_model *model, const struct seed_data *data);
#define MAX_WIRENAME_LEN 64
// The LWF flags are OR'ed into the logic_wire enum
#define LWF_SOUTH0 0x0100
#define LWF_NORTH3 0x0200
#define LWF_BIDIR 0x0400
#define LWF_FAN_B 0x0800
#define LWF_WIRE_MASK 0x00FF // namespace for the enums
// ordered to match the LOGICIN_B?? enumeration
// todo: both enums logicin_wire and logicout_wire are not really
// ideal for supporting L_ and XX_ variants, maybe use pinwires
// and LD1 instead?
enum logicin_wire {
/* 0 */ X_A1 = 0,
X_A2, X_A3, X_A4, X_A5, X_A6, X_AX,
/* 7 */ X_B1, X_B2, X_B3, X_B4, X_B5, X_B6, X_BX,
/* 14 */ X_C1, X_C2, X_C3, X_C4, X_C5, X_C6, X_CE, X_CX,
/* 22 */ X_D1, X_D2, X_D3, X_D4, X_D5, X_D6, X_DX,
/* 29 */ M_A1, M_A2, M_A3, M_A4, M_A5, M_A6, M_AX, M_AI,
/* 37 */ M_B1, M_B2, M_B3, M_B4, M_B5, M_B6, M_BX, M_BI,
/* 45 */ M_C1, M_C2, M_C3, M_C4, M_C5, M_C6, M_CE, M_CX, M_CI,
/* 54 */ M_D1, M_D2, M_D3, M_D4, M_D5, M_D6, M_DX, M_DI,
/* 62 */ M_WE
};
// ordered to match the LOGICOUT_B?? enumeration
enum logicout_wire {
/* 0 */ X_A = 0,
X_AMUX, X_AQ, X_B, X_BMUX, X_BQ,
/* 6 */ X_C, X_CMUX, X_CQ, X_D, X_DMUX, X_DQ,
/* 12 */ M_A, M_AMUX, M_AQ, M_B, M_BMUX, M_BQ,
/* 18 */ M_C, M_CMUX, M_CQ, M_D, M_DMUX, M_DQ
};
const char* logicin_str(enum logicin_wire w);
const char* logicout_str(enum logicout_wire w);
// The wires are ordered clockwise. Order is important for
// wire_to_NESW4().
enum wire_type
{
FIRST_LEN1 = 1,
W_NL1 = FIRST_LEN1,
W_NR1,
W_EL1,
W_ER1,
W_SL1,
W_SR1,
W_WL1,
W_WR1,
LAST_LEN1 = W_WR1,
FIRST_LEN2,
W_NN2 = FIRST_LEN2,
W_NE2,
W_EE2,
W_SE2,
W_SS2,
W_SW2,
W_WW2,
W_NW2,
LAST_LEN2 = W_NW2,
FIRST_LEN4,
W_NN4 = FIRST_LEN4,
W_NE4,
W_EE4,
W_SE4,
W_SS4,
W_SW4,
W_WW4,
W_NW4,
LAST_LEN4 = W_NW4
};
#define W_CLOCKWISE(w) rotate_wire((w), 1)
#define W_CLOCKWISE_2(w) rotate_wire((w), 2)
#define W_COUNTER_CLOCKWISE(w) rotate_wire((w), -1)
#define W_COUNTER_CLOCKWISE_2(w) rotate_wire((w), -2)
#define W_IS_LEN1(w) ((w) >= FIRST_LEN1 && (w) <= LAST_LEN1)
#define W_IS_LEN2(w) ((w) >= FIRST_LEN2 && (w) <= LAST_LEN2)
#define W_IS_LEN4(w) ((w) >= FIRST_LEN4 && (w) <= LAST_LEN4)
#define W_TO_LEN1(w) wire_to_len(w, FIRST_LEN1)
#define W_TO_LEN2(w) wire_to_len(w, FIRST_LEN2)
#define W_TO_LEN4(w) wire_to_len(w, FIRST_LEN4)
const char* wire_base(enum wire_type w);
enum wire_type base2wire(const char* str);
enum wire_type rotate_wire(enum wire_type cur, int off);
enum wire_type wire_to_len(enum wire_type w, int first_len);
// These three flags can be OR'ed into the DW..DW_LAST range.
// DIR_BEG signals a 'B' line - the default is 'E' endpoint.
// DIR_S0 turns 0 into _S0
// DIR_N3 turns 3 into _N3.
// First flag must be higher than LAST_LEN4 (25) * 4 + 3 = 103
#define DIR_BEG 0x80
#define DIR_S0 0x100
#define DIR_N3 0x200
#define DIR_FLAGS (DIR_BEG|DIR_S0|DIR_N3)
// some more direction-related macros mostly to make code
// more readable and not directly related to enum extra_wires.
#define DIR_IN 0
#define DIR_OUT 1
#define DIR_POS +1
#define DIR_NEG -1
#define DIR_LEFT DIR_NEG
#define DIR_RIGHT DIR_POS
#define DIR_UP DIR_NEG
#define DIR_DOWN DIR_POS
enum { DIR_NORTH = 0, DIR_EAST, DIR_SOUTH, DIR_WEST };
#define LOGICOUT_HIGHEST 23
#define LOGICIN_HIGHEST 62
// The extra wires must not overlap with logicin_wire or logicout_wire
// namespaces so that they can be combined with either of them.
enum extra_wires {
// NO_WIRE is not compatible with the old X_A1/M_A1 system, but
// compatible with the new LW + LI_A1 system.
NO_WIRE = 0,
UNDEF = 100, // use UNDEF with old system, can be removed after
// old system is gone
FAN_B,
GFAN0,
GFAN1,
CLK0, // == clka for bram
CLK1, // == clkb for bram
SR0, // == rsta for bram
SR1, // == rstb for bram
LOGICIN20,
LOGICIN21,
LOGICIN44,
LOGICIN52,
LOGICIN_N21,
LOGICIN_N28,
LOGICIN_N52,
LOGICIN_N60,
LOGICIN_S20,
LOGICIN_S36,
LOGICIN_S44,
LOGICIN_S62,
IOCE,
IOCLK,
PLLCE,
PLLCLK,
CKPIN,
CLK_FEEDBACK,
CLK_INDIRECT,
CFB0, CFB1, CFB2, CFB3, CFB4, CFB5, CFB6, CFB7,
CFB8, CFB9, CFB10, CFB11, CFB12, CFB13, CFB14, CFB15,
DFB0, DFB1, DFB2, DFB3, DFB4, DFB5, DFB6, DFB7,
CLKPIN0, CLKPIN1, CLKPIN2, CLKPIN3, CLKPIN4, CLKPIN5, CLKPIN6, CLKPIN7,
DQSN0, DQSN1, DQSN2, DQSN3,
DQSP0, DQSP1, DQSP2, DQSP3,
VCC_WIRE,
GND_WIRE,
GCLK0, GCLK1, GCLK2, GCLK3, GCLK4, GCLK5, GCLK6, GCLK7,
GCLK8, GCLK9, GCLK10, GCLK11, GCLK12, GCLK13, GCLK14, GCLK15,
LOGICOUT_B0, LOGICOUT_B1, LOGICOUT_B2, LOGICOUT_B3,
LOGICOUT_B4, LOGICOUT_B5, LOGICOUT_B6, LOGICOUT_B7,
LOGICOUT_B8, LOGICOUT_B9, LOGICOUT_B10, LOGICOUT_B11,
LOGICOUT_B12, LOGICOUT_B13, LOGICOUT_B14, LOGICOUT_B15,
LOGICOUT_B16, LOGICOUT_B17, LOGICOUT_B18, LOGICOUT_B19,
LOGICOUT_B20, LOGICOUT_B21, LOGICOUT_B22, LOGICOUT_B23,
LOGICIN_B0, LOGICIN_B1, LOGICIN_B2, LOGICIN_B3,
LOGICIN_B4, LOGICIN_B5, LOGICIN_B6, LOGICIN_B7,
LOGICIN_B8, LOGICIN_B9, LOGICIN_B10, LOGICIN_B11,
LOGICIN_B12, LOGICIN_B13, LOGICIN_B14, LOGICIN_B15,
LOGICIN_B16, LOGICIN_B17, LOGICIN_B18, LOGICIN_B19,
LOGICIN_B20, LOGICIN_B21, LOGICIN_B22, LOGICIN_B23,
LOGICIN_B24, LOGICIN_B25, LOGICIN_B26, LOGICIN_B27,
LOGICIN_B28, LOGICIN_B29, LOGICIN_B30, LOGICIN_B31,
LOGICIN_B32, LOGICIN_B33, LOGICIN_B34, LOGICIN_B35,
LOGICIN_B36, LOGICIN_B37, LOGICIN_B38, LOGICIN_B39,
LOGICIN_B40, LOGICIN_B41, LOGICIN_B42, LOGICIN_B43,
LOGICIN_B44, LOGICIN_B45, LOGICIN_B46, LOGICIN_B47,
LOGICIN_B48, LOGICIN_B49, LOGICIN_B50, LOGICIN_B51,
LOGICIN_B52, LOGICIN_B53, LOGICIN_B54, LOGICIN_B55,
LOGICIN_B56, LOGICIN_B57, LOGICIN_B58, LOGICIN_B59,
LOGICIN_B60, LOGICIN_B61, LOGICIN_B62,
// direction wires
DW = 500,
// dirwires can be encoded times-4, for example
// NL1E2 = DW + W_NL1*4 + 2
// DIR_BEG and DIR_S0N3 can be OR'ed into this range.
DW_LAST = 1499,
// logic wires
LW,
// logic wires are encoded here as LOGIC_BEG+LI_A1. LD1 (0x100)
// can be OR'ed to the LI or LO value.
LW_LAST = 1999,
// bram wires are BW + (BI_/BO_, ORed with B8_0(0x100) or B8_1(0x200))
BW,
BW_LAST = 2999,
// macc wires are MW + MI_/MO_
MW,
MW_LAST = 3499,
};
const char *fpga_connpt_str(struct fpga_model *model, enum extra_wires wire,
int y, int x, int dest_y, int dest_x);
const char* fpga_wire2str(enum extra_wires wire);
str16_t fpga_wire2str_i(struct fpga_model* model, enum extra_wires wire);
enum extra_wires fpga_str2wire(const char* str);
int fdev_logic_inbit(pinw_idx_t idx);
int fdev_logic_outbit(pinw_idx_t idx);
// physically, tile3 is at the top, tile0 at the bottom
// errors are returned as -1 in tile0_to_3
void fdev_bram_inbit(enum extra_wires wire, int* tile0_to_3, int* wire0_to_62);
void fdev_bram_outbit(enum extra_wires wire, int* tile0_to_3, int* wire0_to_23);
int fdev_is_bram8_inwire(int bi_wire); // direct BI_ value
int fdev_is_bram8_outwire(int bo_wire); // direct BO_ value
void fdev_macc_inbit(enum extra_wires wire, int* tile0_to_3, int* wire0_to_62);
void fdev_macc_outbit(enum extra_wires wire, int* tile0_to_3, int* wire0_to_23);
//
// integer-based net (w_net_i)
//
struct w_yx { int y, x; };
#define MAX_NET_I_YX 128
struct w_net_i
{
enum extra_wires wire;
int wire_inc; // 0 = no-inc, 1 = wire+0 and wire+1, etc.
int num_yx;
struct w_yx yx[MAX_NET_I_YX];
};
int add_conn_net_i(struct fpga_model *model, const struct w_net_i *net);
//
// string-based net (w_net)
//
// COUNT_DOWN can be OR'ed to start_count to make
// the enumerated wires count from start_count down.
#define COUNT_DOWN 0x100
#define COUNT_MASK 0xFF
struct w_point // wire point
{
const char* name;
int start_count; // if there is a %i in the name, this is the start number
int y, x;
};
#define NO_INCREMENT 0
#define MAX_NET_POINTS 128
struct w_net
{
// if !last_inc, no incrementing will happen (NO_INCREMENT)
// if last_inc > 0, incrementing will happen to
// the %i in the name from pt.start_count:last_inc
int last_inc;
int num_pts;
struct w_point pt[MAX_NET_POINTS];
};
#define NO_PREF 0
#define ADD_PREF 1
int add_conn_net(struct fpga_model* model, int add_pref, const struct w_net *net);
|