This file is indexed.

/usr/include/freefem++/BrentLS.hpp is in libfreefem++-dev 3.47+dfsg1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
//======================================================================
// Definition of the BrentLineSearch class
// Brent's line search algorithm
// author: Wenceslau Gouveia, Adapted from Numerical Recipes in C
// Modified to fit into new classes.  H. Lydia Deng, 02/21/94, 03/15/94
// Tony : cf. page 301 section 10.2
//========================================================================
// .B BrentLineSearch()
// This routine, inpired by the Numerical Recipes book, performs a unidimensional search
// for the minimum of the objective function along a specified direction. The minimum is
// at first bracket using the Golden search procedure. After bracketing the Brent's 
// algorithm is used to isolate the minimum to a fractional precision of about the specified 
// tolerance.
// 
// .SECTION Description
// Public Operations
// Constructors: 
//		BrentLineSearch (ObjectiveFunction *f, int iter);
// 		Here:
//			f: Define the objective function
//			iter: Maximum number of iterations
// Methods:
//		model <> BrentLineSearch::search(Model<double>& model0, Vector<double>& direction, 
//						  	                 double tol, double delta)
//		Here:
//			model0:  Initial model to initiate the bracketing procedure
// 			direction: Vector that defines the direction of the line search
//			tol: The minimum is within the returned this->value +/- tol
//			delta: Used in the bracketing procedure. The initial interval
//				  for the bracketing is from 0 to delta * STEP_MAX, where
//				  STEP_MAX is hard coded to 5.
//
//			The sought minimum is returned by the function.
//
// .SECTION Caveats
// This line search was not thoroughly tested. The CubicLineSearch procedure, that requires
// certain derivative information on the objective function (that can be provided by numerical
// methods) has demonstrated to be a  more efficient line search procedure.

// Cela me semble louche... cf. les commentaires BIZARRE !
// Ceci dit, le premiers tests semblent OK...

#include "defs.hpp"
#include <stdio.h>


#ifndef BRENT_LINE_SEARCH_HH
#define BRENT_LINE_SEARCH_HH

#include "LineSearch.hpp"

#define CGOLD 		.3819660
#define ZEPS 		1.e-10
#define GOLD 		1.618034
#define STEP_MAX	5
#define GLIMIT 		100.

/*
   BrentLineSearch class was inpired by the Numerical Recipes book, 
   performs an unidimensional search for the minimum of the objective 
   function along a specified direction. The minimum is at first
   bracket using the Golden search procedure. After bracketing 
   the Brent's algorithm is used to isolate the minimum to a 
   fractional precision of about the specified tolerance.

   This line search was not thoroughly tested. The 
   CubicLineSearch procedure, that requires certain 
   derivative information on the objective function
   (that can be provided by numerical methods) has
   demonstrated to be a  more efficient line search procedure.

*/

template <class LS>
class BrentLineSearch : public LS
{
  typedef typename LS::Real Real;
  typedef typename LS::Param Param;
  typedef typename LS::Vect Vect;
  typedef typename LS::VMat VMat;
  typedef typename LS::Mat Mat;
  typedef typename LS::NRJ NRJ;
   public:				

   BrentLineSearch(NRJ* f, int iter);
   ~BrentLineSearch();

  // Implementation of the Brent Search
  // search for minimum model along a 1-D direction
  Param search(///initial model to initiate the bracketing procedure
			Param& m0, 
			///the direction of the line search
			Vect& direction, 
			///the minimum is within the returned this->value +/- tol
			Real tol, 
			///a parameter used in the bracketing procedure
			double delta);
   /*The initial interval for the bracketing is from $0$ to 
   $delta \times STEP\_MAX$, where $STEP\_MAX$ is hard coded to $5$.
   The sought minimum is returned by the function.  */
   //@ManMemo: search for minimum model along a 1-D direction
};

template <class LS>
BrentLineSearch<LS>::BrentLineSearch(NRJ * f, int it) 
: LS(f)
{
  this->iterMax 	= 	it;
}

template <class LS>
BrentLineSearch<LS>::~BrentLineSearch()
{;}

// Code for the BrentBrent line search
template <class LS>
typename BrentLineSearch<LS>::Param BrentLineSearch<LS>::search(Param& model0,Vect& direction, Real tol, double delta)
{
    this->iterNum	=	0;
	KN<double> steps(3);			// brackets
	Vect of_values(3);			// OF evaluated inside bracket
	Real dum;					// auxiliary quantity
	Real r, q, ulim;				// auxiliary quantity
	Real u, fu;					// define the new bracket limit
	
	// Variables related to Brent's algorithm
	Real d, fv, fw, fx, p;			// auxiliary variables
	double tol1, tol2, v, w, xm;			// auxiliary variables
	double x, e = 0.,etemp;				// auxiliary variables
	int i;						// counter

	// Ajout Tony
	d=0; // Sinon, il n'est pas initialise : BIZARRE !
	
	
	// Beggining of the bracketing stage

	steps[0] = 0.;
	steps[1] = STEP_MAX * delta;

	of_values[0]= this->nrj->getVal(model0);
	of_values[1] =this->nrj->getVal(update(model0,1,steps[1],direction));
	this->iterNum += 2;

	if (of_values[1] > of_values[0])
	{
	   dum = steps[0]; steps[0] = steps[1]; steps[1] = dum;
	   dum = of_values[0]; of_values[0] = of_values[1]; of_values[1] = dum;
	}	

	steps[2] = steps[1] + GOLD * (steps[1] - steps[0]);
	of_values[2] = this->nrj->getVal(update(model0,1,steps[2],direction));
	this->iterNum++;
	while (of_values[1] > of_values[2])
	{
		r = (steps[1] - steps[0]) * (of_values[1] - of_values[2]);
		q = (steps[1] - steps[2]) * (of_values[1] - of_values[0]);
		u = steps[1] - ((steps[1] - steps[2]) * q - 
				(steps[1] - steps[0]) * r) / 
		    (2. * Abs(Max(Abs(q - r), TINY)) / Sgn(q - r));
		ulim = steps[1] + GLIMIT * (steps[2] - steps[1]);

		if ((steps[1] - u) * (u - steps[2]) > 0.)
		{
			fu = this->nrj->getVal(update(model0,1,u,direction));
			this->iterNum++;
			if (fu < of_values[2])
			{
				steps[0] = steps[1];
				steps[1] = u;
				of_values[0] = of_values[1];
				of_values[1] = fu;
				break;
			}
			else if (fu > of_values[1])
			{
				steps[2] = u;
				of_values[2] = fu;
				break;
			}

			u = steps[2] + GOLD * (steps[2] - steps[1]);
			fu = this->nrj->getVal(update(model0,1,u,direction));
			this->iterNum++;

		}
		else if ((steps[2] - u) * (u - ulim) > 0.)
		{
			fu = this->nrj->getVal(update(model0,1,u,direction));
			this->iterNum++;
			if (fu < of_values[2])
			{
				steps[1] = steps[2];
				steps[2] = u;
				u = steps[2] + GOLD * (steps[2] - steps[1]);

				of_values[1] = of_values[2];
				of_values[2] = fu;
				fu = this->nrj->getVal(update(model0,1,u,direction));
				this->iterNum ++;
			}
		}
		else if ((u - ulim) * (ulim * steps[2]) >= 0.)
		{
			u = ulim;
			fu = this->nrj->getVal(update(model0,1,u,direction));
			this->iterNum ++;
		}
		else
		{
			u = steps[2] + GOLD * (steps[2] - steps[1]);
			fu = this->nrj->getVal(update(model0,1,u,direction));
			this->iterNum ++;
		}

		steps[0] = steps[1]; steps[1] = steps[2]; steps[2] = u;
		of_values[0] = of_values[1]; of_values[1] = of_values[2]; 
		of_values[2] = fu;

	}
	
	// Sorting STEPS in ascending order
	for (i = 0; i < 2; i++)
	{
		if (steps[0] > steps[i+1])
		{
			dum = steps[0];
			steps[0] = steps[i+1];
			steps[i+1] = dum;

			dum = of_values[0];
			of_values[0] = of_values[i+1];
			of_values[i+1] = dum;
		}
	}

	if (steps[1] > steps[2])
	{
		dum = steps[1];
		steps[1] = steps[2];
		steps[2] = dum;

		dum = of_values[1];
		of_values[1] = of_values[2];
		of_values[2] = dum;
	}

	// The line minimization will be performed now using as
	// bracket the 3 first steps given in vector steps 
	// The algorithm is due to Brent

	// initializations
	x = w = v = steps[1];
	fw = fv = fx = of_values[1];

	for (; this->iterNum <= this->iterMax; this->iterNum++)
	{
		xm = .5 * (steps[0] + steps[2]);
		tol1 = tol * Abs(x) + ZEPS;
		tol2 = 2.0 * tol1;
		if (Abs(x - xm) <= (tol2 - .5 * (steps[2] - steps[0])))
		{
			this->value = fx;
			Param new_model(update(model0,1,x,direction));
			
			return new_model;
		}
						// minimum along a line
		if (Abs(e) > tol1)
		{
			r = (x - w) * (fx - fv);
			q = (x - v) * (fx - fw);
			p = (x - v) * q - (x - w) * r;
			q = 2.0 * (q - r);
			// Tony
			// ??? ERREUR ???
			// dans le numerical recipe, c'est p=-p...
			// BIZARRE !
			if (q > 0.){
			  cerr<<"BIZARRE BrentLS"<<endl;
			  p = -q;
			}
			
			q = Abs(q);
			etemp = e;
			e = d;
			if (Abs(p) >= Abs(.5 * q * etemp) ||
			    p <= q * (steps[0] - x) ||
			    p >= q * (steps[2] - x))
			{	// parabolic fit
				if (x >= xm)
					e = steps[0] - x;
				else
					e = steps[2] - x;
				d = CGOLD * e;
			}
			else
			{
				d = p / q;
				u = x + d;
				if (u - steps[0] < tol2 ||
				    steps[2] - u < tol2)
					d = Abs(tol1) / Sgn(xm-x);
			}
		}
		else
		{
			if (x >= xm)
				e = steps[0] - x;
			else
				e = steps[2] - x;

			d = CGOLD * e;
		}

		if (Abs(d) >= tol1)
			u = x + d;
		else
			u = x + Abs(tol1) / Sgn(d);

		fu  = this->nrj->getVal(update(model0,1,u,direction));

		if (fu <= fx)
		{
			if (u >= x)
				steps[0] = x;
			else
				steps[2] = x;
			v = w; w = x; x = u;
			fv = fw; fw = fx; fx = fu;
		}
		else
		{
			if (u < x)
				steps[0] = u;
			else
				steps[2] = u;

			if (fu <= fw || w == x)
			{
				v = w; w = u; fv = fw; fw = fu;
			}

			else if (fu <= fw || v == x || v == w)

			{
				v = u; fv = fu;
			}
		}
	}
	
    this->appendSearchNumber();
	//    cout << " Maximum number of iterations reached " << endl;


	Param new_model(update(model0,1,x,direction));
	this->value = this->nrj->getVal(new_model);			
	return new_model;
}

#endif