This file is indexed.

/usr/include/freefem++/DOperator.hpp is in libfreefem++-dev 3.47+dfsg1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
#include <queue>
// class for 1 linear form
// just copy a array 

//  Warning this class are use at compilating time
//  ----------------------------------------------
using Fem2D::operatortype;
using Fem2D::op_id;
using Fem2D::op_dx;
using Fem2D::op_dy;
using Fem2D::op_dz;
using Fem2D::last_operatortype;

template<class T> 
inline  T * NewCopy(const  T * const o,int n)
{ 
  int  m=n;
  T * c = new T [n];
  for (int i=0;i<m;i++)
    c[i]=o[i];
  return c;
}
template<class T> 
inline  T * NewCopy(const  T * const o,int n,int m)
{ 
  throwassert(m<=n);
  T * c = new T [n];
  for (int i=0;i<m;i++) c[i]=o[i];
  return c;
}

template <class T1, class T2, class T3>
struct triplet
{
	typedef T1 first_type;
	typedef T2 second_type;
	typedef T3 third_type;
	T1 first;
	T2 second;
	T3 third;
	triplet() : first(),second(),third()   {}
	triplet(const T1& x, const T2& y, const T3& z)  : first(x),second(y), third(z) {}
	template<class U, class V,class W> inline
	triplet(const triplet<U, V, W>& p) : first(p.first),second(p.second),third(p.third) {}
};

template <class T1, class T2,class T3>
inline triplet<T1, T2, T3> make_triplet(T1 x, T2 y, T3 z)
{
	return triplet<T1, T2, T3>(x, y, z);
}


template<class I,class R>
 class LinearComb : public E_F0mps { public: 
   typedef I TI;
   typedef R TR;
   typedef size_t size_type;
   typedef pair<I,R> K;
   typedef vector<K> array;
   typedef typename array::const_iterator const_iterator;
   typedef typename array::iterator iterator;
   array v;
   vector<size_type> where_in_stack_opt;
   vector<bool> mesh_indep_stack_opt;
   const E_F0_Optimize * optiexp0,*optiexpK;
   bool isoptimize;
   
   LinearComb(): v(),
		 where_in_stack_opt(),mesh_indep_stack_opt(),
		 optiexp0(0),optiexpK(0),isoptimize(false) {}
   
   LinearComb(const I& i,const R& r) :v(1),
				      where_in_stack_opt(),mesh_indep_stack_opt(),
				      optiexp0(),optiexpK(),isoptimize(false) 
   {
     v[0]=make_pair<I,R>((I)i,(R)r);
   }
   
   LinearComb(const LinearComb &l) 
      :v(l.v),
        where_in_stack_opt(l.where_in_stack_opt),
        mesh_indep_stack_opt(l.mesh_indep_stack_opt),
        optiexp0(l.optiexp0),optiexpK(l.optiexpK),isoptimize(false){}  
        
   int nbtrue(bool *ok) const 
     { 
        int k=0; 
        for (size_t i=0;i<v.size();i++) 
          if (ok[i]) k++;
         return k;
     }
     
   //  copy just les parties ok   
   LinearComb(const LinearComb &l,bool * ok) 
     :v(l.nbtrue(ok) ),
      where_in_stack_opt(v.size()),
      mesh_indep_stack_opt(v.size()),
      optiexp0(l.optiexp0),optiexpK(l.optiexpK),
      isoptimize(l.isoptimize) 
      {
	// int k=0;
        const_iterator lll= l.v.begin();
        iterator ll=v.begin(); 
        for (int i=0,k=0;lll!= l.v.end();++lll,++i) 
          if (ok[i]) 
            {
            *ll++=*lll;
            where_in_stack_opt[k]=l.where_in_stack_opt[i];
            mesh_indep_stack_opt[k]=l.mesh_indep_stack_opt[i];
            ++k;            
            }
         
      }  
        
       
   void operator=(const LinearComb<I,R> &l) {
     v=l.v;
     where_in_stack_opt=l.where_in_stack_opt;
     mesh_indep_stack_opt=l.mesh_indep_stack_opt;
     optiexp0=l.optiexp0;
     optiexpK=l.optiexpK;
     isoptimize=l.isoptimize; 
     }
   const I * simple() const { if (v.size()==1) return & v.begin()->first;else return  0;}     
   void  add(const I& i,const R &r)  { 
     for (iterator k=v.begin();k!=v.end();k++)
       if (k->first == i) {k->second += r;return ;}
     v.push_back(make_pair<I,R>((I)i,(R)r));     
   }
   
   size_type size() const { return v.size();}   
   
   const K & operator[](size_type i) const { return v[i];}
   
   void operator+=(const LinearComb & l) {
     for (const_iterator k=l.v.begin();k!=l.v.end();k++)
       { const K & kk(*k);
       add(kk.first,kk.second);}
   }
   
   void operator*=(const R & r) {
     for (iterator k=v.begin();k!=v.end();k++)
       {K & kk(*k);
       kk.second = kk.second*r;}
   }     
   
   void operator/=(const R & r) {
     for (iterator k=v.begin();k!=v.end();k++)
       {K & kk(*k);
       kk.second = kk.second/r; }
   }     
   
  AnyType operator()(Stack )  const {
    return SetAny<const LinearComb<I,R> * >(this);}
  operator aType () const { return atype<const LinearComb >();}         
    
    
  bool mappable(bool (*f)(const  R &)) const {
     for (const_iterator k=v.begin();k!=v.end();k++)
       if (!(*f)(k->second)) return false;
      return true;}
      
  void mapping(R (*f)(const R &)) {
     for (iterator k=v.begin();k!=v.end();k++)
       k->second=(*f)(k->second) ;}
  
  int MaxOp() const {
    int m=0;
     for (const_iterator k=v.begin();k!=v.end();k++)
       m= maxop(m,(k->first)) ;
     return m;}
    
 void DiffOp(KN_<bool> &d) const {
     assert(d.N() >= last_operatortype);
     d=false;
     for (const_iterator k=v.begin();k!=v.end();k++)
       SetOp(d,k->first);
       
   
 }  
  unsigned int DiffOp(int & lastop) const
 {
   unsigned int d=0;
   lastop=0;
   for (const_iterator k=v.begin();k!=v.end();k++)
     d |= GetDiffOp(k->first,lastop);
     
   assert(lastop<last_operatortype);
   lastop++;
   
   return d;
  }  
  
  ostream & dump(ostream &f) const {
    int n = size();
    for (int i=0; i<n; i++)
      {
        const K & ri=v[i];
        Expression ee= ri.second.LeftValue();
        f  << "\n\t\t"<< i << " " << ri.first << ": "  ;
       f << " :  type exp: " << typeid(*ee).name() << " "<<endl;
      }

    return f;
  } 
 LinearComb * Optimize(Block * b)  
  {
    const bool kdump=(verbosity/1000)%10==1;
    if (kdump)
    cout << "\n\n Optimize " << endl;
    LinearComb * r=new LinearComb(*this);
    LinearComb  &rr= *r;
    int n = rr.size();
    
    deque<pair<Expression,int> > ll;
    MapOfE_F0 m;
    rr.where_in_stack_opt.resize(n);
    rr.mesh_indep_stack_opt.resize(n);
    size_type top = b->OffSet(0), topbb=top; // FH. bofbof ??? 
    for (int i=0; i<n; i++)
      {
      const K & ri=rr.v[i];
       Expression ee= ri.second.LeftValue();
       if (kdump)
       cout << "Optimize :  type exp: " << typeid(*ee).name() << " "<<endl;
        rr.mesh_indep_stack_opt[i]=ee->MeshIndependent(); 
       rr.where_in_stack_opt[i]=ee->Optimize(ll, m, top);
       if (kdump)
       cout  << "\n\t\t"<< i << " " << ri.first << ": " << rr.where_in_stack_opt[i] << endl;
      }
      
    b->OffSet(top-topbb);
    //  
    int k=ll.size(),k0=0,k1=0;
    for (int i=0;i<k;i++)
        if (ll[i].first->MeshIndependent()) k0++;
    deque<pair<Expression,int> > l0(k0),l1(k-k0);
    k0=0,k1=0;
    for (int i=0;i<k;i++)
       if (ll[i].first->MeshIndependent()) 
         {
          if (kdump)
          cout << " mi " << ll[i].second << " " << *(ll[i].first) << endl;
          l0[k0++]=ll[i];
         }
        else 
         {
          if (kdump)
          cout << " md " << ll[i].second << " " << *(ll[i].first) << endl;
          l1[k1++]=ll[i];
         }
    if (k0)      
      rr.optiexp0 = new E_F0_Optimize(l0,m,0);  
    if (k1) 
      rr.optiexpK = new E_F0_Optimize(l1,m,0);
    rr.isoptimize=true;
    if (kdump) cout << "LinearCom Optimize k0(mi) = " << k0 << " k1 = " << k1 << "\n\n"<<endl;
    return r;
  }    
   
};



template<class I,class R>
LinearComb<I,R> operator+(const LinearComb<I,R> & a,const LinearComb<I,R> & b)
 {LinearComb<I,R> r(a);r+=b;return r;}

template<class I,class R>
LinearComb<I,R> operator*(const LinearComb<I,R> & a,const R & b)
 {LinearComb<I,R> r(a);r*=b;return r;}
template<class I,class R>
LinearComb<I,R> operator*(const R & b,const LinearComb<I,R> & a)
 {LinearComb<I,R> r(a);r*=b;return r;}
 

 
class MGauche :public pair<int,operatortype> {public:
  MGauche() {}
  MGauche(int i,operatortype j) {first = i;second= j;}
  MGauche(const pair<int,operatortype> &p) : pair<int,operatortype>(p){}
  bool operator==(const MGauche& a) const {
    return static_cast<bool>(first == a.first && second == a.second);}
  int maxop(int op) const { return Max(op,(int) second);}
    
};

class MDroit :public pair<int,operatortype> {public:
  MDroit(){}
  MDroit(int i,operatortype j) {first = i;second =j;}
  //   first : number of unknow 
  // second  : number of operator ( 0 Id, 1 dx, 2 dy)
  MDroit(const pair<int,operatortype> &p) : pair<int,operatortype>(p){}
  bool operator==(const MDroit& a) const {
    return static_cast<bool>(first == a.first && second == a.second);}
};

inline ostream & operator<<(ostream & f,const MDroit & p)
{ f << p.first <<','<<p.second ;
  return f;}
inline ostream & operator<<(ostream & f,const MGauche & p)
{ f << p.first <<';'<<p.second ;
  return f;}
  
template<typename A,typename B>
inline ostream & operator<<(ostream & f,const pair<A,B> &p)
{ f << p.first <<" "<<p.second ;
  return f;}
  
  
//extern const C_F0 & One, &Zero;
C_F0 operator*(const C_F0 &,const C_F0 &);
C_F0 & operator+=(const C_F0 &,const C_F0 &);
 
typedef LinearComb<MGauche,C_F0> LinearOperatorG;
typedef LinearComb<MDroit ,C_F0> LinearOperatorD;

typedef LinearComb<pair<MGauche,MDroit>,C_F0> BilinearOperator;

inline  int maxop(int op,const MGauche & v) 
    { return Max(op,(int) v.second);}
inline  int maxop(int op,const MDroit & v) 
    { return Max(op,(int) v.second);}
inline  int maxop(int op,const pair<MGauche,MDroit> & b) 
    { return Max(op,(int) b.first.second,(int) b.second.second );}
 
inline BilinearOperator operator*(const LinearOperatorG & a,const LinearOperatorD & b) 
 {
   BilinearOperator r;
   for (LinearOperatorG::const_iterator i=a.v.begin();i!=a.v.end();i++)
     for (LinearOperatorD::const_iterator j=b.v.begin();j!=b.v.end();j++)
       {
	 const LinearOperatorG::K  vi(*i);
	 const LinearOperatorD::K  vj(*j);
	
	 r.add(make_pair(vi.first,vj.first),vi.second*vj.second);
	   
       }
    return r;
 } 
inline BilinearOperator operator*(const LinearOperatorD & b,const LinearOperatorG & a) 
 {
   BilinearOperator r;
   for (LinearOperatorG::const_iterator i=a.v.begin();i!=a.v.end();i++)
     for (LinearOperatorD::const_iterator j=b.v.begin();j!=b.v.end();j++)
       {
	 const LinearOperatorG::K  vi(*i);
	 const LinearOperatorD::K  vj(*j);
	
	 r.add(make_pair(vi.first,vj.first),vi.second*vj.second);
	   
       }
    return r;
 } 
ostream & operator<<(ostream & f,const  BilinearOperator & a); 
 
inline ostream & operator<<(ostream & f,const  BilinearOperator & a)
{
  int k=0;
  for (BilinearOperator::const_iterator i=a.v.begin();i!=a.v.end();i++)
    {
      const BilinearOperator::K  vi(*i);
      const char * www[]={" ","_x ","_y "};
      const  pair<pair<int,int>,pair<int,int> > i1(vi.first);
      const  pair<int,int> ii(i1.first),jj(i1.second);
      f << *(const E_F0 *) vi.second <<  char('u'+ii.first) << www[ii.second] << " " << char('u'+jj.first)<<"'" << www[jj.second] ;
      if ( (++k%5)==0) f << endl ; else f << " ";
    }
  return f;
}
typedef LinearOperatorD LOperaD;
typedef LinearOperatorG LOperaG;
typedef BilinearOperator Opera;
inline LOperaG DiffG(int i,operatortype j) { return LOperaG(make_pair(i,j),*pOne);}
inline LOperaD DiffD(int i,operatortype j) { return LOperaD(make_pair(i,j),*pOne);}

inline LOperaG *newU_(int i) {  LOperaG * r;
  r= new LOperaG(make_pair(i,op_id),*pOne);
 SHOWVERB( cout << "newU_ " << r << endl);
  return r; }
inline LOperaG *newU_x(int i) { return new LOperaG(make_pair(i,op_dx),*pOne);}
inline LOperaG *newU_y(int i) { return new LOperaG(make_pair(i,op_dy),*pOne);}
inline LOperaD *newV_(int i) { return new LOperaD(make_pair(i,op_id),*pOne);}
inline LOperaD *newV_x(int i) { return new LOperaD(make_pair(i,op_dx),*pOne);}
inline LOperaD *newV_y(int i) { return new LOperaD(make_pair(i,op_dy),*pOne);}

template<class L>
 L *  Diff(const L *   u,const  operatortype & d) { 
     throwassert(u);
     L * r= new  L(*u);
    for (typename L::iterator i=r->v.begin();i!=r->v.end();i++)
      {   
	  operatortype & dd=i->first.second;
	  if (dd != op_id)
	    { ffassert(0); i->first.second = op_id;  } // a faire          
	  else {
	      ffassert(i->second.EvaluableWithOutStack());// a faire derivation des fonctions
	      dd = d ; }
          
    }
    return r;}

template<class L>
L *  CONJ_op(const L *   u) { 
    throwassert(u);
    L * r= new  L(*u);
    for (typename L::iterator i=r->v.begin();i!=r->v.end();i++)
      {   typename L::TR  & cc=i->second;
	  if( cc.right()==atype<Complex>() ) 
	      i->second= C_F0(TheOperators,"\'",cc);
          
      }
    return r;}
	    


template<class L>
int  MaxOp(const L *   u) { 
     throwassert(u);
     int op=0;
    for (typename L::const_iterator i=u->v.begin();i!=u->v.end();i++)          
          op = maxop(op,i->first);
    return op;}
    
    
    
template<class L,class A,L* ff(const basicAC_F0 & args)>
class CODE_L1 { public:
  typedef L* Result;
  typedef L* (*func)(const basicAC_F0 & args) ;
  static L* f(const basicAC_F0 & args) { return ff(args);} //  ff :A-> L*
  static ArrayOfaType  typeargs() {return ArrayOfaType(atype<A>);}
};

template<class L>
class CODE_L_Add { public:
  typedef const L* Result;
  static  E_F0 * f(const basicAC_F0 & args) { 
    const L * a(dynamic_cast<const L*>((Expression) args[0]));
    const L * b(dynamic_cast<const L*>((Expression) args[1]));
    throwassert(a  && b );
    return new L(*a+*b);}
   static ArrayOfaType  typeargs() {return ArrayOfaType(atype<const L*>(),atype<const L*>());}
};
template<class L>
class CODE_L_Sub { public:
  typedef const L* Result;
  static  E_F0 * f(const basicAC_F0 & args) { 
    const L * a(dynamic_cast<const L*>((Expression) args[0]));
    const L * b(dynamic_cast<const L*>((Expression) args[1]));
    throwassert(a  && b );
    L * bb = new L(*pminusOne * *b);
    return new L(*a+*bb);}
   static ArrayOfaType  typeargs() {return ArrayOfaType(atype<const L*>(),atype<const L*>());}
};

template<class L>
class CODE_L_Minus { public:
  typedef const L* Result;
  static  E_F0 * f(const basicAC_F0 & args) { 
    const L * a(dynamic_cast<const L*>((Expression) args[0]));
    throwassert(a  && pminusOne );
    return new L(*pminusOne * *a);}
   static ArrayOfaType  typeargs() {return ArrayOfaType(atype<const L*>());}
};
template<class L>
class CODE_L_Plus { public:
  typedef const L* Result;
  static  E_F0 * f(const basicAC_F0 & args) { 
    const L * a(dynamic_cast<const L*>((Expression) args[0]));
    throwassert(a );
    return new L( *a);}
   static ArrayOfaType  typeargs() {return ArrayOfaType(atype<const L*>());}
};

template<class L,class A,class B>
class CODE_L_Mul { public:
  typedef const L* Result;
  static  E_F0 * f(const basicAC_F0 & args) { 
    const A * a(dynamic_cast<const A*>((Expression) args[0]));
    const B * b(dynamic_cast<const B*>((Expression) args[1]));
    SHOWVERB(cout << " CODE_L_Mul " << a << " " << b << endl);
    throwassert(a  && b );
    return new L(*a * *b);}
   static ArrayOfaType  typeargs() {return ArrayOfaType(atype<const A*>(),atype<const B*>());}
};

template<class T,class L>
class CODE_L_MulRL { public:
  typedef const L* Result;
  static  E_F0 * f(const basicAC_F0 & args) { 
    const L * b(dynamic_cast<const L*>((Expression) args[1]));
    if (!b) {
      
      cout << " --- " << ((Expression) args[1]) << typeid((Expression) args[1]).name() << endl;
    throwassert( b );
    }
    return new L(to<T>(args[0]) * *b);}
   static ArrayOfaType  typeargs() {return ArrayOfaType(atype<T>(),atype<const L*>());}
};

template<class L,class T>
class CODE_L_MulLR { public:
  typedef const L* Result;
  static  E_F0 * f(const basicAC_F0 & args) { 
    const L * a(dynamic_cast<const L*>((Expression) args[0]));
    throwassert( a );
    return new L(to<T>(args[1]) * *a);}
   static ArrayOfaType  typeargs() {return ArrayOfaType(atype<Result>(),atype<T>());}
};

template<class L,class T>
class CODE_L_DivLR { public:
  typedef const L* Result;
  static  E_F0 * f(const basicAC_F0 & args) { 
    const L * a(dynamic_cast<const L*>((Expression) args[0]));
    throwassert( a );
    return new L(C_F0(TheOperators,"/",*pOne,args[1]) * *a);}
   static ArrayOfaType  typeargs() {return ArrayOfaType(atype<Result>(),atype<T>());}
};

template<class L,operatortype op>
class CODE_Diff { public:
  typedef const L* Result;
  static  E_F0 * f(const basicAC_F0 & args) { 
   const L * a=dynamic_cast<const L*>((Expression) args[0]) ;
    throwassert( a );
    return  Diff(a,op);}
   static ArrayOfaType  typeargs() {return ArrayOfaType(atype<Result>());}
};

template<class L>
class CODE_conj { public:
    typedef const L* Result;
    static  E_F0 * f(const basicAC_F0 & args) { 
	const L * a=dynamic_cast<const L*>((Expression) args[0]) ;
	throwassert( a );
	return  CONJ_op(a);}
    static ArrayOfaType  typeargs() {return ArrayOfaType(atype<Result>());}
};

enum TheCode_VF { Code_Jump=1, Code_Mean=2, Code_OtherSide=3};

template<class L,TheCode_VF code>
class Code_VF { public:  
  typedef const L* Result;
  static  E_F0 * f(const basicAC_F0 & args) { 
   const L * u=dynamic_cast<const L*>((Expression) args[0]) ;
    assert( u );
     L * r= new  L(*u);
    for (typename L::iterator i=r->v.begin();i!=r->v.end();i++)
      {   operatortype & dd=i->first.second;
          assert(dd<last_operatortype);
          dd = (operatortype) ((int) dd+last_operatortype*code) ; 
     }    
    return r;}
   static ArrayOfaType  typeargs() {return ArrayOfaType(atype<Result>());}
};