This file is indexed.

/usr/include/freefem++/FESpacen.hpp is in libfreefem++-dev 3.47+dfsg1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
// ********** DO NOT REMOVE THIS BANNER **********
// ORIG-DATE:     Jan 2008
// -*- Mode : c++ -*-
//
// SUMMARY  : Generic Fiinite Element header  1d, 2d, 3d  
// USAGE    : LGPL      
// ORG      : LJLL Universite Pierre et Marie Curi, Paris,  FRANCE 
// AUTHOR   : Frederic Hecht
// E-MAIL   : frederic.hecht@ann.jussieu.fr
//

/*
 
 This file is part of Freefem++
 
 Freefem++ is free software; you can redistribute it and/or modify
 it under the terms of the GNU Lesser General Public License as published by
 the Free Software Foundation; either version 2.1 of the License, or
 (at your option) any later version.
 
 Freefem++  is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Lesser General Public License for more details.
 
 You should have received a copy of the GNU Lesser General Public License
 along with Freefem++; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

 Thank to the ARN ()  FF2A3 grant
 ref:ANR-07-CIS7-002-01 
 */

#ifndef FESpacen_HPP_
#define FESpacen_HPP_
/*
 *  FEspacen.hpp
 *  EF23n
 *
 *  Created by Frédéric Hecht on 04/12/07.
 *  Copyright 2007 Universite Pierre et marie Curie  All rights reserved.
 *
 */
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <complex>
#include <map>
using namespace std;
#include "error.hpp"
#include "ufunction.hpp"
#include "Mesh3dn.hpp"
#include "Mesh2dn.hpp"
#include "Mesh1dn.hpp"

#include "RNM.hpp"


#include "QuadratureFormular.hpp"

namespace Fem2D {

template<class Mesh> class GFESpace;
template<class Mesh> class GFElement;
template<class Mesh> class GbaseFElement;
template<class Mesh> class GTypeOfFE;
 
// numbering of derivative 
enum operatortype { 
    op_id=0,
    op_dx=1,op_dy=2,
    op_dxx=3,op_dyy=4,
    op_dyx=5,op_dxy=5,   
    op_dz=6,
    op_dzz=7,     
    op_dzx=8,op_dxz=8, 
    op_dzy=9,op_dyz=9   
}; 

typedef unsigned int What_d;
 
const unsigned int Fop_id= 1<< op_id;

const unsigned int Fop_dx= 1<< op_dx;
const unsigned int Fop_dy= 1<< op_dy;
const unsigned int Fop_dz= 1<< op_dz;

const unsigned int Fop_dxx= 1<< op_dxx;
const unsigned int Fop_dxy= 1<< op_dxy;
const unsigned int Fop_dxz= 1<< op_dxz;

const unsigned int Fop_dyx= 1<< op_dyx;
const unsigned int Fop_dyy= 1<< op_dyy;
const unsigned int Fop_dyz= 1<< op_dyz;

const unsigned int Fop_dzx= 1<< op_dzx;
const unsigned int Fop_dzy= 1<< op_dzy;
const unsigned int Fop_dzz= 1<< op_dzz;

const unsigned int Fop_D0 = Fop_id;
const unsigned int Fop_D1 = Fop_dx | Fop_dy | Fop_dz;
const unsigned int Fop_D2 = Fop_dxx | Fop_dyy | Fop_dzz | Fop_dxy | Fop_dxz | Fop_dyz;
const unsigned int Fop_Dall = Fop_D0| Fop_D1| Fop_D2;

inline What_d  Fwhatd(const operatortype op) { return 1<< op;}


const int last_operatortype=10;
const bool operatortypeValue[last_operatortype]= {true,false,false,false,false,false,false,false,false,false} ; 


inline void initwhatd(bool *whatd,int k)
{
    for (int i=0;i<last_operatortype;i++)
	whatd[i]=false;    
    whatd[k]=true;
}

typedef double R;
typedef KN_<R> RN_;
typedef KN<R>  RN;
typedef KNM_<R> RNM_;
typedef KNMK_<R> RNMK_;
typedef KNMK<R>  RNMK;

template<class Mesh> class GFElement; 
template<class Mesh> class GFESpace; 
template<class Mesh>class GTypeOfFE ;

class dataTypeOfFE {
    

private:
  const int * data; 
  const int * dataalloc; 
    
public:
    const int ndfonVertex; 
    const int ndfonEdge;
    const int ndfonFace;
    const int ndfonVolume;
     const int NbDoF;
    const int NbNode;
    int  N,nb_sub_fem;  
    const int nbsubdivision; // nb of subdivision for plot    
    const bool discontinue;

    int const * const DFOnWhat; 
    int const * const DFOfNode; // nu  du df on Node
    int const * const NodeOfDF; // nu du node du df
    int const * const fromFE;   //  the df  come from df of FE
    int const * const fromDF;   //  the df  come from with FE
    int const * const fromASubFE; //  avril 2006 for CL
    int const * const fromASubDF; //  avril 2006 for CL
    int const * const dim_which_sub_fem; // from atomic sub FE for CL
    const  int * ndfOn() const { return & ndfonVertex;}
    
  dataTypeOfFE(const int *nnitemdim,const int dfon[4],int NN,int nbsubdivisionn,int nb_sub_femm=1,bool discon=true);
    // pour evite un template 
    // nitemdim : nbitem : si d==2   3,3,1,0 , si d=3: 4,6,4,1 , si d==1 = 2,1,0,0 
    // dfon : nombre de df par item 
    // NN 
    dataTypeOfFE(const int nitemdim[4],const KN< dataTypeOfFE const *>  & tef);
    
    virtual ~dataTypeOfFE(){ if(dataalloc) delete [] dataalloc;}
 };

template<class RdHat>
class InterpolationMatrix {
public:
  const int N,np,ncoef; 
  bool invariant;
  int k; 
  KN<RdHat> P; 
  KN<R> coef;
  KN<int> comp;
  KN<int> p;
  KN<int> dofe; 

  template<class Mesh>
  InterpolationMatrix(const GFESpace<Mesh> &Vh);

  template<class Mesh>
  InterpolationMatrix(const GTypeOfFE<Mesh> & tef);

  template<class Mesh>
  void set(const GFElement<Mesh> & FK);


private: // copie interdit ...
  InterpolationMatrix(const InterpolationMatrix &);
  void operator=(const InterpolationMatrix &);
};

template <class RdHat>
ostream & operator<<(ostream& f,const InterpolationMatrix<RdHat> &M)
{ f<< M.N << " "<< M.k << " "<< M.np << " "<< M.ncoef << endl;
  f<< " = " << M.P ;
  f << "coef=" <<M.coef ;
  f << "comp " << M.comp;
  f << "p = " << M.p;
  f << "dofe = " << M.dofe;
  return f;
}


template<class Mesh>
class GTypeOfFE : public  dataTypeOfFE
{ 
public:
  typedef typename Mesh::Element Element;
  typedef  Element E;
  typedef typename Element::RdHat RdHat;
  typedef typename Element::Rd Rd;
  typedef GFElement<Mesh> FElement;

  // generic data build interpolation
  bool  invariantinterpolationMatrix;
  int NbPtforInterpolation;
  int NbcoefforInterpolation;
  KN<RdHat> PtInterpolation; 
  KN<int> pInterpolation,cInterpolation,dofInterpolation; 
  KN<R>  coefInterpolation;
  
    // soit 
    //  $(U_pj)_{{j=0,N-1}; {p=0,nbpoint_Pi_h-1}}$ les valeurs de U au point Phat[i];
    //   p est le numero du point d'integration
    //   j est la composante 
    //  l'interpole est  defini par
    //  Pi_h u = \sum_k u_k w^k , et u_i = \sum_pj alpha_ipj U_pj
    //  la matrice de alpha_ipj est tres creuse
 


  KN<GTypeOfFE<Mesh> *> Sub_ToFE; 
  KN<int> begin_dfcomp, end_dfcomp;
  KN<int> first_comp,last_comp; // for each SubFE 
    
  virtual void init(InterpolationMatrix<RdHat> & M,FElement * pK,int odf,int ocomp,int *pp) const
  {
    assert(pK==0);
    assert(M.np==NbPtforInterpolation);
    assert(M.ncoef==NbcoefforInterpolation);
    M.P=PtInterpolation;
    M.coef=coefInterpolation;
    M.comp=cInterpolation;
    M.p=pInterpolation;
    M.dofe=dofInterpolation;
  }

  
  // the full constructor ..
  GTypeOfFE(const int dfon[4],const int NN,int  nsub,int kPi,int npPi,bool invar,bool discon) 
    : 
    dataTypeOfFE(Element::nitemdim,dfon, NN, nsub,1,discon),
    invariantinterpolationMatrix(invar),
    NbPtforInterpolation(npPi),
    NbcoefforInterpolation(kPi),
    PtInterpolation(NbPtforInterpolation), 
    pInterpolation(NbcoefforInterpolation),
    cInterpolation(NbcoefforInterpolation),
    dofInterpolation(NbcoefforInterpolation),
    coefInterpolation(NbcoefforInterpolation),

    Sub_ToFE(this->nb_sub_fem),
    begin_dfcomp(N,0),
    end_dfcomp(N,this->NbDoF),
    first_comp(this->nb_sub_fem,0),
    last_comp(this->nb_sub_fem,N)

    { 
      Sub_ToFE=this;
      assert(this->dim_which_sub_fem[this->N-1]>=0 && this->dim_which_sub_fem[this->N-1]< this->nb_sub_fem);
    } 

    //  simple constructeur of lagrange type Finite element   1 point par Node for interpolation
  GTypeOfFE(const int dfon[4],const int NN,int  nsub,bool invar,bool discon)
    : 
    dataTypeOfFE(Element::nitemdim,dfon, NN, nsub,1,discon),
    
    invariantinterpolationMatrix(invar),
    NbPtforInterpolation(this->NbDoF),
    NbcoefforInterpolation(this->NbDoF),
    PtInterpolation(NbPtforInterpolation),
    pInterpolation(NbcoefforInterpolation),
    cInterpolation(NbcoefforInterpolation),
    dofInterpolation(NbcoefforInterpolation),
    coefInterpolation(NbcoefforInterpolation),
    
    Sub_ToFE(this->nb_sub_fem),
    begin_dfcomp(N,0),
    end_dfcomp(N,this->NbDoF),
    first_comp(this->nb_sub_fem,0),
    last_comp(this->nb_sub_fem,N)    
  { 
    Sub_ToFE=this;
    assert(this->dim_which_sub_fem[this->N-1]>=0 && this->dim_which_sub_fem[this->N-1]< this->nb_sub_fem);
  } 

  //  simple constructeur pour sum direct d'espace
  GTypeOfFE(const KN<GTypeOfFE const  *>  & tef)
    : 
    dataTypeOfFE(Element::nitemdim,tef),

    invariantinterpolationMatrix(0),
    NbPtforInterpolation(0),
    NbcoefforInterpolation(ncoeftef(tef)),
    PtInterpolation(NbPtforInterpolation),
    pInterpolation(NbcoefforInterpolation),
    cInterpolation(NbcoefforInterpolation),
    dofInterpolation(NbcoefforInterpolation),
    coefInterpolation(NbcoefforInterpolation),


    Sub_ToFE(this->nb_sub_fem),
    begin_dfcomp(this->N,0),
    end_dfcomp(this->N,this->NbDoF),
    first_comp(this->nb_sub_fem,0),
    last_comp(this->nb_sub_fem,N)        
  { 
    Sub_ToFE=this;
    assert(this->dim_which_sub_fem[this->N-1]>=0 && this->dim_which_sub_fem[this->N-1]< this->nb_sub_fem);
  } 
  
  
  virtual R operator()(const GFElement<Mesh>  & K,const  RdHat & PHat,const KN_<R> & u,int componante,int op) const  ;
  virtual void FB(const What_d whatd,const Mesh & Th,const Element & K,const Rd &P, KNMK_<R> & val) const =0;
  virtual void set(const Mesh & Th,const Element & K,InterpolationMatrix<RdHat> & M,int ocoef,int odf,int *nump ) const {}; // no change by deflaut
    // ocoef is the offset of the coef in M 
    // odf is the offset in the df 
    // nump  if exist give the numbering of p  . 0=> no change
  
  static KN<int> tefN(const KN<GTypeOfFE const  *>  & tef) {
    int n=tef.N();
    KN<int> ntef(n);
    for(int i=0;i<n;++i) ntef[i]=tef[i]->N;
    return ntef;}

  static int ncoeftef(const KN<GTypeOfFE const  *>  & tef) {
    int k=0,n=tef.N();
    for(int i=0;i<n;++i)
      k+= tef[i]->NbcoefforInterpolation;
    return k;}


private:
  static int Count(const int *data,int n,int which) 
  {
    int kk=0;
    for (int i=0;i<n;++i)
      if (which == data[i]) ++kk;
    return kk;
  }
  
  static int LastNode(const int *data,int n) 
  {
    int kk=0,i0=2*n;
    for(int i=0;i<n;i++)
      kk=Max(kk,data[i+i0]);
    return kk;}
  
  static int NbNodebyWhat(const int *data,int n,int on) 
  { 
    const int nmax=100;
    int t[nmax];
    for (int i=0;i<nmax;i++)// correct FH 2Oct 2015  nmax
      t[i]=0;
    int k=0,i0=2*n;
    for(int i=0;i<n;i++)
      if ( data[i]==on)
	{ int node= data[i+i0];
	  //  cout << " node " << node << endl;
	  ffassert(node < nmax);
	  if( ! t[node] )
	    t[node] = 1,++k;
	} 
    
    //     cout << " on " << on << " k = " << k << endl;
    return k;
  }      
  
} ; 

  template<class mesh>
  struct DataFE
  {
    static GTypeOfFE<mesh> & P0; 
    static GTypeOfFE<mesh> & P1; 
    static GTypeOfFE<mesh> & P2; 
  };
  

 
  template<class MMesh>
  class GbaseFElement
  {
  public:
    typedef MMesh  Mesh;
    typedef GFESpace<Mesh>  FESpace;
    typedef typename Mesh::Element Element;
    typedef  Element E;
    typedef typename E::Rd Rd;
    typedef typename E::RdHat RdHat;
    typedef Fem2D::GQuadratureFormular<RdHat>  QF;
    
  const GFESpace<Mesh> &Vh;  
  const Element &T;
  const GTypeOfFE<Mesh> * tfe; 
  const int N;
  const int number;  
  GbaseFElement(const GFESpace<Mesh> &aVh, int k) ;
  GbaseFElement(const   GbaseFElement & K,  const GTypeOfFE<Mesh> & atfe) ;
  R EdgeOrientation(int i) const {return T.EdgeOrientation(i);}
  
};

template<class Mesh>
class GFElement : public GbaseFElement<Mesh> 
{
public:
    
  typedef typename Mesh::Element Element;
  typedef  Element E;
  typedef typename E::Rd Rd;
  typedef typename E::RdHat RdHat;
  typedef Fem2D::GQuadratureFormular<RdHat>  QF;
  
  
  friend class GFESpace<Mesh>;
  const int *p;
  const int nb;
  
  GFElement(const GFESpace<Mesh> * VVh,int k) ;
  
  int NbOfNodes()const {return nb;}
  int  operator[](int i) const ;//{ return  p ? p+i :  ((&T[i])-Vh.Th.vertices);}  N\u00c9 du noeud 
  int  NbDoF(int i) const ;  // number of DF 
  int  operator()(int i,int df) const ;// { N\u00c9 du DoF du noeud i de df local df 
  int  operator()(int df) const { return operator()(NodeOfDF(df),DFOfNode(df));}
  // void Draw(const KN_<R> & U, const  KN_<R> & VIso,int j=0) const ;  
  //void Drawfill(const KN_<R> & U, const  KN_<R> & VIso,int j=0,double rapz=1) const ;  
  //void Draw(const RN_& U,const RN_& V, const  KN_<R> & Viso,R coef,int i0,int i1) const;
  //Rd   MinMax(const RN_& U,const RN_& V,int i0,int i1) const  ;
  //Rd   MinMax(const RN_& U,int i0) const  ;
  void BF(const Rd & P,RNMK_ & val) const;// { tfe->FB(Vh.Th,T,P,val);}
  void BF(const What_d whatd, const Rd & P,RNMK_ & val) const;// { tfe->FB(Vh.Th,T,P,val);}
  void set(InterpolationMatrix<RdHat> &M) const {this->tfe->set(this->Vh.Th,this->T,M,0,0,0);}
  // add april 08   begin end number for df of the componante ic 
  int dfcbegin(int ic) const { return this->tfe->begin_dfcomp[ic];}
  int dfcend(int ic) const { return this->tfe->end_dfcomp[ic];}
  // the fist and last composant of a sub finite element
  //  int firstcomp(int isfe) const {return this->tfe->first_comp[isfe];}
  // int lastcomp(int isfe)  const {return this->tfe->last_comp[isfe];}
  int subFE(int df)       const {return this->tfe->fromASubFE[df] ;}

  template<class RR>
  KN_<RR> & Pi_h(KNM_<RR> vpt,KN_<RR> & vdf,InterpolationMatrix<RdHat> &M)    const 
  { 
    // compute  the interpolation  
    // in : vpt  value of componant j at point p : vpt(p,j) 
    // out: vdf  value du the degre of freedom
    vdf=RR();
    
    if(M.k != this->number) 
      M.set( (const GFElement &) *this); 
    
    for (int k=0;k<M.ncoef;++k)
      vdf[M.dofe[k]] += M.coef[k]*vpt(M.p[k],M.comp[k]);            	
    
    return  vdf;     
  }
  
  
  int NbDoF() const { return this->tfe->NbDoF;}
  int DFOnWhat(int i) const { return this->tfe->DFOnWhat[i];}
  int FromDF(int i) const { return this->tfe->fromDF[i];}
  int FromFE(int i) const { return this->tfe->fromFE[i];}
  
  // df is the df in element 
  int NodeOfDF(int df) const { return this->tfe->NodeOfDF[df];} // a node
  int FromASubFE(int i) const { return this->tfe->fromASubFE[i];}
  int FromASubDF(int i) const { return this->tfe->fromASubDF[i];}
  int DFOfNode(int df) const { return this->tfe->DFOfNode[df];} // the df number on the node 
  
  R operator()(const Rd & PHat,const KN_<R> & u,int i,int op)  const ;
  complex<R> operator()(const RdHat & PHat,const KN_<complex<R> > & u,int i,int op)  const ;
  
  // GFElementGlobalToLocal operator()(const KN_<R> & u ) const { return GFElementGlobalToLocal(*this,u);}
private:
  int nbsubdivision() const { return this->tfe->nbsubdivision;} // for draw 
};


template<class MMesh> 
    class BuildTFE { protected:
	GTypeOfFE<MMesh> const * const tfe;
    };

template<class MMesh>
struct GFESpacePtrTFE {
    GTypeOfFE<MMesh> const * const ptrTFE;
    GFESpacePtrTFE(GTypeOfFE<MMesh> const * const pptrTFE=0) : ptrTFE(pptrTFE) {}
    virtual  ~GFESpacePtrTFE() { if(ptrTFE) delete ptrTFE;}
};
    
template<class MMesh> 
class GFESpace :  public RefCounter,protected GFESpacePtrTFE<MMesh>,  public DataFENodeDF, public UniqueffId  {
public:
  typedef MMesh Mesh;
  typedef GFElement<Mesh> FElement;
  typedef typename Mesh::Element  Element;
  typedef typename Mesh::BorderElement  BorderElement;
  typedef typename Mesh::Rd  Rd;
  typedef GTypeOfFE<Mesh> TypeOfFE;
  typedef GQuadratureFormular<typename Element::RdHat> QFElement;
  typedef GQuadratureFormular<typename BorderElement::RdHat>  QFBorderElement;

  const Mesh &Th;

  KN<const GTypeOfFE<Mesh> *>  TFE; 
private:
  
public:
  CountPointer<const Mesh> cmesh;
  const int N; // dim espace d'arrive
  const int Nproduit; // 1 if non constant Max number df par node. else Max number df par node.. 
  const int nb_sub_fem; // nb de sous elements finis tensorise (independe au niveau des composantes)
  int const* const dim_which_sub_fem;// donne les dependant des composantes liee a un meme sous element fini
  const int   maxNbPtforInterpolation;  
  const int   maxNbcoefforInterpolation;  

  //   exemple si N=5,  
  // dim_which_sub_fem[0]=0;
  // dim_which_sub_fem[1] =1;
  // dim_which_sub_fem[2]= 2
  // dim_which_sub_fem[3] =2 
  // dim_which_sub_fem[4] =3
  //  =>
  //  le  sous  elements fini 0 est lie a la composante 0 
  //  le  sous  elements fini 1 est lie a la composante 1 
  //  le  sous  elements fini 2 est lie aux composantes 2,3 
  //  le  sous  elements fini 3 est lie a la composante 4 
  //  donc pour les CL. les composante 2 et 3 sont lie car elle sont utiliser pour definir un
  //  meme degre de libert\u00e9.
  
  //  par defaut P1                
  
    GFESpace(const Mesh & TTh,const GTypeOfFE<Mesh> & tfe=DataFE<Mesh>::P1,int nbequibe=0,int *equibe=0)
    :
    GFESpacePtrTFE<MMesh>(0),
    DataFENodeDF(TTh.BuildDFNumbering(tfe.ndfonVertex,tfe.ndfonEdge,tfe.ndfonFace,tfe.ndfonVolume,nbequibe,equibe)),
    Th(TTh),
    TFE(1,0,&tfe), 
    cmesh(TTh),
    N(TFE[0]->N),
    Nproduit(FirstDfOfNodeData ? 1 :MaxNbDFPerNode ),
    nb_sub_fem(TFE[0]->nb_sub_fem),
    dim_which_sub_fem(TFE[0]->dim_which_sub_fem),
    maxNbPtforInterpolation(TFE[0]->NbPtforInterpolation),
    maxNbcoefforInterpolation(TFE[0]->NbcoefforInterpolation)
    
    {
	if(verbosity) cout << "  -- FESpace: Nb of Nodes " << NbOfNodes 
	    << " Nb of DoF " << NbOfDF << endl;
    }
    
  GFESpace(const GFESpace & Vh,int kk,int nbequibe=0,int *equibe=0);
  GFESpace(const GFESpace ** Vh,int kk,int nbequibe=0,int *equibe=0);
    
  int FirstDFOfNode(int i) const {return FirstDfOfNodeData ? FirstDfOfNodeData[i] : i*Nproduit;}
  int LastDFOfNode(int i)  const {return FirstDfOfNodeData ? FirstDfOfNodeData[i+1] : (i+1)*Nproduit;}
  int NbDFOfNode(int i)  const {return FirstDfOfNodeData ? FirstDfOfNodeData[i+1]-FirstDfOfNodeData[i] : Nproduit;}
  int MaximalNbOfNodes() const {return MaxNbNodePerElement;};
  int MaximalNbOfDF() const {return MaxNbDFPerElement;};
    const int * PtrFirstNodeOfElement(int k) const {
      return NodesOfElement 
	  ? NodesOfElement + (FirstNodeOfElement ? FirstNodeOfElement[k] : k*MaxNbNodePerElement)                 
	  : 0;}   
  
  int SizeToStoreAllNodeofElement() const {  
      return  FirstNodeOfElement 
	  ?  FirstNodeOfElement[NbOfElements] 
	  : MaxNbNodePerElement*NbOfElements;}   
    
  int NbOfNodesInElement(int k)   const {             
      return FirstNodeOfElement 
	  ?  FirstNodeOfElement[k+1] - FirstNodeOfElement[k] 
	  : MaxNbNodePerElement ;}
  int  esize() const { return  MaxNbDFPerElement*N*last_operatortype;}   // size to store all value of B. function        

  
  ~GFESpace()
  {
  }
  // GFESpace(Mesh & TTh,int NbDfOnSommet,int NbDfOnEdge,int NbDfOnElement,int NN=1); 
  int  renum();
  
  FElement operator[](int k) const { return FElement(this,k);} 
  FElement operator[](const Element & K) const { return FElement(this,Th(K));} 
  int  operator()(int k)const {return NbOfNodesInElement(k);}
  int  operator()(int k,int i) const { //  the node i of element k
      return NodesOfElement ?  *(PtrFirstNodeOfElement(k) + i)  : Th(k,i)  ;}
  
    /*
      void Draw(const KN_<R>& U,const KN_<R>& Viso,int j=0,float *colors=0,int nbcolors=0,bool hsv=true,bool drawborder=true) const ; // Draw iso line
    void Drawfill(const KN_<R>& U,const KN_<R>& Viso,int j=0,double rapz=1,float *colors=0,int nbcolors=0,bool hsv=true,bool drawborder=true) const ; // Draw iso line
    
    void Draw(const KN_<R>& U,const KN_<R> & Viso, R coef,int j0=0,int j1=1,float *colors=0,int nbcolors=0,bool hsv=true,bool drawborder=true) const  ; // Arrow
    void Draw(const KN_<R>& U,const KN_<R>& V,const KN_<R> & Viso, R coef,int iu=0,int iv=0,float *colors=0,int nbcolors=0,bool hsv=true,bool drawborder=true) const  ; // Arrow
    Rd MinMax(const KN_<R>& U,const KN_<R>& V,int j0,int j1,bool bb=true) const ;
    Rd MinMax(const KN_<R>& U,int j0, bool bb=true) const ;
    // void destroy() {RefCounter::destroy();}
    */
    bool isFEMesh() const { return ! NodesOfElement  && ( N==1) ;} // to make optim
  template <class R>  
  KN<R>  newSaveDraw(const KN_<R> & U,int composante,int & lg,KN<Rd> &Psub,KN<int> &Ksub,int op_U=0) const  ; 


private: // for gibbs  
  int gibbsv (long* ptvoi,long* vois,long* lvois,long* w,long* v);
};

template<class Mesh>
inline GbaseFElement<Mesh>::GbaseFElement(  const GFESpace<Mesh> &aVh, int k) 
  : Vh(aVh),T(Vh.Th[k]),tfe(aVh.TFE[k]),N(aVh.N),number(k){}

template<class Mesh>    
inline GbaseFElement<Mesh>::GbaseFElement(const   GbaseFElement & K,  const GTypeOfFE<Mesh> & atfe) 
  : Vh(K.Vh),T(K.T),tfe(&atfe),N(Vh.N),number(K.number){}

template<class Mesh>
GFElement<Mesh>::GFElement(const GFESpace<Mesh> * VVh,int k) 
  : GbaseFElement<Mesh>(*VVh,k) ,
    p(this->Vh.PtrFirstNodeOfElement(k)),
    nb(this->Vh.NbOfNodesInElement(k))    
{} 

template<class Mesh>
inline   int  GFElement<Mesh>::operator[](int i) const {
  return  p ? p[i] :  ((&this->T[i])-this->Vh.Th.vertices);}  

template<class Mesh>
inline   int  GFElement<Mesh>::operator()(int i,int df) const {
  return  this->Vh.FirstDFOfNode(p ? p[i] :  ((&this->T[i])-this->Vh.Th.vertices)) + df;}  

template<class Mesh>
inline   int  GFElement<Mesh>::NbDoF(int i) const {
  int node =p ? p[i] :  ((&this->T[i])-this->Vh.Th.vertices);
  return  this->Vh.LastDFOfNode(node)-this->Vh.FirstDFOfNode(node);}  

template<class Mesh>
inline void GFElement<Mesh>::BF(const Rd & P,RNMK_ & val) const {
  this->tfe->FB(Fop_D0|Fop_D1,this->Vh.Th,this->T,P,val);}  

 
template<class Mesh>
    inline void GFElement<Mesh>::BF(const What_d whatd,const Rd & P,RNMK_ & val) const { this->tfe->FB(whatd,this->Vh.Th,this->T,P,val);}
    
//template<class Mesh>
 //   inline void GFElement<Mesh>::set(InterpolationMatrix<typename Mesh::Element::RdHat> &M) const { this->tfe->set(this->Vh.Th,this->T,&M);}

template<class Mesh>
inline   R GFElement<Mesh>::operator()(const Rd & PHat,
                                const KN_<R> & u,int i,int op)  const
{
    return (*this->tfe)(*this,PHat,u,i,op);
}

template<class Mesh>
inline  complex<R> GFElement<Mesh>::operator()(const RdHat & PHat,const KN_<complex<R> > & u,int i,int op)  const 
{
    complex<double> * pu=u; // pointeur du tableau
    double *pr = static_cast<double*>(static_cast<void*>(pu));
    
    const KN_<R>  ur(pr,u.n,u.step*2);
    const KN_<R>  ui(pr+1,u.n,u.step*2);
    
    return complex<R>((*this->tfe)(*this,PHat,ur,i,op),(*this->tfe)(*this,PHat,ui,i,op));
}



template<class Mesh>
R GTypeOfFE<Mesh>::operator()(const GFElement<Mesh> & K,const  RdHat & PHat,const KN_<R> & u,int componante,int op) const 
{
    R v[10000],vf[500];
    ffassert(N*last_operatortype*NbDoF<=10000 && NbDoF <500 );
    KNMK_<R> fb(v,NbDoF,N,last_operatortype); //  the value for basic fonction
    KN_<R> fk(vf,NbDoF);
    for (int i=0;i<NbDoF;i++) // get the local value
	fk[i] = u[K(i)];
    //  get value of basic function
    FB( 1 << op ,K.Vh.Th,K.T,PHat,fb);  
    R r = (fb('.',componante,op),fk);  
    return r;
}

int nbdf_d(const int ndfitem[4],const  int nd[4]);
int nbnode_d(const int ndfitem[4],const  int nd[4]);
int *builddata_d(const int ndfitem[4],const int nd[4]);


    
    
template<class Mesh>
class GTypeOfFESum:  public  GTypeOfFE<Mesh> {
    
public:
  typedef GFElement<Mesh> FElement;
  typedef typename Mesh::Element  Element;
  typedef typename Element::RdHat  RdHat;
  typedef typename Mesh::Rd  Rd;
  const int k; 
  KN<const  GTypeOfFE<Mesh> *> teb;
  KN<int> NN,DF,comp,numPtInterpolation;
 
  GTypeOfFESum(const KN< GTypeOfFE<Mesh> const *> & t);
  GTypeOfFESum(const GFESpace<Mesh> **,int kk);
  GTypeOfFESum(const GFESpace<Mesh> &,int kk);
    
  void Build();  // the true constructor 
    
  void init(InterpolationMatrix<RdHat> & M,FElement * pK=0,int odf=0,int ocomp=0,int *pp=0) const;
  void set(const Mesh & Th,const Element & K,InterpolationMatrix<RdHat> & M,int ocoef,int odf,int *nump ) const; // no change by deflaut 
  void FB(const What_d whatd,const Mesh & Th,const Element & K,const Rd &P, KNMK_<R> & val) const ;
  ~GTypeOfFESum(){}
} ;


template<class Mesh>
void GTypeOfFESum<Mesh>::FB(const What_d whatd,const Mesh & Th,const Element & K,const Rd &P, KNMK_<R> & val) const  
{
    val=0.0;
    SubArray t(val.K());
    for (int i=0;i<k;i++)
      {
	  int j=comp[i];
	  int ni=NN[i];
	  int di=DF[i];  
	  int i1=i+1; 
	  int nii=NN[i1];
	  int dii=DF[i1];
	  assert(ni<nii && di < dii);
	  RNMK_ v(val(SubArray(dii-di,di),SubArray(nii-ni,ni),t));     
	  if (j<=i)
	      teb[i]->FB(whatd,Th,K,P,v);       
	  else
	      v=val(SubArray(DF[j+1]-DF[j],DF[j]),SubArray(NN[j+1]-NN[j],NN[j]),t);     
      }
} 



template<class RdHat>
template<class Mesh>
InterpolationMatrix<RdHat>::InterpolationMatrix(const GFESpace<Mesh> &Vh)
  :
  N(Vh.N),np(Vh.maxNbPtforInterpolation),ncoef(Vh.maxNbcoefforInterpolation),
  invariant(Vh.TFE.constant() ? Vh.TFE[0]->invariantinterpolationMatrix: false),
  k(-1),
  P(np),
  comp(ncoef),
  p(ncoef),
  dofe(ncoef)
{ 
  Vh.TFE[0]->GTypeOfFE<Mesh>::init(*this,0,0,0,0);    
}

template<class RdHat>
template<class Mesh>
InterpolationMatrix<RdHat>::InterpolationMatrix(const GTypeOfFE<Mesh> & tef)
  :
  N(tef.N),np(tef.NbPtforInterpolation),ncoef(tef.NbcoefforInterpolation),
  invariant(tef.invariantinterpolationMatrix),
  k(-1),
  P(np),
  comp(ncoef),
  p(ncoef),
  dofe(ncoef)  
{
  //  virtual void init(InterpolationMatrix<RdHat> & M,FElement * pK=0,int odf=0,int ocomp=0,int *pp=0) const
  tef.GTypeOfFE<Mesh>::init(*this,0,0,0,0);
}

template<class RdHat> template<class Mesh>
void InterpolationMatrix<RdHat>::set(const GFElement<Mesh> & FK) 
{
  if(k==FK.number) return;
  k=FK.number;
  if(invariant) return;
    FK.set(*this);
  //assert(invariant);
  // a faire ...
}

typedef  GTypeOfFE<Mesh3> TypeOfFE3;
typedef  GTypeOfFE<Mesh3> TypeOfFE3;
typedef  GFESpace<Mesh3> FESpace3;
typedef  GFESpace<Mesh2> FESpace2;
typedef  GFElement<Mesh3> FElement3;
typedef  GFElement<Mesh2> FElement2;
typedef  GFElement<Mesh3> FElement3;
typedef  GbaseFElement<Mesh2> baseFElement2;
typedef  GbaseFElement<Mesh3> baseFElement3;

}


#endif