This file is indexed.

/usr/include/freefem++/MatriceCreuse.hpp is in libfreefem++-dev 3.47+dfsg1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
#ifndef MatriceCreuse_h_
#define MatriceCreuse_h_

template<class T>
 T Square(const T & r){return r*r;}

 
#ifdef HAVE_LIBUMFPACK_XXXXXXXXXXXXX
extern "C" {
#ifdef HAVE_UMFPACK_H
#include <umfpack.h>
#else
#ifdef HAVE_UMFPACK_UMFPACK_H
#include <umfpack/umfpack.h>
#else
#ifdef HAVE_BIG_UMFPACK_UMFPACK_H
#include <UMFPACK/umfpack.h>
#else
#ifdef HAVE_UFSPARSE_UMFPACK_H
#include <ufsparse/umfpack.h>
#else
#ifdef HAVE_SUITESPARSE_UMFPACK_H
#include <suitesparse/umfpack.h>
#else

  // Defaults to a local version of the UMFPACK headers
#include "../../download/include/umfpack.h"

#endif // HAVE_SUITESPARSE_UMFPACK_H
#endif // HAVE_UFSPARSE_UMFPACK_H
#endif // HAVE_BIG_UMFPACK_UMFPACK_H
#endif // HAVE_UMFPACK_UMFPACK_H
#endif // HAVE_UMFPACK_H
}
#endif

#include "RNM.hpp"
#include "fem.hpp"
#include "FESpace.hpp" 
#include "DOperator.hpp"
#include "QuadratureFormular.hpp" 

using  Fem2D::Mesh;
using  Fem2D::FESpace;
using Fem2D::FElement;
using Fem2D::baseFElement;
using Fem2D::FMortar;
using Fem2D::TypeOfMortar;
using Fem2D::QuadratureFormular;
using Fem2D::QuadratureFormular1d;
using Fem2D::QuadratureFormular_T_5;
using Fem2D::QF_GaussLegendre3;
const double  EPSILON=1e-20;
using Fem2D::onWhatIsEdge;

//#define APROGRAMMER(a) {cerr << "A PROGRAMMER "  #a << endl; exit (1) ;}
#define ERREUR(a,b) {cerr << "ERREUR " #a<< b <<endl; throw(ErrorExec("FATAL ERREUR dans " __FILE__  "\n" #a  " line: ",__LINE__)) ;}

template <class R> class MatriceCreuse; 
template <class R> class MatriceElementaire; 
template <class R,class FESpace> class MatriceElementaireSymetrique;
template <class R,class FESpace> class MatriceElementairePleine;
template <class R> class MatriceMorse;
template <class R> class MatriceProdTensoriel;

//template <class R> R Square(R x){ return x*x;}

template <class T> T* docpyornot(bool nocpy,T* p,int n)
{ 
  T * r=p;
   if( !nocpy) { // do copy 
      r= new T[n]; ffassert(r);
      if(p) 
       for(int i=0;i<n;i++) 
        r[i]=p[i];
      }
    else if( r==0) // always do allocation  July 2009 for mpi matrice  
      { r= new T[n]; ffassert(r);}
   return r;
 }
 template <class T,class TT> T* docpy(TT* p,int n)
{ 
   T * r=0;
   if(p && n) { // do copy 
      r= new T[n]; ffassert(r);
      for(int i=0;i<n;i++) 
        r[i]=T(p[i]); // pour cadna ???? FH 
      }
   return r;
 }



template <class R> 
class MatriceElementaire {

public:
  enum TypeOfMatriceElementaire {Full=1,Symmetric=2};


       
  int lga;  // size of array a    
  R* a;          // array  coef --
  int *ni,*nj;   //  list of df   
  // to build matrice on face or edge -----

  
  int n,m;       // n,m number of df
  const TypeOfMatriceElementaire mtype;
  KN<double> data; // to store value of basic function 

  const bool onFace ; //  true if do int on face or edge with jump (VF or GD : Galerkin Discontinus)
  // in with case  add ... 
  const int lnki,lnkj; // size of the 4 next array
  int *nik,*nikk;  //  number of df in element   k,kk for VF and GD methode 
  int *njk,*njkk;  //  number of df in element   k,kk  for VF and GD methode
  const int optim;

  MatriceElementaire(int datasize,int llga
                     ,int *nnj,int * nni,TypeOfMatriceElementaire t=Full,int ooptim=1)
    
    :   lga(llga),a(new R[lga]),
        ni(nni),nj(nnj),n(0),m(0),mtype(t),data(datasize),
        onFace(false),lnki(0),lnkj(0),nik(0),nikk(0),njk(0),njkk(0),optim(ooptim)
        {}
       

 //  for discontinous Galerkine method
  MatriceElementaire(int datasize,int llga,int *nni,
                     int lk,
                     TypeOfMatriceElementaire t=Symmetric, int ooptim=1
                     ) 
    :
    lga(llga),a(new R[lga]),
    ni(nni),nj(nni),n(0),m(0),mtype(t),data(datasize*(lk?2:1)) ,
       onFace(lk!=0),
       lnki(lk),lnkj(lk),
       nik(lk? new int[lk*2]:0),
       nikk(nik+lk),
       njk(nik),
       njkk(nik+lk),
        optim(ooptim)
       { ffassert(lk>=0);}

    //  for discontinous Galerkine method
    MatriceElementaire(int datasize,int llga,int *nni,int lki,int *nnj,int lkj,
                       TypeOfMatriceElementaire t=Full,int ooptim=1
                       )
    :
    lga(llga),a(new R[lga]),
    ni(nni),nj(nnj),n(0),m(0),mtype(t),data(datasize*(lki+lkj?2:1)) ,
    onFace(lki+lkj),
    lnki(lki),lnkj(lkj),
    nik(lki? new int[lki*2]:0),
    nikk(nik+lki),
    njk(lkj? new int[lkj*2]:0),
    njkk(njk+lkj),
    optim(ooptim)
    {  ffassert(lki>=0);}// non teste ??? .... F. hecht ...

  virtual ~MatriceElementaire() {
    if(ni != nj) 
      delete [] nj;
         
    delete [] ni;
    delete [] a;
    if ( nik) delete[] nik;
     }
      
  virtual R & operator() (int i,int j) =0;
    virtual void call(int ,int ie,int label,void * data,void *Q=0) =0;  //
  const LinearComb<pair<MGauche,MDroit>,C_F0> * bilinearform;
  
  MatriceElementaire & operator()(int k,int ie,int label,void * s=0,void *B=0) {
    call(k,ie,label,s,B);
    return *this;}
};

template <class FES> 
class MatDataFES { 
public:
  typedef FES FESpace;
  typedef typename FESpace::FElement FElement;

  typedef typename  FESpace::QFElement QFElement; 
  typedef typename  FESpace::QFBorderElement QFBorderElement; 
  CountPointer<const FESpace> cUh,cVh;
  const FESpace &Uh;
  const FESpace &Vh;
  const QFElement & FIT;
  const QFBorderElement & FIE;
  MatDataFES(const FESpace & UUh,const QFElement & fit, const QFBorderElement & fie)
    :Uh(UUh),Vh(UUh),FIT(fit),FIE(fie) {}
  MatDataFES(const FESpace & UUh,const FESpace & VVh,const QFElement & fit, const QFBorderElement & fie)
    :Uh(UUh),Vh(VVh),FIT(fit),FIE(fie) {}
    

};

template <class R,class FES> 
class MatriceElementaireFES :   public MatDataFES<FES> ,   public MatriceElementaire<R> 
{  
public:
  typedef MatriceElementaire<R> MElm ;
  using MElm::Full;
  using MElm::Symmetric;

  typedef typename MElm::TypeOfMatriceElementaire TypeOfMatriceElementaire;
  typedef FES FESpace;

  typedef typename  FESpace::FElement FElement; 
  typedef typename  FESpace::QFElement QFElement; 
  typedef typename  FESpace::QFBorderElement QFBorderElement; 

  MatriceElementaireFES(const FESpace & UUh,const FESpace & VVh,int llga
			,int *nnj,int * nni,TypeOfMatriceElementaire t=Full,
			const QFElement & fit=*QFElement::Default,
			const QFBorderElement & fie =*QFBorderElement::Default,int optim=1)
                     
    :
    MatDataFES<FES>(UUh,VVh,fit,fie),
    MatriceElementaire<R>(UUh.esize()+VVh.esize(),llga,nnj,nni,t,optim)
  {}
       
  MatriceElementaireFES(const FESpace & UUh,int llga,int *nni,
			TypeOfMatriceElementaire t=Symmetric,
			const QFElement & fit=*QFElement::Default,
			const QFBorderElement & fie =*QFBorderElement::Default,int optim=1)
    :
    MatDataFES<FES>(UUh,UUh,fit,fie),
    MatriceElementaire<R>(UUh.esize(),llga,nni,nni,t,optim)
  {}

  //  for discontinous Galerkine method
  MatriceElementaireFES(const FESpace & UUh,int llga,int *nni,
			int lk,
			TypeOfMatriceElementaire t=Symmetric,
			const QFElement & fit=*QFElement::Default,
			const QFBorderElement & fie =*QFBorderElement::Default,int optim=1)
    :
    MatDataFES<FES>(UUh,UUh,fit,fie),
    MatriceElementaire<R>(UUh.esize(),llga,nni,lk,t,optim)
  {}
    
    MatriceElementaireFES(const FESpace & UUh,const FESpace & VVh,int llga
                          ,int *nnj,int lkj,int * nni,int lki,TypeOfMatriceElementaire t=Full,
                          const QFElement & fit=*QFElement::Default,
                          const QFBorderElement & fie =*QFBorderElement::Default,int optim=1)
    
    :
    MatDataFES<FES>(UUh,VVh,fit,fie),
    MatriceElementaire<R>(UUh.esize()+VVh.esize(),llga,nnj,lkj,nni,lki,t,optim)
    {}
    
  ~MatriceElementaireFES() {}
  const LinearComb<pair<MGauche,MDroit>,C_F0> * bilinearform;
  
  MatriceElementaireFES & operator()(int k,int ie,int label,void * s=0,void *Q=0) {
    this->call(k,ie,label,s,Q);
    return *this;}
};

template <class R,class FES=FESpace> 
class MatriceElementairePleine:public MatriceElementaireFES<R,FES> {

  /* --- stockage --
     //  n = 4 m = 5
     //  0  1  2  3  4
     //  5  6  7  8  9
     // 10 11 12 13 14
     // 15 16 17 18 19
     ------------------*/
public:
  typedef FES FESpace;
  typedef typename  FESpace::Mesh Mesh;
  typedef typename  FESpace::QFElement QFElement;
  typedef typename  FESpace::QFBorderElement QFBorderElement;
  typedef typename  FESpace::FElement FElement;
  typedef typename  FESpace::Mesh::Rd Rd;
    

  R & operator() (int i,int j) {return this->a[i*this->m+j];}
  // MatPleineElementFunc element;
  void  (* element)(MatriceElementairePleine &,const FElement &,const FElement &, double*,int ie,int label,void *,Rd *) ;
  void  (* faceelement)(MatriceElementairePleine &,const FElement &,const FElement &,const FElement &,const FElement &, double*,int ie,int iee, int label,void *,Rd *) ;
    void call(int k,int ie,int label,void *,void *B);
  
  MatriceElementairePleine & operator()(int k,int ie,int label,void * stack=0,Rd *Q=0)
  {call(k,ie,label,stack,Q);return *this;}
  MatriceElementairePleine(const FESpace & VVh,
                           const QFElement & fit=*QFElement::Default,
                           const QFBorderElement & fie =*QFBorderElement::Default,int optim=1)
    :MatriceElementaireFES<R,FES>(VVh,
			Square(VVh.MaximalNbOfDF()),
			new int[VVh.MaximalNbOfDF()],this->Full,fit,fie,optim),
    element(0),faceelement(0) {}
 
   //  matrice for VF or Galerkin Discontinus
   MatriceElementairePleine(const FESpace & VVh,bool VF,
                           const QFElement & fit=*QFElement::Default,
                           const QFBorderElement & fie =*QFBorderElement::Default,int optim=1)
     :MatriceElementaireFES<R,FES>(VVh,
			Square(VVh.MaximalNbOfDF()*2),
			new int[VVh.MaximalNbOfDF()*2],
			VF?VVh.MaximalNbOfDF()*2:0,
                                   this->Full,fit,fie,optim),
    element(0),faceelement(0) {}

  MatriceElementairePleine(const FESpace & UUh,const FESpace & VVh,
                               const QFElement & fit=*QFElement::Default,
                               const QFBorderElement & fie =*QFBorderElement::Default,int optim=1)
    :MatriceElementaireFES<R,FES>(UUh,VVh,
				  UUh.MaximalNbOfDF()*VVh.MaximalNbOfDF(),
				  new int[UUh.MaximalNbOfDF()],
				  new int[VVh.MaximalNbOfDF()],this->Full,fit,fie,optim),
     element(0),faceelement(0) {}

    MatriceElementairePleine(const FESpace & UUh,const FESpace & VVh,bool VF,
                             const QFElement & fit=*QFElement::Default,
                             const QFBorderElement & fie =*QFBorderElement::Default,int optim=1)
    :MatriceElementaireFES<R,FES>(UUh,VVh,
                                  UUh.MaximalNbOfDF()*VVh.MaximalNbOfDF()*4,
                                  new int[UUh.MaximalNbOfDF()*2],VF?UUh.MaximalNbOfDF()*2:0,
                                  new int[VVh.MaximalNbOfDF()*2],VF?VVh.MaximalNbOfDF()*2:0,this->Full,fit,fie,optim),
    element(0),faceelement(0) {}

}; 

template <class R,class FES=FESpace> 
class MatriceElementaireSymetrique:public MatriceElementaireFES<R,FES> {



  // --- stockage --
  //   0
  //   1 2
  //   3 4 5
  //   6 7 8 9
  //  10 . . . .
  //

public:
  typedef FES FESpace;
  typedef typename  FESpace::Mesh Mesh;
  typedef typename  FESpace::QFElement QFElement;
  typedef typename  FESpace::QFBorderElement QFBorderElement;
  typedef typename  FESpace::FElement FElement; 
  typedef typename  FESpace::Mesh::Rd Rd;
  R & operator()(int i,int j) 
  {return j < i ? this->a[(i*(i+1))/2 + j] : this->a[(j*(j+1))/2 + i] ;}
  void (* element)(MatriceElementaireSymetrique &,const FElement &, double*,int ie,int label,void *,Rd *) ;
  void (* mortar)(MatriceElementaireSymetrique &,const FMortar &,void *) ;
  void call(int k,int ie,int label,void * stack,void *B);
  MatriceElementaireSymetrique(const FESpace & VVh,
                               const QFElement & fit=*QFElement::Default,
                               const QFBorderElement & fie =*QFBorderElement::Default,int optim=1)
    :MatriceElementaireFES<R,FES>(
           VVh,
	   int(VVh.MaximalNbOfDF()*(VVh.MaximalNbOfDF()+1)/2),
	   new int[VVh.MaximalNbOfDF()],this->Symmetric,
       fit,fie,optim),
       element(0),mortar(0) {}
  MatriceElementaireSymetrique & operator()(int k,int ie,int label,void * stack=0,Rd *B=0)
  {this->call(k,ie,label,stack,B);return *this;};
};


template <class R>  class MatriceProfile;

//  classe modele pour matrice creuse
//  ---------------------------------
template <class R> 
class MatriceCreuse : public RefCounter,public VirtualMatrice<R> {
public:
  MatriceCreuse(int NbOfDF,int mm,int ddummy)
         : VirtualMatrice<R>(NbOfDF,mm),n(NbOfDF),m(mm),dummy(ddummy){}
  MatriceCreuse(int NbOfDF)
         : VirtualMatrice<R>(NbOfDF),n(NbOfDF),m(NbOfDF),dummy(1){}
  int n,m,dummy;
  virtual int size() const =0;

  virtual MatriceCreuse & operator +=(MatriceElementaire<R> & )=0;
  virtual void operator=(const R & v) =0; // Mise a zero 
  KN_<R> & MatMul(KN_<R> &ax,const KN_<R> &x) const { 
    ax= R();
    addMatMul(x,ax);
    return ax;}
  virtual ostream& dump (ostream&)  const =0;
  virtual void Solve(KN_<R> & x,const KN_<R> & b) const =0;
  virtual ~MatriceCreuse(){}
  virtual R & diag(int i)=0;
  virtual void SetBC(int i,double tgv)=0; 
  virtual R & operator()(int i,int j)=0;
  virtual R * pij(int i,int j) const =0; // Add FH 
  virtual  void  resize(int n,int m)  {AFAIRE("MatriceCreuse::resize");}  // a faire dans les classe derive ... // add march 2009  FH 
  virtual MatriceMorse<R> *toMatriceMorse(bool transpose=false,bool copy=false) const {return 0;} // not 
  virtual bool addMatTo(R coef,std::map< pair<int,int>, R> &mij,bool trans=false,int ii00=0,int jj00=0,bool cnj=false,double threshold=0.,const bool keepSym=false)=0;
  // Add FH april 2005
  virtual R pscal(const KN_<R> & x,const KN_<R> & y) =0 ; // produit scalaire  
  virtual double psor(KN_<R> & x,const  KN_<R> & gmin,const  KN_<R> & gmax , double omega) =0;
  virtual void setdiag(const KN_<R> & x)=0 ;
  virtual void getdiag( KN_<R> & x) const =0 ;
  // end add
  virtual int NbCoef() const {return 0;};
  virtual void setcoef(const KN_<R> & x)=0 ;
  virtual void getcoef( KN_<R> & x) const =0 ;
  // Add FH oct 2005
   bool ChecknbLine(int nn) const { return n==nn;}  
   bool ChecknbColumn(int mm) const { return m==mm;} 

  // end ADD
  virtual bool sym() const {return false;}

};

template <class R> 
inline ostream& operator <<(ostream& f,const MatriceCreuse<R> & m) 
    {return m.dump(f);}

template <class R> 
KN_<R> & operator/=(KN_<R> & x ,const MatriceProfile<R> & a) ;


enum FactorizationType {
    FactorizationNO=0,
    FactorizationCholeski=1,
    FactorizationCrout=2,
    FactorizationLU=3};

template <class R> 
class MatriceProfile:public MatriceCreuse<R> {
public:
  mutable R *L;  // lower 
  mutable R *U;  // upper
  mutable R *D;  // diagonal 
  int *pL; // profile L 
  int *pU; // profile U 
  mutable  FactorizationType typefac;
  FactorizationType typesolver; 
  ostream& dump (ostream&) const ;
  MatriceProfile(const int  n,const R *a);
  
  template<class FESpace>
  MatriceProfile(const FESpace &,bool VF=false);
  MatriceProfile(int NbOfDF,R* d,
		 R* u, int * pu,
		 R* l, int * pl,
		 FactorizationType tf=FactorizationNO) 
    : MatriceCreuse<R>(NbOfDF),L(l),U(u),D(d),pL(pl),pU(pu),
      typefac(tf),typesolver(FactorizationNO){}

  const MatriceProfile t() const   
     {return MatriceProfile(this->n,D,L,pL,U,pU,typefac);}
  const MatriceProfile lt() const  
 
  
     {return MatriceProfile(this->n,0,L,pL,0,0);}
  const MatriceProfile l() const  
     {return MatriceProfile(this->n,0,0,0,L,pL);}
  const MatriceProfile d() const   
     {return MatriceProfile(this->n,D,0,0,0,0);}
  const MatriceProfile ld() const  
     {return MatriceProfile(this->n,D,0,0,L,pL);}
  const MatriceProfile ldt() const 
     {return MatriceProfile(this->n,D,L,pL,0,0);}
  const MatriceProfile du() const  
     {return MatriceProfile(this->n,D,U,pU,0,0);}
  const MatriceProfile u() const   
     {return MatriceProfile(this->n,0,U,pU,0,0);}
  const MatriceProfile ut() const  
    
    
    {return MatriceProfile(this->n,0,0,0,U,pU);}

  void Solve(KN_<R> &x,const KN_<R> &b) const {
    /*if (typefac==0)  code faux // FH   nov 2006
      switch(typefac) 
	{
	FactorizationCholeski: cholesky() ; break;
	FactorizationCrout:   crout(); break;
	FactorizationLU:      LU(); break; 
	}*/ 
    if (&x != &b) x=b;x/=*this;} 
  
  int size() const ;
  void  resize(int n,int m)  { AFAIRE("MatriceProfile::resize");}  // a faire ...  add march 2009  FH 
  ~MatriceProfile();
  //  KN_<R>         operator* (const KN_<R> & ) const ;
  void addMatMul(const KN_<R> &x,KN_<R> &ax) const;
  void addMatTransMul(const KN_<R> &x,KN_<R> &ax) const ;
  //  { this->t().addMatMul(x,ax);}
  MatriceCreuse<R> & operator +=(MatriceElementaire<R> &);
  void operator=(const R & v); // Mise a zero 
  void cholesky(double = EPSILON/8.) const ; //
  void crout(double = EPSILON/8.) const ; //
  void LU(double = EPSILON/8.) const ; //
  R & diag(int i) { return D[i];}
  void SetBC (int i,double tgv) {
      if( tgv>=0) D[i]=tgv;
      else  { ffassert(tgv<0); }  // to hard ..
  }
  R & operator()(int i,int j) { if(i!=j) ffassert(0); return D[i];} // a faire 
  R * pij(int i,int j) const { if(i!=j) ffassert(0); return &D[i];} // a faire  Modif FH 31102005
  MatriceMorse<R> *toMatriceMorse(bool transpose=false,bool copy=false) const ;
  
  template<class F> void map(const  F & f)
  {
    for(int i=0;i<this->n;++i)
      D[i]=f(D[i]);
    if (L)
    for(int i=0;i<pL[this->n];++i)
      L[i]=f(L[i]);
    if (L && (L != U) )
    for(int i=0;i<pL[this->m];++i)
      U[i]=f(U[i]);
  }
  
  template<class RR> MatriceProfile(const MatriceProfile<RR> & A)
    : MatriceCreuse<R>(A.n,A.m,0)
  {
    
    typefac=A.typefac;
    pL=  docpy<int,int>(A.pL,this->n+1);
    D = docpy<R,RR>(A.D,this->n);
    if ( A.pL == A.pU ) pU=pL;
    else pU=  docpy<int,int>(A.pU,this->m+1);
    
      L= docpy<R,RR>(A.L,pL[this->n]);
      
    if ( A.L == A.U ) U=L;
    else  U= docpy<R,RR>(A.U,pU[this->m]);
    
  
  }

  
  bool addMatTo(R coef,std::map< pair<int,int>, R> &mij,bool trans=false,int ii00=0,int jj00=0,bool cnj=false,double threshold=0.,const bool keepSym=false);

  // Add FH april 2005
  R pscal(const KN_<R> & x,const KN_<R> & y); // produit scalaire  
  double psor(KN_<R> & x,const  KN_<R> & gmin,const  KN_<R> & gmax , double omega);
  void setdiag(const KN_<R> & x) ;
  void getdiag( KN_<R> & x) const ;
    // end add
  // Add FH oct 2005
   int NbCoef() const ;
   void setcoef(const KN_<R> & x);
   void getcoef( KN_<R> & x) const ;
  // end add
  
  /*----------------------------------------------------------------
    D[i] = A[ii]
    L[k] = A[ij]  j < i avec:   pL[i]<= k < pL[i+1] et j = pL[i+1]-k
    U[k] = A[ij]  i < j avec:   pU[j]<= k < pU[j+1] et i = pU[i+1]-k 
    remarque pL = pU generalement 
    si L = U => la matrice est symetrique 
    -------------------------------------------------------------------
  */ 
  private:
   void operator=(const MatriceProfile & A);
};


                                          
template <class R> 
class MatriceMorse:public MatriceCreuse<R> {
//  numebering  is no-symmetric
//  the all line  i :  
//     k=   lg[i] .. lg[i+1]+1
//        j = cl[k]
//        aij=a[k]
// otherwise  symmetric  case
// same but just the  LOWER part is store     (j <= i) 
// and aii exist always in symmetric case
//  -----------------------------------------

public:
  int nbcoef;
  bool symetrique;  
  R * a;
  int * lg; 
 
  int * cl;  
public:

    
 class VirtualSolver :public RefCounter { 
   friend class MatriceMorse;
   virtual void Solver(const MatriceMorse<R> &a,KN_<R> &x,const KN_<R> &b) const  =0;
};

  MatriceMorse():MatriceCreuse<R>(0),nbcoef(0),symetrique(true),a(0),lg(0),cl(0),solver(0) {};
  MatriceMorse(KNM_<R> & A, double tol) ;
  MatriceMorse(const int  n,const R *a);
//    :MatriceCreuse<R>(n),solver(0) {}
  MatriceMorse(istream & f);

  template<class FESpace>   explicit 
  MatriceMorse(const FESpace & Uh,bool sym,bool VF=false)
    :MatriceCreuse<R>(Uh.NbOfDF),solver(0) {Build(Uh,Uh,sym,VF);}

  template<class FESpace>   explicit 
  MatriceMorse(const FESpace & Uh,const FESpace & Vh,bool VF=false)
    :MatriceCreuse<R>(Uh.NbOfDF,Vh.NbOfDF,0),solver(0) 
  {Build(Uh,Vh,false,VF);}

  template<class FESpace>   explicit 
  MatriceMorse(const FESpace & Uh,const FESpace & Vh,
               void (*build)(MatriceMorse *,const FESpace & Uh,const FESpace & Vh,void *data),void *data=0
	       )
    :MatriceCreuse<R>(Uh.NbOfDF,Vh.NbOfDF,0),solver(0) 
  {build(this,Uh,Vh,data);           
  }
 
MatriceMorse(int nn,int mm,int nbc,bool sym,R *aa=0,int *ll=0,int *cc=0,bool dd=false, const VirtualSolver * s=0,bool transpose=false )
    :MatriceCreuse<R>(nn,mm,dd && !transpose),
     nbcoef(nbc),
     symetrique(sym), // transpose = true => dummy false (new matrix)
     a(docpyornot(this->dummy,aa,nbc)),
     lg(docpyornot(this->dummy,ll,nn+1)),
     cl(docpyornot(this->dummy,cc,nbc)),
     solver(s)
  { if(transpose) dotransposition(); };
  void Solve(KN_<R> &x,const KN_<R> &b) const;
  int size() const ;
  void addMatMul(const KN_<R> &x,KN_<R> &ax) const;
  void addMatTransMul(const KN_<R> &x,KN_<R> &ax) const;
  MatriceMorse & operator +=(MatriceElementaire<R> &);
  void operator=(const R & v) 
    { for (int i=0;i< nbcoef;i++) a[i]=v;}
  virtual ~MatriceMorse(){ if (!this->dummy) { delete [] a; delete [] cl;delete [] lg;}}
  ostream&  dump(ostream & f) const ;
  R * pij(int i,int j) const ;
  R  operator()(int i,int j) const {R * p= pij(i,j) ;throwassert(p); return *p;}
  R & operator()(int i,int j)  {R * p= pij(i,j) ;throwassert(p); return *p;}
  R & diag(int i)  {R * p= pij(i,i) ;throwassert(p); return *p;}
  void SetBC (int i,double tgv) {
	R * p= pij(i,i) ;
	ffassert(p);
	if( tgv>=0) *p=tgv;
	else  {
	    ffassert(!symetrique); 
	    for (int k=lg[i];k<lg[i+1]; ++k) a[k]=0;// put the line to Zero.
	    *p = 1. ; // and the diag coef to 1.
	}  
    }
    
  void SetSolver(const VirtualSolver & s){solver=&s;}
  void SetSolverMaster(const VirtualSolver * s){solver.master(s);}
  bool sym() const {return symetrique;}
  // Add FH april 2005
  R pscal(const KN_<R> & x,const KN_<R> & y); // produit scalaire  
  double psor(KN_<R> & x,const  KN_<R> & gmin,const  KN_<R> & gmax , double omega);
  void setdiag(const KN_<R> & x) ;
  void getdiag( KN_<R> & x) const ;
  // end add
  
  // Add FH oct 2005
   int NbCoef() const ;
   void setcoef(const KN_<R> & x);
   void getcoef( KN_<R> & x) const ;
  // end add
void  resize(int n,int m) ; // add march 2009 ...
template<class K>
  MatriceMorse(int nn,int mm, std::map< pair<int,int>, K> & m, bool sym);
  
 template<class RB,class RAB>
 void  prod(const MatriceMorse<RB> & B, MatriceMorse<RAB> & AB);
 
 MatriceMorse<R> *toMatriceMorse(bool transpose=false,bool copy=false) const {
     return new MatriceMorse(this->n,this->m,nbcoef,symetrique,a,lg,cl,copy, solver,transpose);}
  bool  addMatTo(R coef,std::map< pair<int,int>, R> &mij,bool trans=false,int ii00=0,int jj00=0,bool cnj=false,double threshold=0.,const bool keepSym=false);
  
  template<typename RR,typename K> static  RR CastTo(K  b){return b;}
                                                  
  template<class K>
    MatriceMorse(const MatriceMorse<K> & , R (*f)(K) );
  template<class K>
    MatriceMorse(const MatriceMorse<K> & );

  private:
  void dotransposition ()  ;  // do the transposition 
  CountPointer<const VirtualSolver> solver;
  
  void operator=(const MatriceMorse & );

  template<class FESpace>
  void  Build(const FESpace & Uh,const FESpace & Vh,bool sym,bool VF=false);
  
};


template<class R> class StopGC { public: virtual  bool Stop(int iter, R *, R * ){cout << " Stop !!!!!\n"; return false;} };
template<class R,class M,class P,class S >// S=StopGC<Real>
int ConjuguedGradient(const M & A,const P & C,const KN_<R> &b,KN_<R> &x,const int nbitermax, double &eps,long kprint=1000000000,S *Stop=0)
{
   
//  ConjuguedGradient lineare   A*x est appele avec des conditions au limites 
//  non-homogene puis homogene  pour calculer le gradient  
   if (verbosity>50) 
     kprint=2;
   if (verbosity>99)  cout << A << endl;
//   throwassert(&x && &b && &A && &C);
   typedef KN<R> Rn;
   int n=b.N();   
   throwassert(n==x.N());
   Rn g(n), h(n), Ah(n), & Cg(Ah);  // on utilise Ah pour stocke Cg  
   g = A*x;  
   double xx= RNM::real((x,conj(x)));
   double epsold=eps;
   g -= b;// g = Ax-b
   Cg = C*g; // gradient preconditionne 
   h =-Cg; 
   double g2 = RNM::real((Cg,conj(g)));
   if (g2 < 1e-30) 
    { if(verbosity>1 || (kprint<100000))
       cout << "GC  g^2 =" << g2 << " < 1.e-30  Nothing to do " << endl;
     return 2;  }
   double reps2 =eps >0 ?  eps*eps*g2 : -eps; // epsilon relatif 
   eps = reps2;
   for (int iter=0;iter<=nbitermax;iter++)
     {      
       Ah = A*h;
       double hAh =RNM::real((h,conj(Ah)));
      // if (Abs(hAh)<1e-30) ExecError("CG2: Matrix non defined, sorry ");
       R ro =  - RNM::real((g,conj(h)))/ hAh; // ro optimal (produit scalaire usuel)
       x += ro *h;
       g += ro *Ah; // plus besoin de Ah, on utilise avec Cg optimisation
       Cg = C*g;
       double g2p=g2; 
       g2 = RNM::real((Cg,conj(g)));
       bool stop = Stop && Stop->Stop(iter,x,g);
    
       if ( !(iter%kprint) && iter && (verbosity>3) )
         cout << "CG:" <<iter <<  "  ro = " << ro << " ||g||^2 = " << g2 << " " << stop << endl;
         
       if (g2 < reps2 || stop) {
         if ( !iter && !xx && g2 && epsold >0 ) {  
             // change fo eps converge to fast due to the 
             // penalization of boundary condition.
             eps =  epsold*epsold*g2; 
             if (verbosity>3 || (kprint<3))
             cout << "CG converge to fast (pb of BC)  restart: " << iter <<  "  ro = " 
                  << ro << " ||g||^2 = " << g2 << " <= " << reps2 << "  new eps2 =" <<  eps <<endl; 
              reps2=eps;
           } 
         else 
          { 
           if (verbosity>1 || (kprint<100000) )
            cout << "CG converge: " << iter <<  "  ro = " << ro << " ||g||^2 = " << g2 << endl; 
           return 1;// ok 
          }
          }
       double gamma = g2/g2p;       
       h *= gamma;
       h -= Cg;  //  h = -Cg * gamma* h       
     }
   if(verbosity)
   cout << " GC: method doesn't converge in " << nbitermax 
        <<  " iteration , xx= "  << xx<< endl;
   return 0; 
}

template<class R,class M,class P,class S>// S=StopGC<Real>
int ConjuguedGradient2(const M & A,const P & C,KN_<R> &x,const KN_<R> &b,const int nbitermax, double &eps,long kprint=1000000000,S *Stop=0)
{
//  ConjuguedGradient2 affine A*x = 0 est toujours appele avec les condition aux limites 
//  -------------
    
  // throwassert(&x  && &A && &C);
   typedef KN<R> Rn;
   int n=x.N();
  // if (verbosity>99) kprint=1;
   R ro=1;
   Rn g(n),h(n),Ah(n), & Cg(Ah);  // on utilise Ah pour stocke Cg  
   g = A*x;
   g -= b;  
   Cg = C*g; // gradient preconditionne 
   h =-Cg; 
   R g2 = (Cg,g);
   if (g2 < 1e-30) 
    { if(verbosity>1 || kprint< 1000000)
       cout << "GC  g^2 =" << g2 << " < 1.e-30  Nothing to do " << endl;
     return 2;  }
   if (verbosity>5 || (kprint<2))
     cout << " 0 GC  g^2 =" << g2 << endl;
   R reps2 =eps >0 ?  eps*eps*g2 : -eps; // epsilon relatif 
   eps = reps2;
   for (int iter=0;iter<=nbitermax;iter++)
     { 
       R rop = ro; 
       x += rop*h;      //   x+ rop*h  , g=Ax   (x old)
       //       ((Ah = A*x - b) - g);
       // Ah -= b;        //   Ax + rop*Ah = rop*Ah + g  =
       // Ah -= g;         //   Ah*rop  
       Ah = A*x;
       Ah -= b;        //   Ax + rop*Ah = rop*Ah + g  =
       Ah -= g;         //   Ah*rop  
       R hAh =(h,Ah);
         if (RNM::norm2(hAh)<1e-60) ExecError("CG2: Matrix is not defined (/0), sorry ");
       ro =  - (g,h)*rop/hAh ; // ro optimal (produit scalaire usuel)
       x += (ro-rop) *h;
       g += (ro/rop) *Ah; // plus besoin de Ah, on utilise avec Cg optimisation
       Cg = C*g;
       R g2p=g2; 
       g2 = (Cg,g);
         bool stop = Stop && Stop->Stop(iter,x,g);
       if ( ( (iter%kprint) == kprint-1)  /*&&  verbosity >1*/ )
         cout << "CG:" <<iter <<  "  ro = " << ro << " ||g||^2 = " << g2 << " " << stop <<  endl;
       if (stop || g2 < reps2 ) {
         if (kprint <= nbitermax )
            cout << "CG converges " << iter <<  "  ro = " << ro << " ||g||^2 = " << g2
                 << " stop=" << stop << " /Stop= " << Stop <<  endl;
          return 1;// ok 
          }
       R gamma = g2/g2p;       
       h *= gamma;
       h -= Cg;  //  h = -Cg * gamma* h       
     }
     //if (nbitermax <= nbitermax )
      cout << "CG does'nt converge: " << nbitermax <<   " ||g||^2 = " << g2 << " reps2= " << reps2 << endl; 
   return 0; 
}

template <class R> 
class MatriceIdentite:public  VirtualMatrice<R> { public:
 typedef typename VirtualMatrice<R>::plusAx plusAx;
    MatriceIdentite(int n) :VirtualMatrice<R>(n) {}; 
 void addMatMul(const  KN_<R>  & x, KN_<R> & Ax) const { 
     ffassert(x.N()==Ax.N());
   Ax+=x; } 
 plusAx operator*(const KN<R> &  x) const {return plusAx(this,x);} 
  bool ChecknbLine(int n) const { return true;}  
  bool ChecknbColumn(int m) const { return true;} 

};  

template<class R>
class SolveGCDiag :   public MatriceMorse<R>::VirtualSolver , public VirtualMatrice<R>{
  int n;
  int nbitermax;
  double eps;
  mutable double  epsr;
  KN<R> D1;
  public:
  typedef typename VirtualMatrice<R>::plusAx plusAx;
  SolveGCDiag(const MatriceMorse<R> &A,int itmax,double epsilon=1e-6) : 
    VirtualMatrice<R>(A.n),
    n(A.n),nbitermax(itmax?itmax: Max(100,n)),eps(epsilon),epsr(0),D1(n)
  { //throwassert(A.sym());
    for (int i=0;i<n;i++)
      D1[i] = 1./A(i,i);}
   void Solver(const MatriceMorse<R> &a,KN_<R> &x,const KN_<R> &b) const  {
     epsr = (eps < 0) ? (epsr >0 ? -epsr : -eps ) : eps ;
    // cout << " epsr = " << epsr << endl;
     ConjuguedGradient<R,MatriceMorse<R>,SolveGCDiag<R>,StopGC<R> >(a,*this,b,x,nbitermax,epsr  );
   }
plusAx operator*(const KN_<R> &  x) const {return plusAx(this,x);} 


 void addMatMul(const KN_<R> & x, KN_<R> & Ax) const 
  {  ffassert(x.N()==Ax.N());
     for (int i=0;i<n;i++) 
     Ax[i]+= D1[i]*x[i];}
     
   bool ChecknbLine(int nn) const { return n==nn;}  
   bool ChecknbColumn(int mm) const { return n==mm;} 

};

struct TypeSolveMat {
    enum TSolveMat { NONESQUARE=0, LU=1, CROUT=2, CHOLESKY=3, GC = 4 , GMRES = 5, SparseSolver=6, SparseSolverSym=7 };
    TSolveMat t;
    bool sym;
    bool profile;
    TypeSolveMat(TSolveMat tt=LU) :t(tt),
    sym(t == CROUT || t ==CHOLESKY  ||  t==GC || t==SparseSolverSym ),
    profile(t == CROUT || t ==CHOLESKY  || t ==LU ) {}
    bool operator==(const TypeSolveMat & a) const { return t == a.t;}                               
    bool operator!=(const TypeSolveMat & a) const { return t != a.t;}
    static TSolveMat defaultvalue;
};

// add FH , JM  avril 2009 
template<class K,class V> class MyMap;
class String; 
typedef void *    pcommworld; // to get the pointeur to the comm word ... in mpi
//  to build 
#define VDATASPARSESOLVER  1
int Data_Sparse_Solver_version() ; //{ return VDATASPARSESOLVER;}
struct Data_Sparse_Solver {
  bool initmat;
  TypeSolveMat* typemat;
  double epsilon;
  const void * precon;
  int NbSpace;
  int strategy;
  double tgv;
  bool factorize;
  double tol_pivot;
  double tol_pivot_sym;
  int itmax ;
  string data_filename;  
  KN<long> lparams;  //  copy arry more secure ...
  KN<double> dparams;   
  
  MyMap<String,String> * smap;   
  
  KN<long> perm_r; 
  KN<long> perm_c;     
  KN<double> scale_r; 
  KN<double> scale_c; 
  string sparams;  
  pcommworld commworld;  // pointeur sur le commworld
    int master; //  master rank in comm add FH 02/2013 for MUMPS ... => VDATASPARSESOLVER exist
    // array for return information for mumps ...
    KN<double> * rinfo;
    KN<long> * info;
 /*   
  int *param_int;
  double *param_double;
  string *param_char;
  int *perm_r;
  int *perm_c;
  string *file_param_int;
  string *file_param_double;
  string *file_param_char;
  string *file_param_perm_r;
  string *file_param_perm_c;
  */
    
    Data_Sparse_Solver()
	:
    initmat(1),
    typemat(0),
    strategy(0),
    tgv(1e30),
    factorize(0),
    epsilon(1e-6),
    precon(0),
    tol_pivot(-1),
    tol_pivot_sym(-1),
    NbSpace(50),
    itmax(0),
 //   lparams(0,0),
 //   dparams(0,0),
    smap(0) ,
//    perm_r(0,0),
//    perm_c(0,0),
//    scale_r(0,0),
 //   scale_c(0,0)
    
    /*
    param_int(0),
    param_double(0),
    param_char(0),
    perm_r(0),
    perm_c(0),
    file_param_int(0),
    file_param_double(0),
    file_param_perm_r(0),
    file_param_perm_c(0),
     */
    //sparams, 
    commworld(0),
    master(0),
    rinfo(0),
    info(0)
    {}
    
private:
    Data_Sparse_Solver(const Data_Sparse_Solver& ); // pas de copie 
};

// add Sep 2007 for generic Space solver
#define DCL_ARG_SPARSE_SOLVER(T,A)  Stack stack,const MatriceMorse<T> *A, Data_Sparse_Solver & ds
#define ARG_SPARSE_SOLVER(A) stack,A, ds					

typedef MatriceMorse<double>::VirtualSolver *
(*SparseRMatSolve)(DCL_ARG_SPARSE_SOLVER(double,A) );


typedef MatriceMorse<Complex>::VirtualSolver *
(*SparseCMatSolve)(DCL_ARG_SPARSE_SOLVER(Complex,A) );


template<class R> struct DefSparseSolver {
  typedef typename MatriceMorse<R>::VirtualSolver * 
  (*SparseMatSolver)(DCL_ARG_SPARSE_SOLVER(R,A) );

  static SparseMatSolver solver;
    
  static  typename MatriceMorse<R>::VirtualSolver * 

  Build( DCL_ARG_SPARSE_SOLVER(R,A) )
    
  {
    typename MatriceMorse<R>::VirtualSolver *ret=0;
    if(solver)
      ret =(solver)(ARG_SPARSE_SOLVER(A));
    return ret;	
  }
};

// add Dec 2012 F.H. for optimisation .. 
template<class R> struct DefSparseSolverSym {
    typedef typename MatriceMorse<R>::VirtualSolver *
    (*SparseMatSolver)(DCL_ARG_SPARSE_SOLVER(R,A) );
    
    static SparseMatSolver solver;
    
    static  typename MatriceMorse<R>::VirtualSolver *
    
    Build( DCL_ARG_SPARSE_SOLVER(R,A) )
    
    {
        typename MatriceMorse<R>::VirtualSolver *ret=0;
        if(solver)
            ret =(solver)(ARG_SPARSE_SOLVER(A));
        return ret;	
    }
};

// End Sep 2007 for generic Space solver



inline void C2RR(int n,Complex *c,double *cr,double *ci)
{
 for (int i=0;i<n;i++)
  {
   cr[i]=real(c[i]);
   ci[i]=imag(c[i]);
  }
}

inline void RR2C(int n,double *cr,double *ci,Complex *c)
{
 for (int i=0;i<n;i++)
  {
    c[i]=Complex(cr[i],ci[i]);   
  }
}



#endif